Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions
Abstract
:1. Introduction
2. Experiment
3. Details of Computations
3.1. Perfect Gas Laminar Navier–Stokes
3.2. Non-Equilibrium Laminar Navier–Stokes
3.3. Grid Generation
3.4. Solution Algorithm
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Babinsky, H.; Harvey, J. Shock Wave-Boundary-Layer Interactions; Cambridge: New York, NY, USA, 2011. [Google Scholar]
- Olejniczak, J.; Candler, G.; Hornung, H. Computation of Double-Cone Experiments in High Enthalpy Nitrogen; AIAA Paper 1997-2549; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar]
- Wright, M.; Sinha, K.; Olejniczak, J.; Candler, G.; Magruder, T.; Smits, A. Numerical and Experimental Investigation of Double-Cone Shock Interactions. AIAA J. 2000, 38, 2268–2276. [Google Scholar] [CrossRef]
- Gnoffo, P. CFD Validation Studies for Hypersonic Flow Prediction; AIAA Paper 2001-1025; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Kato, H.; Tannehill, J. Computation of Hypersonic Laminar Separated Flows Using an Iterated PNS Algorithm; AIAA Paper 2001-1028; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Roy, C.; Gallis, M.; Bartel, T.; Payne, J. Navier-Stokes and Direct Simulation Monte-Carlo Predictions for Laminar Hypersonic Separation. AIAA J. 2003, 41, 1055–1063. [Google Scholar] [CrossRef]
- Reimann, B.; Hannemann, V. Numerical Investigation of Double Cone and Cylinder Experiments in High Enthalpy Flows Using DLR TAU Code; AIAA Paper 2010-1282; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Youseffi, M.R.; Knight, D. Assessment of CFD Capability for Hypersonic Shock Wave Boundary Layer Interactions, Part II; AIAA Paper 2016-0350; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [Google Scholar]
- Youseffi, M.R.; Knight, D. Assessment of CFD Capability for High Enthalpy Non-Equilibrium Flows with Strong Viscous-Inviscid Interaction; AIAA Paper 2015-0580; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar]
- Chanetz, B. Low and High Enthalpy Shock-Wave/Boundary Layer Interactions around Cylinder-Flare Models. In EUCASS Progress in Flight Physics Volume 3; Reijasse, P., Knight, D., Ivanov, M., Lipatov, I., Eds.; EDP Sciences and Torus Press: Moscow, Russia, 2012; pp. 107–118. [Google Scholar]
- Tissera, S.; Titarev, V.; Drikakis, D. Chemically Reacting Flows around a Double Cone, Including Ablation Effects; AIAA Paper 2010-1285; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Coblish, J.; Smith, M.; Hand, T.; Candler, G.; Nompelis, I. Double-Cone Experiment and Numerical Analysis at AEDC Hypervelocity Wind Tunnel No. 9; AIAA Paper 2005-0902; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2005. [Google Scholar]
- Holden, M.; Wadhams, T. Code Validation Study of Laminar Shock/Boundary Layer and Shock/Shock Interactions in Hypersonic Flow. Part A: Experimental Measurements; AIAA Paper 2001-1031 (Part A); American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Harvey, J.; Holden, M.; Wadhams, T. Code Validation Study of Laminar Shock/Boundary Layer and Shock/Shock Interactions in Hypersonic Flow. Part B: Comparison with Navier-Stokes and DSMC Solutions; AIAA Paper 2001-1031 (Part B); American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Candler, G.; Nompelis, I.; Druguet, M.C.; Holden, M.; Wadhams, T.; Boyd, I.; Wang, W.L. CFD Validation for Hypersonic Flight: Hypersonic Double-Cone Flow Simulations; AIAA Paper 2002-0581; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Nompelis, I.; Candler, G.; Holden, M. Effect of Vibrational Nonequilibrium on Hypersonic Double-Cone Experiments. AIAA J. 2003, 41, 2162–2169. [Google Scholar] [CrossRef]
- Nompelis, I.; Candler, G.; MacLean, M.; Wadhams, T.; Holden, M. Numerical Investigation of High Enthalpy Chemistry on Hypersonic Double-Cone Experiments; AIAA Paper 2005-0584; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2005. [Google Scholar]
- CUBRC. Shock Wave/Laminar Boundary Layer Interaction with Real-gas Effects Presented at AIAA Aviation 2014. Available online: http://www.cubrc.org/index.php/page/publications (accessed on 23 April 2017).
- MacLean, M.; Holden, M.; Dufrene, A. Comparison between CFD andMeasurements for Real-Gas Effects on Laminar ShockWave Boundary Layer Interaction, I; Oral Presentation; AIAA Aviation 2014: Atlanta, GA, USA, 2014. [Google Scholar]
- MacLean, M.; Holden, M.; Dufrene, A. Comparison between CFD and Measurements for Real-Gas Effects on Laminar Shock Wave Boundary Layer Interaction, II; Oral Presentation; AIAA Aviation 2014: Atlanta, GA, USA, 2014. [Google Scholar]
- Landau, L.; Teller, E. Zur Theorie der Schalldispersion. Physikalische Zeitschrift der Sowjetunion 1936, 10, 34–43. (In German) [Google Scholar]
- Park, C. On Convergence of Computation of Chemically Reacting Flow; AIAA Paper 1985-0247; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1985. [Google Scholar]
- MacLean, M.; (Buffalo, NY, USA). Private communication, 29 July 2016.
- Vincenti, W.; Kruger, C. Introduction to Physical Gas Dynamics; Krieger Publishing Company: Malabar, FL, USA, 1965. [Google Scholar]
- Millikan, R.; White, D. Systematics of Vibrational Relaxation. J. Chem. Phys. 1963, 39, 3209–3213. [Google Scholar] [CrossRef]
- GASP Version 5.1.2 Reference Guide; Aerosoft, Inc.: Blacksburg, VA, USA, 2014.
- Leer, B.V. Flux Vector Splitting for the Euler Equations. In Eighth International Conference on Numerical Methods in Fluid Dynamics; Springer: Berlin, Germany, 1982; pp. 507–512. [Google Scholar]
- Knight, D.; Yan, H.; Panaras, A.; Zheltovodov, A. RTO WG 10: CFD Validation for Shock Wave Turbulent Boundary Layer Interactions; RTO Technical Report TR-AVT-007-V3; NATO: Paliseau, France, 2006. [Google Scholar]
- Withington, J.; Yang, V.; Shuen, J. A Time-Accurate Implicit Method for Chemically Reacting Flows at All Mach Numbers; AIAA Paper 1991-0581; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1991. [Google Scholar]
- Park, S.H.; Kwon, J.H. On the Dissipation Mechanism of Godunov-type Schemes. J. Comput. Phys. 2003, 188, 524–542. [Google Scholar] [CrossRef]
- Roe, P. Approximate Reimann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Druguet, M.C.; Candler, G.; Nompelis, I. Effects of Numerics on Navier-Stokes Computations of Hypersonic Double-Cone Flows. AIAA J. 2005, 43, 616–623. [Google Scholar] [CrossRef]
- Gaitonde, D. An Assessment of CFD for Prediction of 2-D and 3-D High-Speed Flows; AIAA Paper 2010-1284; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Druguet, M.C.; Candler, G.; Nompelis, I. Comparison of Physical Models in Computations of High-Enthalpy Double-Cone Flows; AIAA Paper 2006-3419; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Nompelis, I.; Candler, G.; Holden, M.; Wadhams, T. Computational Investigation of Hypersonic Viscous/Inviscid Interactions in High Enthalpy Flows; AIAA Paper 2003-3642; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2003. [Google Scholar]
Run No. | Stagnation Enthalpy (MJ/kg) | Mach Number | Pitot Pressure (kPa) | Unit Reynolds Number/ m | Velocity (km/s) | Density (g/m) | Static Temperature (K) |
---|---|---|---|---|---|---|---|
1 | 5.44 | 12.2 | 5.1 | 0.14 | 3.246 | 0.499 | 175 |
2 | 9.65 | 10.90 | 17.5 | 0.19 | 4.303 | 0.984 | 389 |
4 | 21.77 | 12.82 | 39.5 | 0.20 | 6.497 | 0.964 | 652 |
6 | 15.23 | 11.46 | 59.0 | 0.39 | 5.466 | 2.045 | 573 |
Reaction | C (m/kg·mole·s) | (K) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
→ | −1.6 | 113,200 | 0.5 | 0.5 | 10.81 | −12.61 | 0.683 | −0.118 | 0.006 | |
→ | −1.6 | 113,200 | 0.5 | 0.5 | 10.81 | −12.61 | 0.683 | −0.118 | 0.006 | |
→ | −1.6 | 113,200 | 0.5 | 0.5 | 10.81 | −12.61 | 0.683 | −0.118 | 0.006 | |
→ | −1.6 | 113,200 | 0.5 | 0.5 | 10.81 | −12.61 | 0.683 | −0.118 | 0.006 | |
→ | −1.6 | 113,200 | 0.5 | 0.5 | 10.81 | −12.61 | 0.683 | −0.118 | 0.006 | |
→ | 0.1 | 37,700 | 1.0 | 0.0 | 2.349 | −4.828 | 0.455 | −0.075 | 0.004 | |
→ | −1.0 | 59,500 | 0.5 | 0.5 | 8.243 | −4.127 | −0.616 | 0.093 | −0.005 | |
→ | −1.0 | 59,500 | 0.5 | 0.5 | 8.243 | −4.127 | −0.616 | 0.093 | −0.005 | |
→ | −1.0 | 59,500 | 0.5 | 0.5 | 8.243 | −4.127 | −0.616 | 0.093 | −0.005 | |
→ | −1.0 | 59,500 | 0.5 | 0.5 | 8.243 | −4.127 | −0.616 | 0.093 | −0.005 | |
→ | −1.0 | 59,500 | 0.5 | 0.5 | 8.243 | −4.127 | −0.616 | 0.093 | −0.005 | |
→ | 1.29 | 19,220 | 1.0 | 0.0 | 0.215 | −3.657 | 0.843 | −0.136 | 0.007 | |
→ | −0.5 | 75,500 | 0.5 | 0.5 | 8.457 | −7.784 | 0.228 | −0.043 | 0.002 | |
→ | −0.5 | 75,500 | 0.5 | 0.5 | 8.457 | −7.784 | 0.228 | −0.043 | 0.002 | |
→ | −0.5 | 75,500 | 0.5 | 0.5 | 8.457 | −7.784 | 0.228 | −0.043 | 0.002 | |
→ | −0.5 | 75,500 | 0.5 | 0.5 | 8.457 | −7.784 | 0.228 | −0.043 | 0.002 | |
→ | −0.5 | 75,500 | 0.5 | 0.5 | 8.457 | −7.784 | 0.228 | −0.043 | 0.002 |
Run Number | Sequence | Grid | Total Number of Cells | Total Number of Cells |
---|---|---|---|---|
Real Gas | Perfect Gas | |||
1 | 1 | Coarse | 291,600 | 291,600 |
1 | 2 | Medium | 1,233,630 | 1,233,630 |
1 | 3 | Fine | 4,530,330 | |
2 | 1 | Coarse | 333,080 | |
2 | 2 | Medium | 1,332,320 | |
4 | 1 | Coarse | 333,080 | |
4 | 2 | Medium | 1,332,320 | |
6 | 1 | Coarse | 333,080 | |
6 | 2 | Medium | 1,332,320 |
Run Number | Run 1 | Run 2 | Run 6 | Run 4 |
---|---|---|---|---|
Mass Fraction of N | 3.53 × | 0.0064 | 0.0844 | 0.1840 |
Mass Fraction of O | 0.0136 | 0.1569 | 0.2346 | 0.2349 |
Mass Fraction of | 0.0021 | 0.0836 | 0.0886 | 0.0926 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouhi Youssefi, M.; Knight, D. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions. Aerospace 2017, 4, 25. https://doi.org/10.3390/aerospace4020025
Rouhi Youssefi M, Knight D. Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions. Aerospace. 2017; 4(2):25. https://doi.org/10.3390/aerospace4020025
Chicago/Turabian StyleRouhi Youssefi, Mehrnaz, and Doyle Knight. 2017. "Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions" Aerospace 4, no. 2: 25. https://doi.org/10.3390/aerospace4020025
APA StyleRouhi Youssefi, M., & Knight, D. (2017). Assessment of CFD Capability for Hypersonic Shock Wave Laminar Boundary Layer Interactions. Aerospace, 4(2), 25. https://doi.org/10.3390/aerospace4020025