Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer
Abstract
:1. Introduction
2. Background and Literature Review
2.1. Edwards Aquifer
2.2. Literature Review
3. Modeling Framework
4. Scenario Setup
- Under the increased drought frequency scenarios, the probability of drought events with lower recharge level in the 78-year (year 1934–2011) distribution was increased. According to the recent work by Aryal et al. [8], a 20% increase in drought frequency is projected. Hence, we followed Adamson et al. [38] and increased the probability of drought years so they were some 20% larger while decreasing the probability of the rest of the years so it was some 20% smaller, with the probability of normal years unchanged.
- A maximum pumping limit of 400 thousand acre-feet was considered based on SB1477. Another scenario of a minimum springflow of 225 cfs was introduced to take into account endangered species protection. This is essentially a strategy currently being utilized in the region. Additionally, we examined a maximum lower pumping limit of 375 thousand acre-feet to investigate how it performed under the increased drought.
- We considered M&I demand growth stimulated by population growth in the form of a 10% increase in water demand by the M&I sectors.
5. Data Specification
5.1. Crop and Livestock Data
5.2. Recharge Data and States of Nature
5.3. Land Availability
5.4. Municipal and Industrial Water Usage
5.5. Linkages between Water Usage, Spring Flows, and Aquifer Elevation
6. Model Results and Discussion
6.1. Welfare Effects
6.2. Land Use
6.3. Water Use
6.4. Hydrologic Impacts
6.5. Comparison of the Impacts under Different Changes in Drought Probability
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. EDSIM Model Concept and Structure
Appendix A.1. Objective Function
Appendix A.2. Land Availability Constraint
Appendix A.3. Crop Mix Constraint
Appendix A.4. Livestock Mix Restriction
Appendix A.5. Lift Dependent Pumping Cost
Appendix A.6. Aquifer Elevation Determination
Appendix A.7. Springflow Equation
References
- EAA. 2018 Groundwater Discharge and Usage. Available online: https://www.edwardsaquifer.org/wp-content/uploads/2019/08/2018-Discharge-Report.pdf (accessed on 19 December 2019).
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 25–231. [Google Scholar]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global Patterns of Drought Recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.C.; Diffenbaugh, N.S. A Multi-model and Multi-index Evaluation of Drought Characteristics in the 21st Century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zhang, M.; Wang, L.; Zhou, T. Understanding and Seasonal Forecasting of Hydrological Drought in the Anthropocene. Hydrol. Earth Syst. Sci. 2017, 21, 5477–5492. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- Aryal, Y.; Zhu, J. On Bias Correction in Drought Frequency Analysis Based on Climate Models. Clim. Chang. 2017, 140, 361–374. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected Changes in Drought Occurrence under Future Global Warming from Multi-model, Multi-scenario, IPCC AR4 Simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. An Apparent Hiatus in Global Warming? Earths Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Bastos, A.; Running, S.W.; Gouveia, C.; Trigo, R.M. The Global NPP Dependence on ENSO: La Niña and the Extraordinary Year of 2011. J. Geophys. Res. Biogeosci. 2013, 118, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Gillig, D.; McCarl, B.A.; Williams, R.L. ENSO Impacts on Regional Water Management: Case Study of the Edwards Aquifer (Texas, USA). Clim. Res. 2005, 28, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Scanlon, B.R.; Longuevergne, L.; Sun, A.Y.; Fernando, D.N.; Save, H. GRACE Satellite Monitoring of Large Depletion in Water Storage in Response to the 2011 Drought in Texas. Geophys. Res. Lett. 2013, 40, 3395–3401. [Google Scholar] [CrossRef] [Green Version]
- Gulley, R.L.; Cantwell, J.B. The Edwards Aquifer Water Wars: The Final Chapter? Tex. Water J. 2013, 4, 1–21. [Google Scholar]
- Edwards Aquifer Habitat Conservation Plan 2018 Annual Report. Available online: https://www.edwardsaquifer.org/wp-content/uploads/2019/10/EAHCP_Annual_Report_2018.pdf (accessed on 19 December 2019).
- Uddameri, V.; Singaraju, S.; Hernandez, E.A. Is Standardized Precipitation Index (SPI) a Useful Indicator to Forecast Groundwater Droughts?—Insights from a Karst Aquifer. J. Am. Water Resour. Assoc. 2019, 55, 70–88. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.P.; Harnik, N.; Leetmaa, A.; Lau, N.C.; et al. Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future Dryness in the Southwest US and the Hydrology of the Early 21st Century Drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 847–940. [Google Scholar]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic Warming Has Increased Drought Risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazargan-Lari, M.R.; Kerachian, R.; Mansoori, A. A Conflict-resolution Model for the Conjunctive Use of Surface and Groundwater Resources that Considers Water-quality Issues: A Case Study. Environ. Manag. 2009, 43, 470. [Google Scholar] [CrossRef]
- Li, Z.; Quan, J.; Li, X.Y.; Wu, X.C.; Wu, H.W.; Li, Y.T.; Li, G.Y. Establishing a Model of Conjunctive Regulation of Surface Water and Groundwater in the Arid Regions. Agric. Water Manag. 2016, 174, 30–38. [Google Scholar] [CrossRef]
- Daneshmand, F.; Karimi, A.; Nikoo, M.R.; Bazargan-Lari, M.R.; Adamowski, J. Mitigating Socio-economic-environmental Impacts during Drought Periods by Optimizing the Conjunctive Management of Water Resources. Water Resour. Manag. 2014, 28, 1517–1529. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Jenkins, M.W.; Lund, J.R. Economic Values for Conjunctive Use and Water Banking in Southern California. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Castaño, S.; Sanz, D.; Gómez-Alday, J.J. Sensitivity of a Groundwater Flow Model to Both Climatic Variations and Management Scenarios in a Semi-arid Region of SE Spain. Water Resour. Manag. 2013, 27, 2089–2101. [Google Scholar] [CrossRef]
- Golden, B.; Johnson, J. Potential Economic Impacts of Water-use Changes in Southwest Kansas. J. Natl. Resour. Policy Res. 2013, 5, 129–145. [Google Scholar] [CrossRef]
- Dai, Z.; Du, J.; Chu, A.; Li, J.; Chen, J.; Zhang, X. Groundwater Discharge to the Changjiang River, China, during the Drought Season of 2006: Effects of the Extreme Drought and the Impoundment of the Three Gorges Dam. Hydrogeol. J. 2010, 18, 359–369. [Google Scholar] [CrossRef]
- Calow, R.C.; Robins, N.S.; Macdonald, A.M.; Macdonald, D.M.J.; Gibbs, B.R.; Orpen, W.R.G.; Mtembezeka, P.; Andrews, A.J.; Appiah, S.O. Groundwater Management in Drought-prone Areas of Africa. Int. J. Water Resour. Dev. 1997, 13, 241–261. [Google Scholar] [CrossRef]
- Shahid, S.; Hazarika, M.K. Groundwater Drought in the Northwestern Districts of Bangladesh. Water Resour. Manag. 2010, 24, 1989–2006. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can We Simulate Regional Groundwater Flow in a Karst System Using Equivalent Porous Media Models? Case Study, Barton Springs Edwards aquifer, USA. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef]
- Loaiciga, H.A.; Maidment, D.R.; Valdes, J.B. Climate-change Impacts in a Regional Karst Aquifer, Texas, USA. J. Hydrol. 2000, 227, 173–194. [Google Scholar] [CrossRef]
- McCarl, B.A.; Dillon, C.R.; Keplinger, K.O.; Williams, R.L. Limiting Pumping from the Edwards Aquifer: An Economic Investigation of Proposals, Water Markets, and Spring Flow Guarantees. Water Resour. Res. 1999, 35, 1257–1268. [Google Scholar] [CrossRef]
- Chen, C.; Gillig, D.; McCarl, B.A. Effects of Climatic Change on A Water Dependent Regional Economy: A study of the Texas Edwards Aquifer. Clim. Chang. 2001, 49, 397–409. [Google Scholar] [CrossRef]
- Gillig, D.; McCarl, B.A.; Boadu, F. An Economic, Hydrologic, and Environmental Assessment of Water Management Alternative Plans for the South Central Texas Region. J. Agric. Appl. Econ. 2001, 33, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; McCarl, B.A.; Williams, R.L. Elevation Dependent Management of the Edwards Aquifer: Linked Mathematical and Dynamic Programming Approach. J. Water Resour. Plan. Manag. 2006, 132, 330–340. [Google Scholar] [CrossRef]
- Gray, E.; Henninger, N.; Reij, C.; Winterbottom, R.; Agostini, P. Integrated Landscape Approaches for Africa’s Drylands; The World Bank: Washington, DC, USA, 2016; pp. 61–129. [Google Scholar]
- Alary, V.; Messad, S.; Aboul-Naga, A.; Osman, M.A.; Daoud, I.; Bonnet, P.; Juanes, X.; Tourrand, J.F. Livelihood Strategies and the Role of Livestock in the Processes of Adaptation to Drought in the Coastal Zone of Western Desert (Egypt). Agric. Syst. 2014, 128, 44–54. [Google Scholar] [CrossRef]
- Adamson, D.; Mallawaarachchi, T.; Quiggin, J. Declining Inflows and More Frequent Droughts in the Murray Darling Basin: Climate Change, Impacts and Adaptation. Aust. J. Agric. Resour. Econ. 2009, 53, 345–366. [Google Scholar] [CrossRef]
- Cañón, J.; González, J.; Valdés, J. Reservoir Operation and Water Allocation to Mitigate Drought Effects in Crops: A Multilevel Optimization Using the Drought Frequency Index. J. Water Resour. Plan. Manag. 2009, 135, 458–465. [Google Scholar] [CrossRef]
- Ward, F.A.; Hurd, B.H.; Rahmani, T.; Gollehon, N. Economic Impacts of Federal Policy Responses to Drought in the Rio Grande Basin. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- McCarl, B.A.; Spreen, T.H. Price Endogenous Mathematical Programming as a Tool for Sector Analysis. Am. J. Agric. Econ. 1980, 62, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Lambert, D.K.; McCarl, B.A.; He, Q.; Kaylen, M.S.; Rosenthal, W.; Chang, C.C.; Nayda, W.I. Uncertain Yields in Sectoral Welfare Analysis: An Application to Global Warming. J. Agric. Appl. Econ. 1995, 27, 423–436. [Google Scholar] [CrossRef] [Green Version]
- Dantzig, G.B. Linear Programming under Uncertainty. Manag. Sci. 1995, 1, 197–206. [Google Scholar] [CrossRef]
- Ding, J. Three Essays on Climate Variability, Water and Agricultural Production. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Anderson, D.; (Texas A&M University: College Station, TX, USA). Personal communication, 2014.
- Lyons, R.K.; Machen, R.V. Stocking Rate: The Key Grazing Management Decision. Texas FARMER Collection 2004. Available online: https://core.ac.uk/download/pdf/4274892.pdf (accessed on 8 November 2019).
- Cai, Y. Water Scarcity, Climate Change, and Water Quality: Three Economic Essays. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2009. [Google Scholar]
- Hydrologic Data Report. Available online: https://www.edwardsaquifer.org/science-maps/research-scientific-reports/hydrologic-data-reports/ (accessed on 19 December 2019).
- Griffin, R.C.; Chang, C. Seasonality in Community Water Demand. West. J. Agric. Econ. 1991, 16, 207–217. [Google Scholar]
- Renzetti, S. An Economic Study of Industrial Water Demands in British Columbia, Canada. Water Resour. Res. 1988, 24, 1569–1573. [Google Scholar] [CrossRef]
- Keplinger, K.O.; McCarl, B.A. The Effects of Recharge, Agricultural Pumping and Municipal Pumping on Springflow and Pumping Lifts Within the Edwards Aquifer: A Comparative Analysis Using Three Approaches; Texas A&M University: College Station, TX, USA, 1995; Available online: http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/584.pdf (accessed on 8 November 2019).
- Zhao, T.; Dai, A. Uncertainties in Historical Changes and Future Projections of Drought. Part II: Model-simulated Historical and Future Drought Changes. Clim. Chang. 2017, 144, 535–548. [Google Scholar] [CrossRef]
- McCarl, B.A. Cropping Activities in Agricultural Sector Models: A Methodological Proposal. Am. J. Agric. Econ. 1982, 64, 768–772. [Google Scholar] [CrossRef]
Scenarios | Definition |
---|---|
2011Base | Baseline |
2011Base400 | Base model with pumping limit of 400 thousand acre-feet |
2011Base375 | Base model with pumping limit of 375 thousand acre-feet |
2011Base+Spring225 | Base model with minimum springflow of 225 cfs |
10Base400 | M&I water demand increases of 10% and 400 thousand acre-feet pumping limit |
10Base375 | M&I water demand increases of 10% and 375 thousand acre-feet pumping limit |
10Base+Spring225 | M&I water demand increases of 10% and minimum springflow of 225 cfs |
Recharge State | Years (1934-2011) | Recharge Level | Probability |
---|---|---|---|
(Typical Weather Years in Bold) | (103 acre-feet) | ||
Heavily dry | 1956, 2011, 1951 | 43.7 | 0.0385 |
Medium dry | 1954, 1953, 1963, 1948, 1934 | 170.7 | 0.0641 |
Dry | 1955, 1984, 1950, 2006, 2008, 2009, 1989 | 214.4 | 0.0897 |
Dry-normal | 1962, 1943, 1952, 1940 | 275.5 | 0.0513 |
Normal | 1996, 1988, 1939, 1937, 1980, 1964, 1983, 1982, 1947, 1938, 1993, 1967, 1999, 1978, 1949 | 324.3 | 0.1923 |
Normal-wet | 1945, 1995, 1994, 1946, 1942, 1944, 1969, 2000, 1966, 1965, 1974, 1970, 2003, 1959, 1961, 2005, 1972 | 658.5 | 0.2179 |
Wet | 2010, 1960, 1941, 1968, 1976, 1936, 1971, 1977, 1975, 1985, 2001, 1979, 1990, 1997, 1998, 1957, 1986 | 894.1 | 0.2179 |
Medium wet | 1935, 1981, 1973, 1991, 2002, 1958 | 1711.2 | 0.0769 |
Heavily wet | 1987, 2004, 2007, 1992 | 2003.6 | 0.0513 |
Average | 710.9 |
Scenarios | Change in Economic Benefit (106$) | ||||
---|---|---|---|---|---|
Cropping | Livestock | M&I | Total Surplus | ||
Prob(Drought) No Change | 2011Base_Baseline | 211.75 | 54.80 | 828.41 | 1094.95 |
2011Base400 | −8.24 | 2.38 | −0.64 | −6.50 | |
2011Base375 | −11.22 | 3.12 | −0.83 | −8.92 | |
2011Base+Spring225 | −4.73 | 1.44 | −0.65 | −3.94 | |
10Base400 | −11.47 | 3.20 | 82.04 | 73.72 | |
10Base375 | −14.70 | 3.97 | 81.82 | 71.09 | |
10Base+Spring225 | −8.13 | 2.24 | 82.20 | 76.31 | |
Prob(Drought) Increases 0.2 | 2011Base | −6.88 | 0.00 | 4.48 | −2.40 |
2011Base400 | −14.38 | 2.35 | 3.79 | −8.25 | |
2011Base375 | −17.20 | 3.03 | 3.51 | −10.67 | |
2011Base+Spring225 | −13.41 | 2.10 | 3.87 | −7.44 | |
10Base400 | −17.45 | 3.09 | 86.78 | 72.43 | |
10Base375 | −21.10 | 4.12 | 86.80 | 69.82 | |
10Base+Spring225 | −16.55 | 2.92 | 86.98 | 73.35 |
Scenarios | Change in Land Use (103acre-feet) | ||
---|---|---|---|
FurrowToGrass | SprinklerToGrass | ||
Prob(Drought) No Change | 2011Base_Baseline | 0.00 | 0.00 |
2011Base400 | 10.54 | 20.65 | |
2011Base375 | 15.73 | 25.45 | |
2011Base+Spring225 | 0.00 | 19.47 | |
10Base400 | 15.73 | 26.59 | |
10Base375 | 17.80 | 35.27 | |
10Base+Spring225 | 0.00 | 30.97 | |
Prob(Drought) Increases 0.2 | 2011Base | 0.00 | 0.00 |
2011Base400 | 0.00 | 32.17 | |
2011Base375 | 0.00 | 41.93 | |
2011Base+Spring225 | 0.00 | 28.96 | |
10Base400 | 0.77 | 42.03 | |
10Base375 | 13.76 | 42.03 | |
10Base+Spring225 | 0.00 | 40.56 |
Scenarios | Change in Water Use (103acre-feet) | |||
---|---|---|---|---|
Irrigated Cropping | M&I | Total Value | ||
Prob(Drought) No Change | 2011Base_Baseline | 224.10 | 284.90 | 509.01 |
2011Base400 | −91.83 | −10.34 | −102.17 | |
2011Base375 | −114.82 | −12.03 | −126.85 | |
2011Base+Spring225 | −57.55 | −11.04 | −68.59 | |
10Base400 | −117.06 | 15.21 | −101.85 | |
10Base375 | −140.71 | 13.86 | −126.85 | |
10Base+Spring225 | −82.90 | 16.36 | −66.55 | |
Prob(Drought) Increases 0.2 | 2011Base | −0.30 | 1.49 | 1.18 |
2011Base400 | −93.99 | −8.74 | −102.73 | |
2011Base375 | −116.30 | −10.64 | −126.95 | |
2011Base+Spring225 | −74.98 | −8.90 | −83.88 | |
10Base400 | −118.14 | 16.51 | −101.63 | |
10Base375 | −143.37 | 16.56 | −126.81 | |
10Base+Spring225 | −102.36 | 17.41 | −84.95 |
2011Base400 (Baseline) | Change from Baseline | |||||
---|---|---|---|---|---|---|
Prob + 0.1 | Prob +0.2 | Prob + 0.3 | Prob + 0.2 & Flattening pdf | |||
Economic Benefit(106$) | ||||||
Cropping | 203.51 | −2.97 | −6.14 | −9.24 | −5.30 | |
Livestock | 57.18 | −0.19 | −0.03 | 0.06 | 0.08 | |
M&I | 827.76 | 2.13 | 4.43 | 6.80 | 2.66 | |
Total Surplus | 1088.45 | −1.03 | −1.74 | −2.38 | −2.56 | |
Land Use (103acres) | ||||||
Irrigated Land | 66.09 | 0.76 | −1.43 | −2.80 | −1.24 | |
Dryland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Grassland | 740.26 | −1.24 | 0.98 | 2.36 | 1.01 | |
Water Use (103acre-feet) | ||||||
Irrigated Cropping | 132.275 | 0.07 | −2.16 | −4.01 | −0.37 | |
M&I | 274.563 | 0.22 | 1.61 | 3.02 | 0.55 | |
Total Value | 406.838 | 0.30 | −0.56 | −0.99 | 0.18 | |
Hydrologic Effects | ||||||
Comal Spring flow (103acre-feet) | 265.32 | 5.37 | −20.15 | −47.93 | −45.12 | |
San Marcos Spring flow (103acre-feet) | 81.40 | −0.88 | −5.04 | −9.43 | −6.51 | |
J-17 Well End Elevation (feet) | 680.41 | 1.90 | −3.32 | −9.03 | −9.72 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; McCarl, B.A. Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer. Climate 2020, 8, 2. https://doi.org/10.3390/cli8010002
Ding J, McCarl BA. Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer. Climate. 2020; 8(1):2. https://doi.org/10.3390/cli8010002
Chicago/Turabian StyleDing, Jinxiu, and Bruce A. McCarl. 2020. "Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer" Climate 8, no. 1: 2. https://doi.org/10.3390/cli8010002
APA StyleDing, J., & McCarl, B. A. (2020). Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer. Climate, 8(1), 2. https://doi.org/10.3390/cli8010002