Gender Marking and Clitic Pronoun Resolution in Simultaneous Bilingual Children
Abstract
:1. Introduction
2. Theoretical Background
2.1. Clitics in MG
(1) | Tin vlepo |
her see1stSing | |
“I see her” |
2.2. Gender
3. Psycholinguistic Background
3.1. Acquisition of Clitics
3.2. Acquisition of Gender
4. The Present Study
4.1. Aims, Research Questions and Predictions
4.2. Participants
4.3. Design, Materials and Procedure
4.3.1. Production Task
4.3.2. Comprehension Task
(2) | Experimental trial. | |
Introductory part: | To guruni echase to pechnidi tu. (one segment) | |
The pig lost its toy. | ||
Experimental part: | To guruni/ klei/ ke/ to alogo/ TO/ agkaliazi/ sfichta. | |
The pig/ is crying/ and/ the horse/ IT/ is hugging/ tight. |
(3) | Comprehension question. |
Question: Pjos klei? Who is crying? |
(4) | Introductory part: |
O kokoras den thelei na einai defteros. (=The rooster does not want to be second) | |
*O kokoras einai thymomenos kai o gaidaros einai iremi. | |
Main part: | |
The roosterMASC is angryMASC and the donkeyMASC is calmFEM. | |
The rooster is angry and, the donkey is calm. |
5. Results
5.1. Analyses
5.2. Production
5.3. Comprehension
(5) | O vatrachos pezi ke/(Precritical) o kokoras/(Critical) TON/(Postcritical) vafi/(Final) me ta chromata. |
The frog plays and/(Precritical) the rooster/(Critical) him/(Postcritical) paints/(Final) with the colors. |
6. Discussion
(6) | *O vatrachos | pezi ke/ | o kokoras/ | TIN/ | vafi/ | me ta chromata. |
The frogMASC | plays and/ | the roosterMASC/ | herFEM/ | paints/ | with the colors. | |
(7) | *O vatrachos | pezi ke/ | i katsika/ | TIN/ | vafi/ | me ta chromata. |
The frogMASC | plays and/ | the goatFEM/ | herFEM/ | paints/ | with the colors. |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Noun | Meaning | Frequency with the Adjective Masculine | Frequency with the Adjective Feminine | Lemma with Meaning Masculine Animal | Frequency | Lemma with Meaning Feminine Animal | Frequency |
---|---|---|---|---|---|---|---|
gaidaros | donkey | 1.670 | 846 | - | - | gaidura | 5.760 |
kokoras | rooster | 1.010 | 747 (only in the context of Chinese horoscope) | - | - | kota | Not relevant because rooster has a gender-related association |
panthiras | panther | 218 | 302 | - | - | panthirina | Refers to a specific person |
vatrachos | frog | 539 | 638 | - | - | vatrachina | 7.510 |
chelona | turtle | 3.940 | 3.890 | chelonos | 2.390 in children books | - | - |
agelada | cow | 755 almost always in definition of tavros (=bull) | 866 | - | - | - | - |
melisa | bee | 1.740 almost always in definitions | 1.250 | kifinas | 396.000 | - | - |
katsika | goat | 801 almost always in definitions | 627 | tragos | 473.000 | - | - |
Appendix C
- 1.
- Models for accuracy and the effect of verbal intelligence in the production task
- (a) Initial model motivated by the research hypothesis:
- modelAPT_cent <-glmer(accuracy ~ condition*subtype*APT.cent +
- (1+condition|subject) +
- (1|itemno), data=d_TD,
- family=binomial,
- control=glmerControl(optimizer=“bobyqa”))
- (b) Model supported by the data
- modelAPTb_cent <-glmer(accuracy ~ condition*subtype*APT.cent +
- (1|subject) +
- (1|itemno), data=d_TD,
- family=binomial,
- control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 1.465 | 0.19 | 7.53 | <0.001 |
Gender Match | −0.751 | 0.36 | −2.07 | 0.038 |
Group | −0.055 | 0.23 | −0.24 | 0.807 |
Verbal Intelligence | 0.004 | 0.01 | 0.30 | 0.763 |
Gender Match*Group | 0.077 | 0.39 | 0.20 | 0.842 |
Gender Match*Verbal Intelligence | 0.003 | 0.02 | 0.14 | 0.890 |
Group*Verbal Intelligence | −0.015 | 0.03 | −0.57 | 0.567 |
Gender Match*Group*Verbal Intelligence | 0.102 | 0.05 | 2.22 | 0.026 |
- 2.
- Models for accuracy and the effect of sentence repetition scores in the production task
- (a) Model of the whole dataset
- modelSRT_cent <-glmer(accuracy ~ condition*subtype*SRT.cent +
- (1+condition|subject) +
- (1|itemno), data=d_TD,
- family=binomial,
- control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 1.46 | 0.19 | 7.77 | <0.001 |
Gender Match | −0.64 | 0.37 | −1.71 | 0.087 |
Group | 0.01 | 0.20 | 0.07 | 0.946 |
Sentence Repetition | 0.05 | 0.03 | 1.79 | 0.074 |
Gender Match*Group | 0.06 | 0.40 | 0.16 | 0.874 |
Gender Match*Sentence Repetition | −0.06 | 0.05 | −1.05 | 0.293 |
Group*Sentence Repetition | 0.04 | 0.05 | 0.68 | 0.499 |
Gender Match*Group*Sentence Repetition | 0.21 | 0.11 | 1.93 | 0.054 |
- (b) Model after excluding the outlier
- modelSRT_cent_Out <-glmer(accuracy ~ condition*subtype*SRT.cent +
- (1+condition|subject) +
- (1|itemno), data=d_TD_Outl,
- family=binomial,
- control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 4.41 | 0.20 | 7.54 | <0.001 |
Gender Match | 0.55 | 0.38 | −1.57 | 0.117 |
Group | 1.02 | 0.21 | 0.11 | 0.910 |
Sentence Repetition | 1.05 | 0.03 | 1.33 | 0.182 |
Gender Match*Group | 1.16 | 0.41 | 0.37 | 0.710 |
Gender Match*Sentence Repetition | 0.90 | 0.07 | −1.53 | 0.126 |
Group*Sentence Repetition | 1.03 | 0.07 | 0.42 | 0.673 |
Gender Match*Group*Sentence Repetition | 1.13 | 0.13 | 0.95 | 0.343 |
- 3.
- Models for the effect of language dominance on accuracy
- (a) Model with the whole dataset and verbal intelligence and dominance as predictors
- modelAPTb_Dom <-glmer(accuracy ~ condition*subtype*APT.cent+Dominance +
- (1|subject) +
- (1|itemno), data=d_TD,
- family=binomial, control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 2.1093 | 0.3729 | 5.66 | <0.001 |
Gender Match | −0.7890 | 0.4062 | −1.94 | 0.052 |
Group | −0.2039 | 0.3313 | −0.62 | 0.538 |
Verbal Intelligence | 0.0355 | 0.0225 | 1.58 | 0.115 |
Dominance | −0.4494 | 0.4008 | −1.12 | 0.262 |
Gender Match*Group | 0.0735 | 0.3891 | 0.19 | 0.850 |
Gender Match*Verbal Intelligence | −0.0478 | 0.0285 | −1.68 | 0.093 |
Group*Verbal Intelligence | −0.0787 | 0.0385 | −2.04 | 0.041 |
Gender Match*Group*Verbal Intelligence | 0.1041 | 0.0464 | 2.24 | 0.025 |
- (b) Model with the bilingual children and verbal intelligence and dominance as predictor
- modelAPT_bil_Dom <-glmer(accuracy ~ condition*Dominance*APT.cent +
- (1|subject) +
- (1|itemno), data=d_TD_L2,
- family=binomial, control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 1.5137 | 0.3286 | 4.61 | <0.001 |
Gender Match | −0.6537 | 0.4781 | −1.37 | 0.172 |
Dominance | −0.3641 | 0.5621 | −0.65 | 0.517 |
Verbal Intelligence | −0.0216 | 0.0339 | −0.64 | 0.524 |
Gender Match*Dominance | 0.4575 | 0.7194 | −0.64 | 0.525 |
Gender Match*Verbal Intelligence | 0.0396 | 0.0437 | 0.91 | 0.364 |
Dominance*Verbal Intelligence | −0.0574 | 0.0679 | −0.85 | 0.398 |
Gender Match*Dominance*Verbal Intelligence | −0.0899 | 0.0873 | −1.03 | 0.303 |
- (c) Model with the whole dataset and sentence repetition and dominance as predictor
- modelSRT_Dom <-glmer(accuracy ~ condition*subtype*SRT.cent + Dominance+
- (1+condition|subject) +
- (1|itemno), data=d_TD,
- family=binomial, control=glmerControl(optimizer=“bobyqa”))
Predictors | Estimates | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 1.8668 | 0.3562 | 5.24 | <0.001 |
Gender Match | −0.6705 | 0.4144 | −1.62 | 0.106 |
Group | −0.0621 | 0.322 | −0.19 | 0.847 |
Sentence Repetition | 0.1118 | 0.0744 | 1.5 | 0.133 |
Dominance | −0.1496 | 0.3316 | −0.45 | 0.652 |
Gender Match*Group | 0.0642 | 0.4019 | 0.16 | 0.873 |
Gender Match*Sentence Repetition | −0.163 | 0.0987 | −1.65 | 0.099 |
Group*Sentence Repetition | −0.0716 | 0.0828 | −0.86 | 0.387 |
Gender Match*Group*Sentence Repetition | 0.2107 | 0.1095 | 1.92 | 0.054 |
- (d) Model with the bilingual children and sentence repetition and dominance as predictor
- modelSRT_B_Dom <-glmer(accuracy ~ condition*Dominance*SRT.cent +
- (1+condition|subject) +
- (1|itemno), data=d_TD_L2,
- family=binomial, control=glmerControl(optimizer=“bobyqa”)))
Predictors | Estimate | std. Error | z Value | p |
---|---|---|---|---|
Intercept | 1.6142 | 0.3275 | 4.93 | <0.001 |
Gender Match | −0.8771 | 0.5342 | −1.64 | 0.101 |
Dominance | −0.2693 | 0.5529 | −0.49 | 0.626 |
Sentence Repetition | 0.0381 | 0.0791 | 0.48 | 0.63 |
Gender Match*Dominance | 0.0769 | 0.8343 | 0.09 | 0.927 |
Gender Match* Sentence Repetition | 0.2369 | 0.12 | 1.97 | 0.048 |
Dominance*Sentence Repetition | 0.0697 | 0.1582 | 0.44 | 0.66 |
Gender Match*Dominance*Sentence Repetition | −0.4353 | 0.2399 | −1.81 | 0.07 |
Appendix D
Segment | Gender Match | Grammaticality | Mean RTs | Standard Deviation RTs |
---|---|---|---|---|
Precritical | Mismatch | Gram | 1029.4 | 196.3 |
Ungram | 1197.0 | 361.1 | ||
Match | Gram | 1088.6 | 212.9 | |
Ungram | 1386.3 | 406.9 | ||
Critical | Mismatch | Gram | 1185.8 | 338.2 |
Ungram | 1199.5 | 367.8 | ||
Match | Gram | 1211.5 | 288.3 | |
Ungram | 1386.0 | 448.7 | ||
Postcritical | Mismatch | Gram | 1223.2 | 321.1 |
Ungram | 1536.9 | 626.3 | ||
Match | Gram | 1265.7 | 331.9 | |
Ungram | 1952.1 | 1138.8 | ||
Final | Mismatch | Gram | 2411.5 | 1011.6 |
Ungram | 2622.6 | 1078.6 | ||
Match | Gram | 2449.8 | 912.4 | |
Ungram | 2384.1 | 796.7 |
Segment | Gender Match | Grammaticality | Mean RTs | Standard Deviation RTs |
---|---|---|---|---|
Precritical | Mismatch | Gram | 1237.7 (1269.7) | 317.9 (300.4) |
Ungram | 1214.1 (1259.0) | 242.9 (268.1) | ||
Match | Gram | 1242.4 (1267.1) | 192.4 (136.8) | |
Ungram | 1388.0 (1383.4) | 289.2 (337.7) | ||
Critical | Mismatch | Gram | 1230.6 (1269.5) | 162.3 (145.5) |
Ungram | 1388.2 (1507.6) | 452.3 (488.7) | ||
Match | Gram | 1342.6 (1315.6) | 210.5 (239.1) | |
Ungram | 1404.5 (1487.1) | 442.3 (503.2) | ||
Postcritical | Mismatch | Gram | 1376.6 (1425.8) | 239.6 (247.4) |
Ungram | 1411.2 (1458.0) | 339.3 (379.8) | ||
Match | Gram | 1383.9 (1362.3) | 166.8 (148.9) | |
Ungram | 1801.1 (1870.8) | 757.5 (836.0) | ||
Final | Mismatch | Gram | 2592.2 (2810.4) | 973.6 (1071.5) |
Ungram | 3032.9 (3232.8) | 1318.9 (1519.1) | ||
Match | Gram | 3138.1 (3097.1) | 1092.0 (1102.8) | |
Ungram | 2551.2 (2749.7) | 1196.8 (1375.2) |
Appendix E
- 1.
- Models for the reaction times and the effect of verbal intelligence in the comprehension task
- (a) Initial model motivated by the research hypothesis
- modelAPTGroupGramm_cent <- lmer(rt.r ~ gramm*gender_match*subt*region + APT.cent*subt + APT.cent*gramm +
- (1+gramm*gender_match*region|subject) + (1+gramm|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
- (b) Model supported by the data
- modelAPTGroupGramm_cent <- lmer(rt.r ~ gramm*subt*gender_match*region + APT.cent*subt + APT.cent*gramm +
- (1+gramm|subject) + (1|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −0.93 | 0.02 | −40.23 | <0.001 |
Grammaticality | 0.04 | 0.03 | 1.45 | 0.148 |
Group | −0.10 | 0.04 | −2.33 | 0.020 |
Gender Match | −0.00 | 0.03 | −0.01 | 0.988 |
Segment Precritical–Critical | 0.03 | 0.03 | 0.95 | 0.344 |
Segment Critical–Postcritical | −0.00 | 0.03 | −0.01 | 0.991 |
Segment Postcritical–Final | 0.27 | 0.03 | 9.66 | <0.001 |
Verbal Intelligence | −0.01 | 0.00 | −2.06 | 0.039 |
Grammaticality*Group | −0.03 | 0.05 | −0.63 | 0.527 |
Grammaticality*Gender Match | −0.01 | 0.05 | −0.14 | 0.891 |
Group*Gender Match | −0.01 | 0.04 | −0.20 | 0.840 |
Grammaticality*Segment Precritical–Critical | −0.00 | 0.06 | −0.03 | 0.975 |
Grammaticality*Segment Critical–Postcritical | 0.03 | 0.06 | 0.60 | 0.549 |
Grammaticality*Segment Postcritical–Final | −0.06 | 0.06 | −1.11 | 0.269 |
Group*Segment Precritical–Critical | 0.01 | 0.06 | 0.22 | 0.824 |
Group*Segment Critical–Postcritical | −0.02 | 0.06 | −0.29 | 0.770 |
Group*Segment Postcritical–Final | −0.03 | 0.06 | −0.49 | 0.625 |
Gender Match*Segment Precritical–Critical | 0.02 | 0.06 | 0.30 | 0.765 |
Gender Match*Segment Critical–Postcritical | −0.06 | 0.06 | −1.11 | 0.268 |
Gender Match*Segment Postcritical–Final | −0.05 | 0.06 | −0.80 | 0.421 |
Group*Verbal Intelligence | 0.00 | 0.01 | 0.93 | 0.355 |
Grammaticality*Verbal Intelligence | 0.00 | 0.00 | 0.65 | 0.518 |
Grammaticality*Group*Gender Match | −0.01 | 0.08 | −0.11 | 0.912 |
Grammaticality*Group*Segment Precritical–Critical | 0.04 | 0.11 | 0.37 | 0.712 |
Grammaticality*Group*Segment Critical–Postcritical | −0.07 | 0.11 | −0.64 | 0.522 |
Grammaticality*Group*Segment Postcritical–Final | 0.00 | 0.11 | 0.02 | 0.981 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.13 | 0.11 | −1.13 | 0.260 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.10 | 0.11 | 0.91 | 0.361 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.25 | 0.11 | −2.25 | 0.025 |
Group*Gender Match*Segment Precritical–Critical | −0.08 | 0.11 | −0.74 | 0.459 |
Group*Gender Match*Segment Critical–Postcritical | 0.08 | 0.11 | 0.71 | 0.478 |
Group*Gender Match*Segment Postcritical–Final | −0.17 | 0.11 | −1.51 | 0.130 |
Grammaticality*Group*Gender Match*Segment Precritical–Critical | 0.34 | 0.22 | 1.50 | 0.133 |
Grammaticality*Group*Gender Match*Segment Critical–Postcritical | −0.28 | 0.22 | −1.25 | 0.211 |
Grammaticality*Group*Gender Match*Segment Postcritical–Final | 0.19 | 0.23 | 0.85 | 0.396 |
- 2.
- Model for the reaction times and the effect of sentence repetition in the comprehension task
- (a) Initial model motivated by the hypothesis
- modelSRTGroupGramm_cent <- lmer(rt.r ~ gramm*gender_match*subt*region + SRT.cent*subt + SRT.cent*gramm +
- (1+gramm*region*gender_match|subject) +
- (1+gramm|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
- (b) Model supported by the data
- modelSRTGroupGramm_cent <- lmer(rt.r ~ gramm*gender_match*subt*region + SRT.cent*subt + SRT.cent*gramm +
- (1+gramm|subject) +
- (1|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −0.93 | 0.02 | −38.35 | <0.001 |
Grammaticality | 0.04 | 0.03 | 1.46 | 0.143 |
Group | −0.09 | 0.05 | −1.95 | 0.051 |
Gender Match | −0.00 | 0.03 | −0.02 | 0.983 |
Segment Precritical–Critical | 0.03 | 0.03 | 0.95 | 0.344 |
Segment Critical–Postcritical | −0.00 | 0.03 | −0.01 | 0.995 |
Segment Postcritical–Final | 0.27 | 0.03 | 9.65 | <0.001 |
Sentence Repetition | −0.00 | 0.01 | −0.13 | 0.897 |
Grammaticality*Group | −0.03 | 0.05 | −0.58 | 0.559 |
Grammaticality*Gender Match | −0.01 | 0.05 | −0.13 | 0.896 |
Group*Gender Match | −0.01 | 0.04 | −0.22 | 0.827 |
Grammaticality*Segment Precritical–Critical | −0.00 | 0.06 | −0.03 | 0.976 |
Grammaticality*Segment Critical–Postcritical | 0.03 | 0.06 | 0.60 | 0.546 |
Grammaticality*Segment Postcritical–Final | −0.06 | 0.06 | −1.10 | 0.270 |
Group*Segment Precritical–Critical | 0.01 | 0.06 | 0.22 | 0.824 |
Group*Segment Critical–Postcritical | −0.02 | 0.06 | −0.30 | 0.766 |
Group*Segment Postcritical–Final | −0.03 | 0.06 | −0.48 | 0.631 |
Gender Match*Segment Precritical–Critical | 0.02 | 0.06 | 0.30 | 0.765 |
Gender Match*Segment Critical–Postcritical | −0.06 | 0.06 | −1.10 | 0.269 |
Gender Match*Segment Postcritical–Final | −0.05 | 0.06 | −0.81 | 0.418 |
Group*Sentence Repetition | 0.01 | 0.01 | 0.65 | 0.516 |
Grammaticality*Sentence Repetition | −0.01 | 0.01 | −1.23 | 0.220 |
Grammaticality*Group*Gender Match | −0.01 | 0.08 | −0.12 | 0.901 |
Grammaticality*Group*Segment Precritical–Critical | 0.04 | 0.11 | 0.37 | 0.712 |
Grammaticality*Group*Segment Critical–Postcritical | −0.07 | 0.11 | −0.65 | 0.518 |
Grammaticality*Group*Segment Postcritical–Final | 0.00 | 0.11 | 0.02 | 0.982 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.13 | 0.11 | −1.13 | 0.260 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.10 | 0.11 | 0.92 | 0.359 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.25 | 0.11 | −2.25 | 0.025 |
Group*Gender Match*Segment Precritical–Critical | −0.08 | 0.11 | −0.74 | 0.459 |
Group*Gender Match*Segment Critical–Postcritical | 0.08 | 0.11 | 0.71 | 0.479 |
Group*Gender Match*Segment Postcritical–Final | −0.17 | 0.11 | −1.51 | 0.132 |
Grammaticality*Group*Gender Match*Segment Precritical–Critical | 0.34 | 0.22 | 1.50 | 0.133 |
Grammaticality*Group*Gender Match*Segment Critical–Postcritical | −0.28 | 0.22 | −1.25 | 0.210 |
Grammaticality*Group*Gender Match*Segment Postcritical–Final | 0.19 | 0.23 | 0.85 | 0.398 |
- 3.
- Models for the effect of language dominance on reaction times
- (a) Model with the whole dataset and verbal intelligence and dominance as predictors
- modelAPTGroupGramm_Dominance <- lmer(rt.r ~ gramm*subt*gender_match*region + APT.cent*subt + APT.cent*gramm + Dominance +
- (1+gramm|subject) +
- (1|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −0.97 | 0.07 | −13.89 | <0.001 |
Grammaticality | 0.04 | 0.03 | 1.45 | 0.148 |
Group | −0.11 | 0.05 | −2.38 | 0.017 |
Gender Match | 0 | 0.03 | −0.02 | 0.987 |
Segment Precritical–Critical | 0.03 | 0.03 | 0.95 | 0.344 |
Segment Critical–Postcritical | 0 | 0.03 | −0.01 | 0.991 |
Segment Postcritical–Final | 0.27 | 0.03 | 9.65 | <0.001 |
Verbal Intelligence | 0 | 0 | −1.72 | 0.085 |
Dominance | 0.05 | 0.08 | 0.61 | 0.544 |
Grammaticality*Group | −0.03 | 0.05 | −0.63 | 0.526 |
Grammaticality*Gender Match | −0.01 | 0.05 | −0.14 | 0.889 |
Group*Gender Match | −0.01 | 0.04 | −0.2 | 0.839 |
Grammaticality*Segment Precritical–Critical | 0 | 0.06 | −0.03 | 0.975 |
Grammaticality*Segment Critical–Postcritical | 0.03 | 0.06 | 0.6 | 0.549 |
Grammaticality*Segment Postcritical–Final | −0.06 | 0.06 | −1.1 | 0.269 |
Group*Segment Precritical–Critical | 0.01 | 0.06 | 0.22 | 0.824 |
Group*Segment Critical–Postcritical | −0.02 | 0.06 | −0.29 | 0.77 |
Group*Segment Postcritical–Final | −0.03 | 0.06 | −0.49 | 0.625 |
Gender Match*Segment Precritical–Critical | 0.02 | 0.06 | 0.3 | 0.765 |
Gender Match*Segment Critical–Postcritical | −0.06 | 0.06 | −1.11 | 0.268 |
Gender Match*Segment Postcritical–Final | −0.05 | 0.06 | −0.81 | 0.421 |
Group*Verbal Intelligence | 0 | 0.01 | 0.62 | 0.536 |
Grammaticality*Verbal Intelligence | 0 | 0 | 0.65 | 0.518 |
Grammaticality*Group*Gender Match | −0.01 | 0.08 | −0.11 | 0.912 |
Grammaticality*Group*Segment Precritical–Critical | 0.04 | 0.11 | 0.37 | 0.712 |
Grammaticality*Group*Segment Critical–Postcritical | −0.07 | 0.11 | −0.64 | 0.522 |
Grammaticality*Group*Segment Postcritical–Final | 0 | 0.11 | 0.02 | 0.982 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.13 | 0.11 | −1.13 | 0.26 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.1 | 0.11 | 0.91 | 0.361 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.25 | 0.11 | −2.24 | 0.025 |
Group*Gender Match*Segment Precritical–Critical | −0.08 | 0.11 | −0.74 | 0.459 |
Group*Gender Match*Segment Critical–Postcritical | 0.08 | 0.11 | 0.71 | 0.478 |
Group*Gender Match*Segment Postcritical–Final | −0.17 | 0.11 | −1.51 | 0.13 |
Grammaticality*Group*Gender Match*Segment Precritical–Critical | 0.34 | 0.22 | 1.5 | 0.134 |
Grammaticality*Group*Gender Match*Segment Critical–Postcritical | −0.28 | 0.22 | −1.25 | 0.211 |
Grammaticality*Group*Gender Match*Segment Postcritical–Final | 0.19 | 0.23 | 0.85 | 0.397 |
- (b) Model with the bilingual children and verbal intelligence and dominance as predictors
- modelAPTGroupGramm_B_Dom<- lmer(rt.r ~ gramm*Dominance*gender_match*region + APT.cent*Dominance + APT.cent*gramm +
- (1+gramm|subject) +
- (1|Picture),
- data=stat1_L2,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −0.92 | 0.07 | −12.99 | <0.001 |
Grammaticality | 0 | 0.08 | 0 | 1 |
Dominance | 0.05 | 0.08 | 0.58 | 0.563 |
Gender Match | 0.01 | 0.07 | 0.09 | 0.928 |
Segment Precritical–Critical | 0.11 | 0.09 | 1.23 | 0.221 |
Segment Critical–Postcritical | −0.01 | 0.09 | −0.09 | 0.931 |
Segment Postcritical–Final | 0.2 | 0.09 | 2.21 | 0.027 |
Verbal Intelligence | −0.01 | 0.01 | −1.07 | 0.284 |
Grammaticality*Dominance | 0.07 | 0.09 | 0.79 | 0.427 |
Grammaticality*Gender Match | −0.08 | 0.14 | −0.58 | 0.564 |
Dominance*Gender Match | 0 | 0.08 | 0.02 | 0.983 |
Grammaticality*Segment Precritical–Critical | −0.36 | 0.18 | −1.96 | 0.05 |
Grammaticality*Segment Critical–Postcritical | 0.2 | 0.18 | 1.08 | 0.28 |
Grammaticality*Segment Postcritical–Final | −0.14 | 0.18 | −0.76 | 0.446 |
Dominance*Segment Precritical–Critical | −0.13 | 0.11 | −1.2 | 0.23 |
Dominance*Segment Critical–Postcritical | 0.02 | 0.11 | 0.2 | 0.842 |
Dominance*Segment Postcritical–Final | 0.11 | 0.11 | 1.05 | 0.295 |
Gender Match*Segment Precritical–Critical | 0.13 | 0.18 | 0.7 | 0.481 |
Gender Match*Segment Critical–Postcritical | 0.02 | 0.18 | 0.11 | 0.911 |
Gender Match*Segment Postcritical–Final | −0.02 | 0.18 | −0.12 | 0.903 |
Dominance*Verbal Intelligence | 0 | 0.01 | −0.07 | 0.943 |
Grammaticality*Verbal Intelligence | 0.01 | 0.01 | 1.9 | 0.058 |
Grammaticality*Dominance*Gender Match | 0.11 | 0.16 | 0.69 | 0.49 |
Grammaticality*Dominance*Segment Precritical–Critical | 0.48 | 0.22 | 2.18 | 0.029 |
Grammaticality*Dominance*Segment Critical–Postcritical | −0.18 | 0.22 | −0.83 | 0.409 |
Grammaticality*Dominance*Segment Postcritical–Final | 0.11 | 0.22 | 0.49 | 0.626 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.75 | 0.37 | −2.03 | 0.042 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.18 | 0.37 | 0.49 | 0.626 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.76 | 0.37 | −2.07 | 0.039 |
Dominance*Gender Match*Segment Precritical–Critical | −0.1 | 0.22 | −0.47 | 0.635 |
Dominance*Gender Match*Segment Critical–Postcritical | −0.17 | 0.22 | −0.78 | 0.433 |
Dominance*Gender Match*Segment Postcritical–Final | 0.09 | 0.22 | 0.4 | 0.689 |
Grammaticality*Dominance*Gender Match*Segment Precritical–Critical | 0.64 | 0.44 | 1.47 | 0.143 |
Grammaticality*Dominance*Gender Match*Segment Critical–Postcritical | 0.09 | 0.44 | 0.2 | 0.84 |
Grammaticality*Dominance*Gender Match*Segment Postcritical–Final | 0.58 | 0.44 | 1.32 | 0.188 |
- (c) Model with the whole dataset and sentence repetition and dominance as predictors
- modelSRTGroupGramm_Dominance <- lmer(rt.r ~ gramm*subt*gender_match*region + SRT.cent*subt + SRT.cent*gramm + Dominance +
- (1+gramm|subject) +
- (1|Picture),
- data=stat1,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −1 | 0.07 | −15.16 | <0.001 |
Grammaticality | 0.04 | 0.03 | 1.46 | 0.143 |
Group | −0.11 | 0.05 | −2.29 | 0.022 |
Gender Match | 0 | 0.03 | −0.02 | 0.981 |
Segment Precritical–Critical | 0.03 | 0.03 | 0.95 | 0.344 |
Segment Critical–Postcritical | 0 | 0.03 | −0.01 | 0.995 |
Segment Postcritical–Final | 0.27 | 0.03 | 9.65 | <0.001 |
Sentence Repetition | 0 | 0.01 | −0.02 | 0.988 |
Dominance | 0.08 | 0.07 | 1.13 | 0.258 |
Grammaticality*Group | −0.03 | 0.05 | −0.59 | 0.558 |
Grammaticality*Gender Match | −0.01 | 0.05 | −0.14 | 0.892 |
Group*Gender Match | −0.01 | 0.04 | −0.21 | 0.83 |
Grammaticality*Segment Precritical–Critical | 0 | 0.06 | −0.03 | 0.976 |
Grammaticality*Segment Critical–Postcritical | 0.03 | 0.06 | 0.6 | 0.546 |
Grammaticality*Segment Postcritical–Final | −0.06 | 0.06 | −1.1 | 0.27 |
Group*Segment Precritical–Critical | 0.01 | 0.06 | 0.22 | 0.824 |
Group*Segment Critical–Postcritical | −0.02 | 0.06 | −0.3 | 0.766 |
Group*Segment Postcritical–Final | −0.03 | 0.06 | −0.48 | 0.631 |
Gender Match*Segment Precritical–Critical | 0.02 | 0.06 | 0.3 | 0.765 |
Gender Match*Segment Critical–Postcritical | −0.06 | 0.06 | −1.11 | 0.269 |
Gender Match*Segment Postcritical–Final | −0.05 | 0.06 | −0.81 | 0.418 |
Group*Sentence Repetition | 0.01 | 0.01 | 0.53 | 0.594 |
Grammaticality*Sentence Repetition | −0.01 | 0.01 | −1.23 | 0.22 |
Grammaticality*Group*Gender Match | −0.01 | 0.08 | −0.12 | 0.905 |
Grammaticality*Group*Segment Precritical–Critical | 0.04 | 0.11 | 0.37 | 0.712 |
Grammaticality*Group*Segment Critical–Postcritical | −0.07 | 0.11 | −0.65 | 0.518 |
Grammaticality*Group*Segment Postcritical–Final | 0 | 0.11 | 0.02 | 0.982 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.13 | 0.11 | −1.13 | 0.26 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.1 | 0.11 | 0.92 | 0.359 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.25 | 0.11 | −2.25 | 0.025 |
Group*Gender Match*Segment Precritical–Critical | −0.08 | 0.11 | −0.74 | 0.458 |
Group*Gender Match*Segment Critical–Postcritical | 0.08 | 0.11 | 0.71 | 0.479 |
Group*Gender Match*Segment Postcritical–Final | −0.17 | 0.11 | −1.51 | 0.132 |
Grammaticality*Group*Gender Match*Segment Precritical–Critical | 0.34 | 0.22 | 1.5 | 0.134 |
Grammaticality*Group*Gender Match*Segment Critical–Postcritical | −0.28 | 0.22 | −1.25 | 0.21 |
Grammaticality*Group*Gender Match*Segment Postcritical–Final | 0.19 | 0.23 | 0.85 | 0.398 |
- (d) Model with the bilingual children and sentence repetition and dominance as predictors
- modelSRTGroupGramm_B_Dom <- lmer(rt.r ~ gramm*Dominance*gender_match*region + SRT.cent*Dominance + SRT.cent*gramm +
- (1+gramm|subject) +
- (1|Picture),
- data=stat1_L2,
- REML=F, lmerControl(optimizer = “bobyqa”))
Predictors | Estimates | std. Error | t Value | p |
---|---|---|---|---|
Intercept | −0.91 | 0.07 | −13.02 | <0.001 |
Grammaticality | 0.07 | 0.08 | 0.97 | 0.331 |
Dominance | 0.04 | 0.08 | 0.51 | 0.611 |
Gender Match | 0 | 0.07 | 0.05 | 0.961 |
Segment Precritical–Critical | 0.11 | 0.09 | 1.23 | 0.221 |
Segment Critical–Postcritical | −0.01 | 0.09 | −0.09 | 0.931 |
Segment Postcritical–Final | 0.2 | 0.09 | 2.21 | 0.028 |
Sentence Repetition | −0.04 | 0.02 | −1.53 | 0.127 |
Grammaticality*Dominance | −0.03 | 0.09 | −0.29 | 0.773 |
Grammaticality*Gender Match | −0.08 | 0.14 | −0.61 | 0.543 |
Dominance*Gender Match | 0.01 | 0.08 | 0.06 | 0.948 |
Grammaticality*Segment Precritical–Critical | −0.36 | 0.18 | −1.96 | 0.05 |
Grammaticality*Segment Critical–Postcritical | 0.2 | 0.18 | 1.08 | 0.28 |
Grammaticality*Segment Postcritical–Final | −0.14 | 0.18 | −0.76 | 0.449 |
Dominance*Segment Precritical–Critical | −0.13 | 0.11 | −1.2 | 0.23 |
Dominance*Segment Critical–Postcritical | 0.02 | 0.11 | 0.21 | 0.836 |
Dominance*Segment Postcritical–Final | 0.11 | 0.11 | 1.04 | 0.298 |
Gender Match*Segment Precritical–Critical | 0.13 | 0.18 | 0.7 | 0.481 |
Gender Match*Segment Critical–Postcritical | 0.02 | 0.18 | 0.11 | 0.911 |
Gender Match*Segment Postcritical–Final | −0.02 | 0.18 | −0.13 | 0.899 |
Dominance*Sentence Repetition | 0.04 | 0.02 | 1.43 | 0.152 |
Grammaticality*Sentence Repetition | −0.01 | 0.01 | −1.12 | 0.264 |
Grammaticality*Dominance*Gender Match | 0.11 | 0.16 | 0.72 | 0.47 |
Grammaticality*Dominance*Segment Precritical–Critical | 0.48 | 0.22 | 2.18 | 0.029 |
Grammaticality*Dominance*Segment Critical–Postcritical | −0.18 | 0.22 | −0.82 | 0.413 |
Grammaticality*Dominance*Segment Postcritical–Final | 0.11 | 0.22 | 0.48 | 0.629 |
Grammaticality*Gender Match*Segment Precritical–Critical | −0.75 | 0.37 | −2.03 | 0.042 |
Grammaticality*Gender Match*Segment Critical–Postcritical | 0.18 | 0.37 | 0.49 | 0.626 |
Grammaticality*Gender Match*Segment Postcritical–Final | −0.76 | 0.37 | −2.06 | 0.039 |
Dominance*Gender Match*Segment Precritical–Critical | −0.1 | 0.22 | −0.48 | 0.635 |
Dominance*Gender Match*Segment Critical–Postcritical | −0.17 | 0.22 | −0.78 | 0.436 |
Dominance*Gender Match*Segment Postcritical–Final | 0.09 | 0.22 | 0.4 | 0.691 |
Grammaticality*Dominance*Gender Match*Segment Precritical–Critical | 0.64 | 0.44 | 1.46 | 0.143 |
Grammaticality*Dominance*Gender Match*Segment Critical–Postcritical | 0.09 | 0.44 | 0.21 | 0.837 |
Grammaticality*Dominance*Gender Match*Segment Postcritical–Final | 0.58 | 0.44 | 1.32 | 0.189 |
1 | These assumptions do not apply to clitic left dislocation structures. |
2 | Tsakali and Wexler (2004) assume that case is checked in Agr-O, whereas according to Tsakali and Anagnostopoulou (2008), gender and number are also checked in this phrase. |
References
- Agresti, Alan. 2019. An Introduction to Categorical Data Analysis, 3rd ed. Hoboken: John Wiley & Sons. [Google Scholar]
- Alexiadou, Artemis, and Elena Anagnostopoulou. 2000. Greek Syntax: A Principles and Parameters Perspective. Journal of Greek Linguistics 1: 171–222. [Google Scholar] [CrossRef]
- Alexiadou, Artemis, Liliane Haegeman, and Melita Stavrou. 2008. Noun Phrase in the Generative Perspective. Studies in Generative Grammar. Berlin: Walter de Gruyter, vol. 71. [Google Scholar]
- Andreou, Maria, Eva Knopp, Christiane Bongartz, and Ianthi Maria Tsimpli. 2015. Character Reference in Greek-German Bilingual Children’s Narratives. In EUROSLA Yearbook. Amsterdam: John Benjamins Publishing Company, vol. 15, pp. 1–40. [Google Scholar] [CrossRef]
- Avrutin, Sergey. 2006. Weak Syntax. In Broca’s Region. Edited by Yosef Grodzinsky and Katrin Amunts. Oxford and New York: Oxford University Press, pp. 49–62. [Google Scholar]
- Baayen, Harald, Douglas Bates, Reinhold Kliegl, and Shravan Vasishth. 2015. RePsychLing: Data Sets from Psychology and Linguistics Experiments. R Package Version 0.0.4. Computer Software.
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using Lme4. Journal of Statistical Software 67: 1–48. [Google Scholar] [CrossRef]
- Bates, Douglas, Reinhold Kliegl, Shravan Vasishth, and Harald Baayen. 2018. Parsimonious Mixed Models. arXiv arXiv:1506.04967v2. [Google Scholar]
- Boersma, Paul, and David Weenink. 2017. Praat: Doing Phonetics by Computer (Version 6.0.36), Computer Software.
- Cardinaletti, Anna, and Michal Starke. 1994. The Typology of Structural Deficiency. On the Three Grammatical Classes. Working Papers in Linguistics. Venice: University of Venice, vol. 4, pp. 41–109. [Google Scholar]
- Chondrogianni, Vicky. 2007. Acquiring Clitics and Determiners in Child L2 Modern Greek*. Selected Papers on Theoretical and Applied Linguistics 17: 356–66. [Google Scholar] [CrossRef]
- Chondrogianni, Vicky. 2008. Comparing Child and Adult L2 Acquisition of the Greek DP: Effects of Age and Construction. In Current Trends in Child L2 Acquisition: Generative Approaches. Edited by Belma Haznedar and Elena Gavruseva. Amsterdam: John Benjamins, pp. 97–142. [Google Scholar]
- Chondrogianni, Vicky, Theodoros Marinis, Susan Edwards, and Elma Blom. 2015. Production and On-Line Comprehension of Definite Articles and Clitic Pronouns by Greek Sequential Bilingual Children and Monolingual Children with Specific Language Impairment. Applied Psycholinguistics 36: 1155–91. [Google Scholar] [CrossRef]
- Clackson, Kaili, Claudia Felser, and Harald Clahsen. 2011. Children’s Processing of Reflexives and Pronouns in English: Evidence from Eye-Movements during Listening. Journal of Memory and Language 65: 128–44. [Google Scholar] [CrossRef]
- De Houwer, Annick. 2009. Bilingual First Language Acquisition. MM Textbooks. Bristol and Buffalo: Multilingual Matters. [Google Scholar]
- Dimitropoulou, Maria, Jon Adoni Dunabeitia, Panagiotis Blitsas, and Manuel Carreiras. 2009. A standardized set of 260 pictures for Modern Greek: Norms for name agreement, age of acquisition, and visual complexity. Behavior Research Methods 41: 584–89. [Google Scholar] [CrossRef]
- Egger, Evelyn, Aafke Hulk, and Ianthi Maria Tsimpli. 2018. Crosslinguistic Influence in the Discovery of Gender: The Case of Greek–Dutch Bilingual Children. Bilingualism: Language and Cognition 21: 694–709. [Google Scholar] [CrossRef]
- Gavarró, Anna, Vicenç Torrens, and Ken Wexler. 2010. Object Clitic Omission: Two Language Types. Language Acquisition 17: 192–219. [Google Scholar] [CrossRef]
- Kaltsa, Maria, Ianthi Maria Tsimpli, and Froso Argyri. 2019. The Development of Gender Assignment and Agreement in English-Greek and German-Greek Bilingual Children. Linguistic Approaches to Bilingualism 9: 253–88. [Google Scholar] [CrossRef] [Green Version]
- Kaltsa, Maria, Alexandra Prentza, Despina Papadopoulou, and Ianthi Maria Tsimpli. 2020. Language External and Language Internal Factors in the Acquisition of Gender: The Case of Albanian-Greek and English-Greek Bilingual Children. International Journal of Bilingual Education and Bilingualism 23: 981–1002. [Google Scholar] [CrossRef]
- Klem, Marianne, Monica Melby-Lervåg, Bente Hagtvet, Solveig-Alma Halaas Lyster, Jan-Eric Gustafsson, and Charles Hulme. 2015. Sentence Repetition Is a Measure of Children’s Language Skills Rather than Working Memory Limitations. Developmental Science 18: 146–54. [Google Scholar] [CrossRef]
- Lenth, Russel. 2020. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 September 2022).
- Li, Ping. 2013. Successive Language Acquisition. In The Psycholinguistics of Bilingualism. Edited by François Grosjean and Ping Li. Hoboken: Wiley-Blackwell/John Wiley & Sons, pp. 145–67. [Google Scholar]
- Lüdecke, Daniel. 2019. Strengejacke: Load Packages Associated with Strenge Jacke!. R Package Version 0.5.0. Available online: https://github.com/strengejacke/strengejacke (accessed on 8 September 2022).
- Lüdecke, Daniel, Dominique Makowski, Philip Waggoner, and Indrajeet Patil. 2020. Performance: Assessment of Regression Models Performance. R Package Version 0.4.7. Available online: https://CRAN.R-project.org/package=performance (accessed on 8 September 2022).
- Manika, Sophia, Spyridoula Varlokosta, and Ken Wexler. 2010. The Lack of Omission of Clitics in Greek Children with SLI: An Experimental Study. In BUCLD 35: Proceedings of the 35th Annual Boston University Conference on Language Development. Edited by Nick Danis, Kate Mesh and Sung Hyunsuk. Somerville: Cascadilla Press, pp. 427–39. [Google Scholar]
- Marinis, Theodore. 2000. The Acquisition of Clitic Objects in Modern Greek: Single Clitics, Clitic Doubling, Clitic Left Dislocation. ZAS Papers in Linguistics 15: 259–81. [Google Scholar] [CrossRef]
- Marinis, Theodore. 2003. The Acquisition of the DP in Modern Greek. Language Acquisition and Language Disorders 31. Amsterdam: Benjamins. [Google Scholar]
- Marinis, Theodore. 2010. Using On-Line Processing Methods in Language Acquisition Research. In Experimental Methods in Language Acquisition Research. Edited by Elma Blom and Sharon Unsworth. Amsterdam and Philadelphia: John Benjamins Publishing Company, pp. 139–62. [Google Scholar]
- Mastropavlou, Maria. 2006. The Role of Phonological Salience and Feature Interpretability in the Grammar of Typically Developing and Language Impaired Children. Thessaloniki: Aristotle University of Thessaloniki. Available online: https://thesis.ekt.gr/thesisBookReader/id/14071#page/1/mode/2up (accessed on 8 September 2022).
- Mathôt, Sebastiaan, Daniel Schreij, and Jan Theeuwes. 2012. OpenSesame: An Open-Source, Graphical Experiment Builder for the Social Sciences. Behavior Research Methods 44: 314–24. [Google Scholar] [CrossRef]
- Mavrogiorgos, Marios. 2010a. Clitics in Greek: A Minimalist Account of Proclisis and Enclisis. Linguistik Aktuell/Linguistics Today, v. 160. Amsterdam: John Benjamins. [Google Scholar]
- Mavrogiorgos, Marios. 2010b. Internal Structure of Clitics and Cliticization. Journal of Greek Linguistics 10: 3–44. [Google Scholar] [CrossRef]
- Patil, Umesh, Shravan Vasishth, and Richard L. Lewis. 2016. Retrieval Interference in Syntactic Processing: The Case of Reflexive Binding in English. Frontiers in Psychology 7: 329. [Google Scholar] [CrossRef]
- Prentza, Alexandra, Maria Kaltsa, Ianthi Maria Tsimpli, and Despina Papadopoulou. 2019. The Acquisition of Greek Gender by Bilingual Children: The Effects of Lexical Knowledge, Oral Input, Literacy and Bi/Monolingual Schooling. International Journal of Bilingualism 23: 901–20. [Google Scholar] [CrossRef]
- R Core Team. 2020. R: A Language and Environment for Statistical Computing (Version 3.5.3). Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 8 September 2022).
- Radford, Andrew. 1997. Syntactic Theory and the Structure of English: A Minimalist Approach, 1st ed. Cambridge: Cambridge University Press. [Google Scholar] [CrossRef]
- Ralli, Angela. 2002. The Role of Morphology in Gender Determination: Evidence from Modern Greek. Linguistics 40: 519–51. [Google Scholar] [CrossRef]
- Raven, Jean, John C. Raven, and John C. Court. 1998. Manual for Raven’s Progressive Matrices and Vocabulary Scales. San Antonio: Harcourt Assessment. [Google Scholar]
- Renfrew, Catherine. 1997. Action Picture Test. Bicester: Winslow Press. [Google Scholar]
- Revithiadou, Anthi, and Vassilios Spyropoulos. 2020. Cliticisation in Greek: A Contrastive Examination and Cross-Linguistic Remarks. In Contrastive Studies in Morphology and Syntax. Edited by Michalis Georgiafentis, Giannoula Giannoulopoulou, Maria Koliopoulou and Angeliki Tsokoglou. London: Bloomsbury Academic, pp. 225–44. [Google Scholar]
- Rivero, Maria Luisa. 1994. Clause Structure and V-Movement in the Languages of the Balkans. Natural Language & Linguistic Theory 12: 63–120. [Google Scholar] [CrossRef] [Green Version]
- Rossi, Eleonora, Judith F. Kroll, and Paola E. Dussias. 2014. Clitic Pronouns Reveal the Time Course of Processing Gender and Number in a Second Language. Neuropsychologia 62: 11–25. [Google Scholar] [CrossRef]
- Schaeffer, Jeannette C. 2000. The Acquisition of Direct Object Scrambling and Clitic Placement: Syntax and Pragmatics. Language Acquisition & Language Disorders, v. 22. Amsterdam and Philadelphia: J. Benjamins Pub. Co. [Google Scholar]
- Smith, Nafsika, Susan Edwards, Vesna Stojanovik, and Spyridoula Varlokosta. 2008. Object Clitic Pronouns, Definite Articles and Genitive Possessive Clitics in Greek Preschool Children with Specific Language Impairment (SLI): Implications for Domain-General and Domain-Specific Accounts of SLI. In Supplement Proceedings of 32nd Boston University Conference of Child Language Development. Edited by Harvey Chan, Enkeleida Kapia and Heather Jacob. Boston: Cascadilla Press. [Google Scholar]
- Sorace, Antonella. 2004. Native Language Attrition and Developmental Instability at the Syntax-Discourse Interface: Data, Interpretations and Methods. Bilingualism: Language and Cognition 7: 143–45. [Google Scholar] [CrossRef]
- Spathas, Giorgos, and Yasutada Sudo. 2020. Gender on Animal Nouns in Greek. Catalan Journal of Linguistics 19: 25–48. [Google Scholar] [CrossRef]
- Sportiche, Dominique. 1996. Clitic Constructions. In Phrase Structure and the Lexicon. Edited by Johan Rooryck and Laurie Zaring. Studies in Natural Language and Linguistic Theory. Dordrecht: Springer, vol. 33, pp. 213–76. [Google Scholar] [CrossRef]
- Stavrakaki, Stavroula. 2001. Specific Language Impairment in Greek: Aspects of Syntactic Production and Comprehension. Thessaloniki: Aristotle University of Thessaloniki. [Google Scholar]
- Stavrakaki, Stavroula, and Areti Okalidou. 2016. Gr-LARSP: Towards a Greek Version of LARSP. In Profiling Grammar: More Languages of LARSP. Edited by Paul Fletcher, Martin J. Ball and David Crystall. Blue Ridge Summit: Multilingual Matters. [Google Scholar] [CrossRef]
- Stavrakaki, Stavroula, and Ianthi Maria Tsimpli. 2000. Diagnostic Verbal IQ Test for Greek Preschool and School Age Children: Standardization, Statistical Analysis, Psychometric Properties. In Proceedings of the 8th Conference on Speech Therapy. Athens: Ellinika Grammata, pp. 95–106. (In Greek) [Google Scholar]
- Stavrakaki, Stavroula, and Heather van der Lely. 2010. Production and Comprehension of Pronouns by Greek Children with Specific Language Impairment. British Journal of Developmental Psychology 28: 189–216. [Google Scholar] [CrossRef] [PubMed]
- Stavrakaki, Stavroula, Marie-Annick Chrysomallis, and Evangelia Petraki. 2011. Subject–Verb Agreement, Object Clitics and Wh-Questions in Bilingual French–Greek SLI: The Case Study of a French–Greek-Speaking Child with SLI. Clinical Linguistics & Phonetics 25: 339–67. [Google Scholar] [CrossRef]
- Stewart, Andrew J., Judith Holler, and Evan Kidd. 2007. Shallow Processing of Ambiguous Pronouns: Evidence for Delay. Quarterly Journal of Experimental Psychology 60: 1680–96. [Google Scholar] [CrossRef] [PubMed]
- Talli, Ioanna, and Stavroula Stavrakaki. 2020. Short-Term Memory, Working Memory and Linguistic Abilities in Bilingual Children with Developmental Language Disorder. First Language 40: 437–60. [Google Scholar] [CrossRef]
- Tedeschi, Roberta. 2008. Referring Expressions in Early Italian: A Study on the Use of Lexical Objects, Pronouns and Null Objects in Italian Pre-School Children. In LOT Occasional Series. Utrecht: LOT, Netherlands Graduate School of Linguistics, vol. 8, pp. 201–16. Available online: https://dspace.library.uu.nl/handle/1874/296782 (accessed on 8 September 2022).
- Terzi, Arhonto. 1996. The Linear Correspondence Axiom and the Adjunction Site of Clitics. In Configurations. Edited by Anna-Maria Di Sciullo. Boston: Cascadilla Press, pp. 185–89. [Google Scholar]
- Torregrossa, Jacopo, Maria Andreou, Christiane Bongartz, and Ianthi Maria Tsimpli. 2021. Bilingual acquisition of reference: The role of language experience, executive functions and crosslinguistic effects. Bilingualism: Language and Cognition 24: 694–706. [Google Scholar] [CrossRef]
- Tsakali, Vina. 2014. Acquisition of Clitics: The State of the Art. In Developments in the Acquisition of Clitics. Edited by Theoni Neokleous and Kleanthes K. Grohmann. Cambridge: Cambridge Scholars Publishing, pp. 161–87. [Google Scholar]
- Tsakali, Vina, and Elena Anagnostopoulou. 2008. Rethinking the Clitic Doubling Parameter: The Inverse Correlation between Clitic Doubling and Participle Agreement. In Clitic Doubling in the Balkan Languages. Edited by Dalina Kallulli and Liliane Tasmowski. Amsterdam: John Benjamins, pp. 321–57. [Google Scholar]
- Tsakali, Vina, and Ken Wexler. 2004. Why Children Omit Clitics in Some Languages but Not in Others: New Evidence from Greek. In Proceedings of Generative Approaches to Language Acquisition 2003. Edited by Jacqueline van Kampen and Sergio Baauw. Utrecht: LOT, vol. II, pp. 493–504. [Google Scholar]
- Tsimpli, Ianthi Maria. 2001. LF-Interpretability and Language Development: A Study of Verbal and Nominal Features in Greek Normally Developing and SLI Children. Brain and Language 77: 432–48. [Google Scholar] [CrossRef]
- Tsimpli, Ianthi Maria. 2003. Clitics and Determiners in L2 Greek. In Proceedings of the 6th Generative Approaches to Second Language Acquisition Conference (GASLA 2002). Edited by Juana Liceras. Somerville: Cascadilla Proceedings Project, pp. 331–39. [Google Scholar]
- Tsimpli, Ianthi Maria. 2014. Early, Late or Very Late?: Timing Acquisition and Bilingualism. Linguistic Approaches to Bilingualism 4: 283–313. [Google Scholar] [CrossRef]
- Tsimpli, Ianthi Maria, and Aafke Hulk. 2013. Grammatical Gender and the Notion of Default: Insights from Language Acquisition. Lingua 137: 128–44. [Google Scholar] [CrossRef]
- Tsimpli, Ianthi Maria, and Maria Mastropavlou. 2008. Feature Interpretability in L2 Acquisition and SLI: Greek Clitics and Determiners. In The Role of Formal Features in Second Language Acquisition. Edited by Juana Liceras, Helmut Zobl and Helen Goodluck. New York: Lawrence Erlbaum, pp. 142–83. [Google Scholar]
- Tsimpli, Ianthi Maria, and Stavroula Stavrakaki. 1999. The Effects of a Morphosyntactic Deficit in the Determiner System: The Case of a Greek SLI Child. Lingua 108: 31–85. [Google Scholar] [CrossRef]
- Unsworth, Sharon, Froso Argyri, Leonie Cornips, Aafke Hulk, Antonella Sorace, and Ianthi Tsimpli. 2014. The Role of Age of Onset and Input in Early Child Bilingualism in Greek and Dutch. Applied Psycholinguistics 35: 765–805. [Google Scholar] [CrossRef]
- Varlokosta, Spyridoula. 2002. (A)Symmetries in the Acquisition of Principle B in Typically Developing and Specifically Language Impaired Children. In The Process of Language Acquisition. Edited by Ingeborg Lasser. Berlin: Peter Lang Verlag, pp. 81–98. [Google Scholar]
- Varlokosta, Spyridoula, and Michaela Nerantzini. 2013. Grammatical gender in specific language impairment: Evidence from determiner-noun contexts in Greek. Psychologia 20: 338–57. [Google Scholar] [CrossRef]
- Varlokosta, Spyridoula, Katerina Konstantzou, and Michaela Nerantzini. 2014. On the Production of Direct Object Clitics in Greek Typical Development and Specific Language Impairment: The Effect of Task Selection. In Developments in the Acquisition of Clitics. Edited by Theoni Neokleous and Kleanthes K. Grohmann. Cambridge: Cambridge Scholars Publishing, pp. 188–211. [Google Scholar]
- Varlokosta, Spyridoula, Adriana Belletti, João Costa, Naama Friedmann, Anna Gavarró, Kleanthes K. Grohmann, Maria Teresa Guasti, Laurice Tuller, Maria Lobo, Darinka Anđelković, and et al. 2016. A Cross-Linguistic Study of the Acquisition of Clitic and Pronoun Production. Language Acquisition 23: 1–26. [Google Scholar] [CrossRef]
- Vogindroukas, Ioannis, Athanassios Protopapas, and Stavroula Stavrakaki. 2010. The Greek Version of the Action Picture Test (Renfrew 1997). Chania: Glafki. [Google Scholar]
- Wexler, Ken. 1998. Very Early Parameter Setting and the Unique Checking Constraint: A New Explanation of the Optional Infinitive Stage. Lingua 106: 23–79. [Google Scholar] [CrossRef]
- Wolf, Florian, Edward Gibson, and Timothy Desmet. 2004. Discourse Coherence and Pronoun Resolution. Language and Cognitive Processes 19: 665–75. [Google Scholar] [CrossRef]
- Yip, Virginia. 2013. Simultaneous Language Acquisition. In The Psycholinguistics of Bilingualism. Edited by François Grosjean and Ping Li. Hoboken: Wiley-Blackwell/John Wiley & Sons, pp. 119–44. [Google Scholar]
Accusative | Genitive/Dative |
---|---|
me (me) | mu (to me) |
se (you) | su (to you) |
ton/tin/to (him/her/it) | tu/tis/tu (to him/her/it) |
mas (us) | mas (us) |
sas (you) | sas (you) |
tus/ tis/ ta (them) | tus/ tus/ tus (to them) |
Study | Lang. Profile | Participant Number | Language (Pair) Tested | Mean CA or Age Range | Method | Findings |
---|---|---|---|---|---|---|
Studies with L1 TD | ||||||
Marinis (2000) | L1 TD | Case study (Christofidou Corpus) | MG | 1;7–2;8 | Spontaneous Speech | adult-like performance from 2 years onwards |
Tsakali and Wexler (2004) | L1 TD | 5 Children (Stephany Corpus) Experimental Study (Group 1: 15, Group 2: 10) | MG | - Group 1: 2;4–3;0 Group 2: 3;0–3;6 | Spontaneous Speech Elicitation task | adult-like performance from 2 years onwards 99.2% correct production (overall in both groups) |
Varlokosta et al. (2016) | L1 TD | 20 | MG | 5;0–5;11 | Elicitation task | 98.4% correct production |
Studies with L1 SLI | ||||||
Manika et al. (2010) | L1 SLI L1 TD | L1 SLI: 19 L1 TD: 32 | MG | SLI: 6;2 (4;10–8;1) TD: 3;10 (3;1–6;0) (vocabulary matched) | Elicitation task | SLI: 95% correct TD: 96% correct |
Mastropavlou (2006) | L1 SLI L1 TD 1 L1 TD 2 | 10 L1 SLI 10 L1 TD 1 10 L1 TD 2 | MG | SLI: 4;2–5:9 TD-language matched: 3;0–3;7 TD-age matched: 4;2–6;0 | Elicitation task | SLI: 60.1% (22.1% of all responses gender errors) TD language-matched: 83.3% (29.6% of all responses gender errors) TD age-matched: 93.5% (10.3% of all responses gender errors) |
Smith et al. (2008) | L1 SLI L1 TD | 9 L1 SLI 9 L1 TD language matched 9 L1 TD age matched | MG | SLI: 4;9–6;9 TD language matched: 2;10–4;3 TD age matched: 4;11–5;11 | Elicitation task | SLI: 64% (28.8% of all responses gender errors) TD language matched: 94% (18.8% of all responses gender errors) TD age matched: 96% |
Stavrakaki and van der Lely (2010) | L1 SLI L1 TD | L1 SLI: 9 L1 TD 1: 17 L1 TD 2: 18 L1 TD 3: 12 | MG | SLI: 10;6 (7;7–13;5) TD 1: 4;5 (3;11–5;3) TD 2: 5;1 (4;2–6;2) TD 3: 6;2 (4;7–8;3) | Elicitation task Comprehension task | Elicitation task SLI: 65.2% TD 1: 97% TD 2: 97,2% TD 3: 98% Comprehension task SLI: 55% TD 1: 75% TD 2: 87% TD 3: 91.6% |
Tsimpli (2001) | L1 SLIL1 TD | L1 SLI: 7 L1 TD: 4 (Stephany Corpus) | MG | 3;5–7;00 | Spontaneous speech | SLI: 3.8% correct performance TD: adult-like performance from 2 years onwards |
Tsimpli and Stavrakaki (1999) | L1 SLI | case study | MG | 5;5 | Spontaneous speech | 3.49% correct production |
Varlokosta (2002) | L1 SLI L1 TD | 20 TD 4 SLI | MG | SLI: 4;7–8;1 TD: 4;6 (3;6–5;10) | Truth Value Judgment task | SLI: individual variability TD: 88–95% in all constructions except for secondary predicate construction |
Varlokosta et al. (2014) | L1 SLI L1 TD | 5 L1 SLI 55 L1 TD | MG | SLI: 6;3, (5;11–6;8) TD: 4;7, (3;6–5;11) | 2 Elicitation tasks | SLI: Task 1: 73.3% (20% of them gender errors) Task 2: 85% correct (16.7% of them gender errors) TD: Task 1: 92.6% (16.7% of them gender errors) Task 2: 82.6% correct (15% of them gender errors) |
Studies with L1 SLI and L2 TD | ||||||
Chondrogianni et al. (2015) | L1 TD L2 TD L1 SLI | 20 L2 TD 31 L1 TD (MG) 16 L1 SLI (MG) | Turkish/MG | L2:7;6 (5;9–8;10) L1 TD: 7;3 (6;0–8;6) SLI L1: 6;8 (5;6–8;4) | Elicitation task Self-paced listening task | Elicitation task: L2 produced fewer clitics than L1 TD and L1 SLI, L2 more omissions than substitutions (with an NP) Self-paced listening task: Critical segment: L1 TD and L2 had longer RTs in ungrammatical sentences, SLI L1 no difference between grammatical and ungrammatical sentences, Post-critical segment: L2 children had longer RT than the L1 children |
Tsimpli and Mastropavlou (2008) | L1 SLI L2 TD | SL1: 6 L2 TD 1: 5 L2 TD 2: 5 | Turkish/MG | SLI: 4;0–6;2 TD 1: 8;0–9;0 TD 2: 11;0–12;0 | Spontaneous speech | SLI: 32–96% correct TD 1: 27% correct TD 2: 56% correct |
Studies with L2 TD | ||||||
Andreou et al. (2015) | L1 TD L2 TD | 38 L2 TD Residents in Greece 39 L2 TD Resident in Germany 20 L1 TD MG | MG/German | Age range of both groups 8;0–12;0, | Spontaneous speech | L1 children used significantly more clitics than the two L2 groups for character maintenance Greek vocabulary and early literacy input predicted production of clitics |
Chondrogianni (2007) | L1 TD L2 TD | 50 L1 TD MG 66 L2 TD distributed across different proficiency classes (according to a language test) | Turkish/MG | L1: 7;0–12;0 L2: 7;0–12;0 distributed across different proficiency classes | Truth value judgement combined with elicited production task | L1: ceiling performance L2: difference in production rates between the intermediate and the advanced group, gender errors the most prominent error (varying percentages depending on the proficiency level) |
Chondrogianni (2008) | L1 TD L2 TD | 18 L1 TD Language matched 50 L1 TD Age-matched 79 L2 TD distributed across different proficiency classes (according to verbal density, lexical diversity and ration of error free utterances) | Turkish/MG | L2: 7;0–12;0 L1 Language matched: 2;8–5;6 L1 Age matched: 7;0–12;0 | Spontaneous speech Truth value judgement combined with elicited production task | Spontaneous speech: L2 children fewer clitics than L1 language-matched and age-matched, only the high proficiency had ceiling performance Elicited production task: Ceiling performance for the high proficiency level group L2 significantly fewer clitics than L1 in all levels except for the high proficiency group No task effect |
Studies with L2 SLI | ||||||
Stavrakaki et al. (2011) | L2 SLI L2 TD | 1 SLI 2 TD | French/MG | SLI: 9;0 TD: 4;7–5;11 | Elicitation task | SLI: 100% MG, 50% French correct TD: 100% MG, 87.5% French correct |
Research Question | Prediction | Example Sentence | Rationale/Previous Literature |
---|---|---|---|
RQ1: How does gender marking affect the production of clitics by L2 children? | Worse performance in gender mismatch than gender match for both groups | Gender Match: (O gaidaros) ton filaei (The donkeyMASC) kisses him Gender Mismatch: (To provato) tin klotsaei (The sheepNEU) is kicking her | Gender of the subject could interfere in the gender assignment on the clitic. |
General predictions about production | Prediction 1: Gender errors for both groups | across conditions | Varlokosta et al. (2014); Chondrogianni (2007) |
Prediction 2: L1 and simultaneous 2L1 no omissions | across conditions | Clitics are fully acquired in terms of omission from the age of two (Tsakali and Wexler 2004) | |
Prediction 3: 2L1 worse performance than L1 (more omissions) | across conditions | Andreou et al. (2015): older simultaneous L2 children use clitics less frequently than L1 children in spontaneous speech | |
RQ2: How does gender marking affect the processing of clitics by 2L1 children? | Prediction 1: L1 and 2L1 same pattern: gender match effect (longer RTs for gender match than gender mismatch) | Gender Match: O vatrachos pezei kai o kokoras ton vafei. The frogMASC plays and the roosterMASC paints him. Gender Mismatch: O vatrachos pezi kai i katsika ton vafei. The frogMASC plays and the goatFEM paints him | In gender match, there are two competing NPs to which the clitic might refer to |
Prediction 2: L1 and 2L1 same pattern: Grammaticality effect (longer RTs at the critical segment in ungrammatical sentences) | Grammatical (gender match) O vatrachos pezei kai o kokoras ton vafei. The frogMASC plays and the roosterMASC paints him. Ungrammatical (gender match) O vatrachos pezei kai o kokoras tin vafei. The frogMASC plays and the roosterMASC paints her. | Chondrogianni et al. (2015) | |
Prediction 3: L1 and 2L1 same pattern but 2L1 slower at the post-critical segment | across conditions | Chondrogianni et al. (2015) | |
Prediction 4: 2L1 less sensitive to gender violations: Interaction Grammaticality by Group | See examples above | Rossi et al. (2014) | |
RQ3: Does proficiency have an effect on the performance in the production and processing of clitics? | Effect of verbal intelligence and/or sentence repetition | across conditions | Andreou et al. (2015); Chondrogianni (2007, 2008) |
Group | APT Mean (SD) Range | SRT Mean (SD) Range | CPM Mean (SD) Range |
---|---|---|---|
L1 (N = 16) | 82 (9) 59–96 | 44.81 (2.78) 39–48 | 126.2 (8.46) 105–140 |
2L1 (N = 14) | 83.78 (7.18) 71–102 | 43.71 (5.85) 27–48 | 125 (7.59) 115–140 |
Code | Age | Birthplace | Age of Moving to Greece (in Months) | Sum of Input MG | Sum of Input German | Sum Input in MG between 0 and 3 Years | Sum Input in German between 0 and 3 Years | Sum Input in MG between 3 and 6 Years | Sum Input in German between 3 and 6 Years |
---|---|---|---|---|---|---|---|---|---|
2L1_1 | 4;10.3 | Greece | 0 | 670 | 800 | 12 | 12 | 12 | 18 |
2L1_2 | 5;5.0 | Greece | 0 | 480 | 96 | 15 | 3 | 17 | 7 |
2L1_3 | 5;0.28 | Greece | 0 | 455 | 325 | 10 | 8 | 10 | 8 |
2L1_4 | 4;8.9 | Greece | 0 | 1080 | 960 | 16 | 8 | 17 | 13 |
2L1_5 | 5;2.0 | Greece | 0 | 461 | 253 | 13 | 5 | 13 | 5 |
2L1_6 | 5;3.5 | Aithiopia | 5 | 565 | 245 | 14 | 4 | 12 | 6 |
2L1_7 | 4;9.10 | Greece | 0 | 431 | 277 | 13 | 5 | 15 | 9 |
2L1_8 | 5;3.14 | Greece | 0 | 450 | 450 | 9 | 9 | 9 | 9 |
2L1_9 | 4;7.27 | Cyprus | 8 | 355 | 455 | 9 | 9 | 12 | 12 |
2L1_10 | 4;8.14 | Greece | 0 | 800 | 670 | 12 | 6 | 15 | 9 |
2L1_11 | 6;5.16 | Greece | 0 | 479 | 163 | 15 | 3 | 17 | 7 |
2L1_12 | 7;0.17 | Germany | 16 | 255 | 135 | 18 | 6 | 22 | 8 |
2L1_13 | 5;8.15 | Greece | 0 | 470 | 418 | 13 | 11 | 16 | 14 |
2L1_14 | 6;3.23 | Greece | 0 | 294 | 294 | 10 | 8 | 11 | 13 |
Condition | Question | Target Response | ||||||
---|---|---|---|---|---|---|---|---|
Gender Match | Ti | kani | o | gaidaros | ston | kokora? | TonMASC | filaei. |
What | do3sing | the | donkeyMASC | to the | roosterMASC? | Him | kiss3sing | |
‘What is the donkey doing to the rooster?’ | ‘He is kissing him.’ | |||||||
Gender Mismatch | Ti | kani | to | provato | stin | agelada? | TinFEM | klotsai. |
What | do3sing | the | sheepNEU | to the | cowFEM? | Her | kicks3sing | |
‘What is the sheep doing to the cow?’ | ‘He is kicking her’. |
Cond. | Sentence | Factor | Level |
---|---|---|---|
1a | O vatrachos pezi ke/ o kokoras/ TON/ vafi/ me ta chromata. The frogMASC plays3singand/ the roosterMASC/ him/ paint3sing/ with the colors. The frog plays and the rooster paints him with the colors. | Gender of NPs | Match |
Grammaticality | Grammatical | ||
1b | O vatrachos pezi ke/ i katsika/ TON/ vafi/ me ta chromata. The frogMASC plays3singand/ the goatFEM/ him/ paints3sing/ with the colors. The frog plays and the goat paints him with the colors. | Gender of NPs | Mismatch |
Grammaticality | Grammatical | ||
1c | *O vatrachos pezi ke/ o kokoras/ TIN/ vafi/ me ta chromata. The frogMASC plays3singand/ the roosterMASC/ her/ paints3sing/ with the colors. The frog plays and the rooster paints her with the colors. | Gender of NPs | Match |
Grammaticality | Ungrammatical | ||
1d | *O vatrachos pezi ke/ i katsika / TIN/ vafi/ me ta chromata. The frogMASC plays3singand/ the goatFEM/ her/ paints3sing/ with the colors. The frog plays and the goat paints her with the colors. | Gender of NPs | Mismatch |
Grammaticality | Ungrammatical |
Group | Gender Match | Response Type | Percentage Correct Response (SD) |
---|---|---|---|
L1 | Match | Correct | 83 (0.10) |
Clitic omission | 3 (0.05) | ||
Wrong clitic | 2 (0.05) | ||
Gender error | 8 (0.08) | ||
Other | 4 (0.06) | ||
Mismatch | Correct | 73 (0.10) | |
Clitic omission | 4 (0.05) | ||
Wrong clitic | 0 (0.00) | ||
Gender error | 23 (0.10) | ||
Other | 0 (0.00) | ||
2L1 (all children)/ 2L1-MG Dominant | Match | Correct | 82 (0.13)/82.5 (0.15) |
Clitic omission | 8 (0.09)/9 (0.11) | ||
Wrong clitic | 0 (0.00) | ||
Gender error | 8 (0.095)/7.5 (0.092) | ||
Other | 2 (0.04)/1 (0.03) | ||
Mismatch | Correct | 73 (0.19)/69 (0.21) | |
Clitic omission | 5 (0.11)/7 (0.13) | ||
Wrong clitic | 0 (0.00) | ||
Gender error | 21 (0.17)/23 (0.19) | ||
Other | 1 (0.02)/1 (0.03) |
Input Measure | Condition | |
---|---|---|
Match | Mismatch | |
Sum of input MG | rs(12) = 0.29, p = 0.31 | rs(12) = 0.16, p = 0.58 |
Sum of input in MG between 0 and 3 years | rs(12) = 0.49, p = 0.072 | rs(12) = 0.039, p = 0.9 |
Sum input in MG between 3 and 6 years | rs(12) = 0.27, p = 0.36 | rs(12) = −0.14, p = 0.64 |
Sum of input German | rs(12) = −0.13, p = 0.65 | rs(12) = 0.061, p = 0.84 |
Sum of input in German between 0 and 3 years | rs(12) = −0.27, p = 0.36 | rs(12) = 0.087, p = 0.77 |
Sum of input in German between 3 and 6 years | rs(12) = −0.25, p = 0.39 | rs(12) = 0.15, p = 0.6 |
Group | Gender Combination | Response | Mean Percentage (SD) |
---|---|---|---|
L1 | feminine–feminine | Correct | 0.89 (0.13) |
Gender error | 0.05 (0.10) | ||
feminine–masculine | Correct | 0.94 (0.17) | |
Gender error | 0.06 (0.17) | ||
feminine–neutral | Correct | 0.72 (0.31) | |
Gender error | 0.28 (0.31) | ||
masculine–feminine | Correct | 0.84 (0.24) | |
Gender error | 0.09 (0.20) | ||
masculine–masculine | Correct | 0.94 (0.11) | |
Gender error | 0.02 (0.06) | ||
masculine–neutral | Correct | 0.59 (0.42) | |
Gender error | 0.31 (0.44) | ||
neutral–feminine | Correct | 0.63 (0.34) | |
Gender error | 0.34 (0.35) | ||
neutral–masculine | Correct | 0.66 (0.35) | |
Gender error | 0.31 (0.36) | ||
neutral–neutral | Correct | 0.67 (0.28) | |
Gender error | 0.17 (0.24) | ||
2L1 | feminine–feminine | Correct | 0.89 (0.21) |
Gender error | 0.02 (0.07) | ||
feminine–masculine | Correct | 0.89 (0.29) | |
Gender error | 0.07 (0.27) | ||
feminine–neutral | Correct | 0.68 (0.32) | |
Gender error | 0.29 (0.32) | ||
masculine–feminine | Correct | 0.75 (0.33) | |
Gender error | 0.18 (0.32) | ||
masculine–masculine | Correct | 0.91 (0.12) | |
Gender error | 0.04 (0.09) | ||
masculine–neutral | Correct | 0.54 (0.41) | |
Gender error | 0.43 (0.39) | ||
neutral–feminine | Correct | 0.89 (0.21) | |
Gender error | 0.07 (0.18) | ||
neutral–masculine | Correct | 0.61 (0.35) | |
Gender error | 0.25 (0.38) | ||
neutral–neutral | Correct | 0.66 (0.33) | |
Gender error | 0.18 (0.23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukoulioti, V.; Stavrakaki, S.; Vomva, M.; Adani, F. Gender Marking and Clitic Pronoun Resolution in Simultaneous Bilingual Children. Languages 2022, 7, 250. https://doi.org/10.3390/languages7040250
Koukoulioti V, Stavrakaki S, Vomva M, Adani F. Gender Marking and Clitic Pronoun Resolution in Simultaneous Bilingual Children. Languages. 2022; 7(4):250. https://doi.org/10.3390/languages7040250
Chicago/Turabian StyleKoukoulioti, Vasiliki, Stavroula Stavrakaki, Maria Vomva, and Flavia Adani. 2022. "Gender Marking and Clitic Pronoun Resolution in Simultaneous Bilingual Children" Languages 7, no. 4: 250. https://doi.org/10.3390/languages7040250
APA StyleKoukoulioti, V., Stavrakaki, S., Vomva, M., & Adani, F. (2022). Gender Marking and Clitic Pronoun Resolution in Simultaneous Bilingual Children. Languages, 7(4), 250. https://doi.org/10.3390/languages7040250