Secrecy Performance of a Non-Orthogonal Multiple Access-Based Space–Air–Ground Integrated Network System with Stochastic Geometry Distribution of Terrestrial Terminals and Fog Absorption in Optical Link
Abstract
:1. Introduction
1.1. Methodology
1.2. Motivation
1.3. Background
1.4. Contribution
- •
- An FSO/RF dual-hop system for the SAGIN system using the DF relaying protocol is constructed. As a classical scenario, the paper considers that there is an eavesdropper intercepting the signals on each link, respectively. In addition, the NOMA technique is used to improve the secrecy performance of the proposed system.
- •
- Considering the fog absorption for the FSO link and the stochastic geometry distribution for the RF link, the two fading channel models are proposed based on the Málaga and shadowed Rician distribution, respectively.
- •
- The closed-form expressions of SOP for the NOMA-based SAGIN system are derived, and their accuracy is verified by Monte Carlo simulations.
- •
- The influence of various system and channel parameters on the PLS of the NOMA-based SAGIN system is investigated, especially the impact of fog absorption and stochastic geometry distribution.
2. System and Channel Models
3. Performance Analysis
3.1. Cumulative Distribution Function and Probability Distribution Function
3.2. Secrecy Capacity
3.3. Secrecy Outage Probability
4. Numerical Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Fu, M.; Li, W.; Xie, J.; Kadoch, M. RIS-Assisted Ambient Backscatter Communication for SAGIN IoT. IEEE Internet Things J. 2023, 10, 9375–9384. [Google Scholar] [CrossRef]
- Sun, G.; Xu, G.; Shao, Y.; Zhang, Q.; Song, Z. Phase fluctuations-induced bit error ratio of deep-space optical communication systems during superior solar conjunction. Opt. Express 2024, 32, 7105–7118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Xue, P.; Lv, G.; Shu, M. Outage Performance for Satellite-Assisted Cooperative NOMA Systems With Coordinated Direct and Relay Transmission. IEEE Commun. Lett. 2020, 24, 2285–2289. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, A.; Liang, X. The Performance Analysis of Downlink NOMA in LEO Satellite Communication System. IEEE Access 2020, 8, 93723–93732. [Google Scholar] [CrossRef]
- Chu, J.; Chen, X.; Zhong, C.; Zhang, Z. Robust Design for NOMA-Based Multibeam LEO Satellite Internet of Things. IEEE Internet Things J. 2021, 8, 1959–1970. [Google Scholar] [CrossRef]
- Angueira, P.; Val, I.; Montalb, J.; Seijo, Ó.; Iradier, E.; Fontaneda, P.S.; Fanari, L.; Arriola, A. A Survey of Physical Layer Techniques for Secure Wireless Communications in Industry. IEEE Commun. Surv. Tutor. 2022, 24, 810–838. [Google Scholar] [CrossRef]
- Cvetkovi, A.M. Performance of dual-hop relaying over shadowed Ricean fading channels. J. Electr. Eng. 2011, 62, 244–248. [Google Scholar] [CrossRef]
- Tegos, S.A.; Diamantoulakis, P.D.; Xia, J.; Fan, L.; Karagiannidis, G.K. Outage Performance of Uplink NOMA in Land Mobile Satellite Communications. IEEE Wirel. Commun. Lett. 2020, 9, 1710–1714. [Google Scholar] [CrossRef]
- Toka, M.; Vaezi, M.; Shin, W. Outage Analysis of Alamouti-NOMA Scheme for Hybrid Satellite–Terrestrial Relay Networks. IEEE Internet Things J. 2023, 10, 5293–5303. [Google Scholar] [CrossRef]
- Yan, X.; Xiao, H.; Wang, C.X.; An, K. Outage Performance of NOMA-Based Hybrid Satellite-Terrestrial Relay Networks. IEEE Wirel. Commun. Lett. 2018, 7, 538–541. [Google Scholar] [CrossRef]
- Guo, K.; Dong, C.; An, K. NOMA-Based Cognitive Satellite Terrestrial Relay Network: Secrecy Performance Under Channel Estimation Errors and Hardware Impairments. IEEE Internet Things J. 2022, 9, 17334–17347. [Google Scholar] [CrossRef]
- Baeza, V.M.; Lagunas, E.; Al-Hraishawi, H.; Chatzinotas, S. An Overview of Channel Models for NGSO Satellites. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, UK, 26–29 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Baeza, V.M.; Salor, L.C. New horizons in tactical communications: An overview of emerging technologies possibilities. IEEE Potentials 2024, 43, 12–19. [Google Scholar] [CrossRef]
- Baeza, V.M.; Ortiz, F.; Lagunas, E.; Abdu, T.S.; Chatzinotas, S. Multi-Criteria Ground Segment Dimensioning for Non-Geostationary Satellite Constellations. In Proceedings of the 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 6–9 June 2023; pp. 252–257. [Google Scholar] [CrossRef]
- Vásquez-Peralvo, J.A.; Querol, J.; Ortíz, F.; Rios, J.L.G.; Lagunas, E.; Baeza, V.M.; Fontanesi, G.; Garcés-Socorrás, L.M.; Duncan, J.C.M.; Chatzinotas, S. Flexible Beamforming for Direct Radiating Arrays in Satellite Communications. IEEE Access 2023, 11, 79684–79696. [Google Scholar] [CrossRef]
- Lei, H.; Zhu, C.; Park, K.H.; Lei, W.; Ansari, I.S.; Tsiftsis, T.A. On Secure NOMA-Based Terrestrial and Aerial IoT Systems. IEEE Internet Things J. 2022, 9, 5329–5343. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, T.; Pan, G.; Chen, Y.; Alouini, M.S. On Secure Uplink Transmission in Hybrid RF-FSO Cooperative Satellite-Aerial-Terrestrial Networks. IEEE Trans. Commun. 2022, 70, 8244–8257. [Google Scholar] [CrossRef]
- Okati, N.; Riihonen, T.; Korpi, D.; Angervuori, I.; Wichman, R. Downlink Coverage and Rate Analysis of Low Earth Orbit Satellite Constellations Using Stochastic Geometry. IEEE Trans. Commun. 2020, 68, 5120–5134. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Pan, G.; Alouini, M.S. Secrecy Outage Analysis for Satellite-Terrestrial Downlink Transmissions. IEEE Wirel. Commun. Lett. 2020, 9, 1643–1647. [Google Scholar] [CrossRef]
- Homssi, B.A.; Al-Hourani, A. Modeling Uplink Coverage Performance in Hybrid Satellite-Terrestrial Networks. IEEE Commun. Lett. 2021, 25, 3239–3243. [Google Scholar] [CrossRef]
- Tannaz, S.; Ghobadi, C.; Nourinia, J.; Mostafapour, E. The Effects of Negative Exponential and K-distribution Modeled FSO Links on the Performance of Diffusion Adaptive Networks. In Proceedings of the 2018 9th International Symposium on Telecommunications (IST), Tehran, Iran, 17–19 December 2018; pp. 19–22. [Google Scholar] [CrossRef]
- Bykhovsky, D. Simple Generation of gamma, Gamma–Gamma, and K Distributions With Exponential Autocorrelation Function. J. Light. Technol. 2016, 34, 2106–2110. [Google Scholar] [CrossRef]
- Ansari, I.S.; Yilmaz, F.; Alouini, M. Performance Analysis of Free-Space Optical Links Over Málaga (M) Turbulence Channels With Pointing Errors. IEEE Trans. Wirel. Commun. 2016, 15, 91–102. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Alouini, M.S. Performance Analysis of Relay-Assisted All-Optical FSO Networks Over Strong Atmospheric Turbulence Channels With Pointing Errors. J. Light. Technol. 2014, 32, 4613–4620. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Yin, Z.; Jia, M.; Wang, W.; Cheng, N.; Lyu, F.; Guo, Q.; Shen, X. Secrecy Rate Analysis of Satellite Communications With Frequency Domain NOMA. IEEE Trans. Veh. Technol. 2019, 68, 11847–11858. [Google Scholar] [CrossRef]
- Bankey, V.; Singh, V.; Upadhyay, P.K. Physical Layer Secrecy of NOMA-Based Hybrid Satellite-Terrestrial Relay Networks. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Li, H.; Zhao, S.; Li, Y.; Peng, C. Sum Secrecy Rate Maximization in NOMA-Based Cognitive Satellite-Terrestrial Network. IEEE Wirel. Commun. Lett. 2021, 10, 2230–2234. [Google Scholar] [CrossRef]
- Guo, K.; Tang, X.; Guo, D.; Zhu, S.; An, K.; Zhong, L.; Zhang, B. Secrecy Performance Analysis of NOMA-Based Integrated Satellite-Terrestrial Relay Networks with Multiple Colluding Eavesdroppers. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 648–653. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Liu, M.; Gong, F. UAV-Assisted Secure Communication for Coordinated Satellite-Terrestrial Networks. IEEE Commun. Lett. 2023, 27, 1709–1713. [Google Scholar] [CrossRef]
- Bloch, M.; Barros, J.; Rodrigues, M.R.D.; McLaughlin, S.W. Wireless Information-Theoretic Security. IEEE Trans. Inf. Theory 2008, 54, 2515–2534. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Puerta-Notario, A.; Awrejcewicz, J. A unifying statistical model for atmospheric optical scintillation. Numer. Simul. Phys. Eng. Process. 2011, 181, 181–205. [Google Scholar]
- Sandalidis, H.G.; Tsiftsis, T.A.; Karagiannidis, G.K. Optical Wireless Communications With Heterodyne Detection Over Turbulence Channels With Pointing Errors. J. Light. Technol. 2009, 27, 4440–4445. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M.; Romer, R.H. Tables of Integrals, Series, and Products, 6th ed.; Academic: New York, NY, USA, 2000. [Google Scholar]
- Khallaf, H.S.; Shalaby, H.M.H.; Garrido-Balsells, J.M.; Sampei, S. Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and Gamma–Gamma free-space optical channels. J. Opt. Commun. Netw. 2017, 9, 161–171. [Google Scholar] [CrossRef]
- Abdi, A.; Lau, W.C.; Alouini, M.; Kaveh, M. A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Trans. Wirel. Commun. 2003, 2, 519–528. [Google Scholar] [CrossRef]
- Xu, M.; Xu, G.; Dong, Y.; Wang, W.; Zhang, Q.; Song, Z. UAV-assisted FSO communication system with amplify-and-forward protocol under AOA fluctuations: A performance analysis. China Commun. 2023, 20, 111–130. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Q.; Song, Z.; Ai, B. Relay-Assisted Deep Space Optical Communication System Over Coronal Fading Channels. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8297–8312. [Google Scholar] [CrossRef]
- Lei, H.; Gao, C.; Guo, Y.; Pan, G. On Physical Layer Security Over Generalized Gamma Fading Channels. IEEE Commun. Lett. 2015, 19, 1257–1260. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, I.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Xiang, Z.; Yang, W.; Cai, Y.; Ding, Z.; Song, Y. Secure Transmission Design in HARQ Assisted Cognitive NOMA Networks. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2528–2541. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover: Downers Grove, IL, USA, 1972. [Google Scholar]
- Qu, L.; Xu, G.; Zeng, Z.; Zhang, N.; Zhang, Q. UAV-Assisted RF/FSO Relay System for Space-Air-Ground Integrated Network: A Performance Analysis. IEEE Trans. Wirel. Commun. 2022, 21, 6211–6225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; He, J.; Xu, G.; Chen, J.; Gao, Y. Secrecy Performance of a Non-Orthogonal Multiple Access-Based Space–Air–Ground Integrated Network System with Stochastic Geometry Distribution of Terrestrial Terminals and Fog Absorption in Optical Link. Aerospace 2024, 11, 306. https://doi.org/10.3390/aerospace11040306
Wang X, He J, Xu G, Chen J, Gao Y. Secrecy Performance of a Non-Orthogonal Multiple Access-Based Space–Air–Ground Integrated Network System with Stochastic Geometry Distribution of Terrestrial Terminals and Fog Absorption in Optical Link. Aerospace. 2024; 11(4):306. https://doi.org/10.3390/aerospace11040306
Chicago/Turabian StyleWang, Xuhui, Jinyu He, Guanjun Xu, Jiajia Chen, and Yuhan Gao. 2024. "Secrecy Performance of a Non-Orthogonal Multiple Access-Based Space–Air–Ground Integrated Network System with Stochastic Geometry Distribution of Terrestrial Terminals and Fog Absorption in Optical Link" Aerospace 11, no. 4: 306. https://doi.org/10.3390/aerospace11040306
APA StyleWang, X., He, J., Xu, G., Chen, J., & Gao, Y. (2024). Secrecy Performance of a Non-Orthogonal Multiple Access-Based Space–Air–Ground Integrated Network System with Stochastic Geometry Distribution of Terrestrial Terminals and Fog Absorption in Optical Link. Aerospace, 11(4), 306. https://doi.org/10.3390/aerospace11040306