Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Jet Stream Changes April–September
3.2. Implications of Jet Stream Changes April–May
3.3. Why Do April–May Relative Humidity Decreases Extend to 25° S in Southwest Australia but to 35° S in Southeast Australia?
3.4. Implications of JJAS Jet Stream Changes
3.5. Implications of Jet Stream Changes October–March
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Code Availability
References
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Science & Technology: London, UK, 2004. [Google Scholar]
- Yin, J.H.A. Consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 2005, 32, L18701. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, D.J.; DeWeaver, E.T. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 2007, 112, D10119. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Taljaard, J.J. Synoptic meteorology of the Southern Hemisphere. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1972, 35, 139–211. [Google Scholar]
- van Loon, H. Temperature in the Southern Hemisphere. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1972, 35, 9–22. [Google Scholar]
- van Loon, H. Pressure in the Southern Hemisphere. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1972, 35, 59–86. [Google Scholar]
- van Loon, H. Wind in the Southern Hemisphere. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1972, 35, 87–99. [Google Scholar]
- Hurrell, J.W.; van Loon, H.; Shea, D.J. The mean state of the troposphere. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1998, 49, 1–410. [Google Scholar] [CrossRef]
- van Heerden, J.; Taljaard, J.J. Africa and surrounding waters. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1998, 49, 141–174. [Google Scholar]
- Vincent, D.G.; Silva Dias, P.L. Pacific Ocean. Meteorology of the Southern Hemisphere. Meteorol. Monogr. 1998, 49, 101–117. [Google Scholar]
- Bals-Elsholz, T.; Atallah, E.H.; Bosart, L.F.; Wasula, T.A.; Cempa, M.J.; Lupo, A.R. The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. Int. J. Climatol. 2001, 14, 4191–4215. [Google Scholar] [CrossRef] [Green Version]
- Gallego, D.; Ribera, P.; Garcia-Herrera, R.; Hernandez, E.; Gimeno, L. A new look for the Southern Hemisphere jet stream. Clim. Dyn. 2005, 24, 607–621. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Met. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zolotov, S.Y.; Ippolitov, I.I.; Loginov, S.V.; Kharyutkina, E.V. Variability of the Southern Hemisphere Subtropical Jet Stream in the Second Half of the 20th Century and Early 21st Century. Izvestiya. Atmos. Ocean. Phys. 2018, 54, 430–438. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chen, G.; Frierson, D.M.W. Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Clim. 2008, 21, 5835–5851. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, C.A. The global signature of the ENSO and SST-like fields. Theor. Appl. Climatol. 2013, 113, 197–204. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 2012, 17, D0801. [Google Scholar] [CrossRef]
- NOAA. National Centers for Environmental Information, State of the Climate: Global Climate Report for 2019. Published online January 2020. Available online: https://www.ncdc.noaa.gov/sotc/global/201913/supplemental/page-3 (accessed on 12 October 2021).
- Australian Bureau of Meteorology and CSIRO. State of the Climate 2020. 2020. Available online: https://bom.gov.au/state-of-the-climate/ (accessed on 6 January 2022).
- Bagnell, A.; DeVries, T. 20th century cooling of the deep ocean contributed to delayed acceleration of Earth’s energy imbalance. Nat. Commun. 2021, 12, 4604. [Google Scholar] [CrossRef]
- Campos, E.J.D.; van Caspel, M.C.; Zenk, W.; Morozov, E.G.; Frey, D.I.; Piola, A.R.; Meinen, C.S.; Sato, O.T.; Perez, R.C.; Dong, S. Warming trend in Antarctic Bottom Water in the Vema Channel in the South Atlantic. Geophys. Res. Lett. 2021, 48, e2021GL094709. [Google Scholar] [CrossRef]
- Barnes, E.A.; Barnes, N.W.; Polvani, L.M. Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Clim. 2014, 27, 852–867. [Google Scholar] [CrossRef] [Green Version]
- Gerber, E.P.; Son, S.-W. Quantifying the Summertime Response of the Austral Jet Stream and Hadley Cell to Stratospheric Ozone and Greenhouse Gases. J. Clim. 2014, 27, 5538–5559. [Google Scholar] [CrossRef]
- Gillett, N.P.; Thompson, D.W.J. Simulation of recent Southern Hemisphere climate change. Science 2003, 302, 273–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arblaster, J.M.; Meehl, G.A. Contributions of external forcings to southern annular mode trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
- Perlwitz, J.; Pawson, S.; Fogt, R.L.; Nielsen, J.E.; Neff, W.D. The impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett. 2008, 35, L08714. [Google Scholar] [CrossRef] [Green Version]
- Polvani, L.M.; Waugh, D.W.; Correa, G.J.P.; Son, S.-W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G.; Scinocca, J.F.; Plummer, D.A.; Sigmond, M.; Jonsson, A.I.; Reader, M.C. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim. 2011, 24, 1850–1868. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.H.; Thompson, D.W.J.; Heikes, R. The steadystate atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Clim. 2010, 23, 3474–3496. [Google Scholar] [CrossRef]
- Murphy, B.F.; Timbal, B. A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol. 2008, 28, 859–879. [Google Scholar] [CrossRef]
- Speer, M.S.; Hartigan, J.; Leslie, L.M.; MacNamara, S. From the 1990s climate change has decreased cool season catchment precipitation reducing river heights in Australia’s southern Murray-Darling Basin. Sci. Rep. 2021, 11, 16136. [Google Scholar] [CrossRef]
- Ren, D.; Dickinson, R.E.; Fu, R.; Bornman, J.F.; Guo, W.; Song, Y.; Leslie, L.M. The impacts of climate warming on maximum aviation payloads. Clim. Dyn. 2019, 52, 1711–1721. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Leslie, L.M. Impacts of climate warming on aviation fuel consumption. J. Appl. Meteorol. Clim. 2019, 58, 1593–1602. [Google Scholar] [CrossRef]
- Rikus, L. A simple climatology of westerly jet streams in global reanalysis datasets part 1: Mid-latitude upper tropospheric jets. Clim. Dyn. 2015, 50, 2285–2310. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Met. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Franzke, C.L.E.; Efstathiou, M.N.; Degermendzhi, A.G. Evidence for two abrupt warming events of SST in the last century. Theor. Appl. Climatol. 2014, 116, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Holland, G.J.; Lynch, A.H.; Leslie, L.M. Australian east-coast cyclones. Part I: Synoptic overview and case study. Mon. Wea. Rev. 1987, 115, 3024–3036. [Google Scholar] [CrossRef] [Green Version]
- Speer, M.S.; Wiles, P.; Pepler, A. Low pressure systems off the New South Wales coast and associated hazardous weather: Establishment of a database. Aust. Meteor. Ocean. J. 2009, 58, 29–39. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Pepler, A.; Di Luca, A.; Cavicchia, L.; Mills, G.; Evans, J.P.; Louis, S.; McInnes, K.L.; Walsh, K. Review of Australian east coast low pressure systems and associated extremes. Clim. Dyn. 2019, 53, 4887–4910. [Google Scholar] [CrossRef]
- Kidston, J.; Renwick, J.A.; McGregor, J. Hemispheric-Scale Seasonality of the Southern Annular Mode and Impacts on the Climate of New Zealand. J. Clim. 2009, 22, 4759–4770. [Google Scholar] [CrossRef] [Green Version]
- Pook, M.; McIntosh, P.; Meyers, G. The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteorol. Climatol. 2006, 45, 1156–1170. [Google Scholar] [CrossRef]
- Risbey, J.; Pook, M.; McIntosh, P.; Wheeler, M.; Hendon, H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 2009, 137, 3233–3253. [Google Scholar] [CrossRef]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A.; Ferreira, S.H.S.; Andrade, K.M. Contributions of downstream baroclinic development to strong Southern Hemisphere cut-off lows. Q. J. R. Met. Soc. 2021, 148, 214–232. [Google Scholar] [CrossRef]
- Pook, M.; Gibson, T. Atmospheric blocking and storm tracks during SOP-1 of the FROST project. Aust. Met. Mag. 1999, 48, 51–60. [Google Scholar]
- Risbey, J.S.; McIntosh, P.C.; Pook, M.J. Synoptic components of rainfall variability and trends in southeast Australia. Int. J. Climatol. 2013, 33, 2459–2472. [Google Scholar] [CrossRef]
- Rogers, J.C.; van Loon, H. Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weather Rev. 1982, 110, 1375–1392. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Carlson, T.N. Mid-Latitude Weather Systems; HarperCollins Academic: London, UK, 1991; ISBN 0 04 551115 2. [Google Scholar]
- Codron, F. Relations between Annular Modes and the Mean State: Southern Hemisphere Winter. J. Atmos. Sci. 2007, 64, 328–3339. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Southeast Australia Autumn Rainfall Reduction: A Climate-Change-Induced Poleward Shift of Ocean–Atmosphere Circulation. J. Clim. 2013, 26, 189–205. [Google Scholar] [CrossRef]
- Speer, M.; Leslie, L.; Hartigan, J.; MacNamara, S. Changes in Frequency and Location of East Coast Low Pressure Systems Affecting Southeast Australia. Climate 2021, 9, 44. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Liu, Y.; Hu, A. The Decadal Reduction of Southeastern Australian Autumn Rainfall since the early 1990s: A Response to Sea Surface Temperature Warming in the Subtropical South Pacific. J. Clim. 2020, 33, 2249–2261. [Google Scholar] [CrossRef]
- McInnes, K.L.; Walsh, K.J.E.; Hubbert, G.D.; Beer, T. Impacts of sea-level rise and storm surges on a coastal community. Nat. Hazards 2003, 30, 187–207. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T.; Thatcher, M. Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion. Sci. Rep. 2012, 2, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, D.A.; Timbal, B.; Chiew, F.H.S.; Hendon, H.H.; Nguyen, H.; Moran, R. Decrease in southeastern Australian water availability linked to ongoing Hadley cell expansion. Earth’s Future 2014, 2, 231–238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speer, M.S.; Leslie, L.M.; Hartigan, J. Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming. Climate 2022, 10, 84. https://doi.org/10.3390/cli10060084
Speer MS, Leslie LM, Hartigan J. Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming. Climate. 2022; 10(6):84. https://doi.org/10.3390/cli10060084
Chicago/Turabian StyleSpeer, Milton S., Lance M. Leslie, and Joshua Hartigan. 2022. "Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming" Climate 10, no. 6: 84. https://doi.org/10.3390/cli10060084
APA StyleSpeer, M. S., Leslie, L. M., & Hartigan, J. (2022). Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming. Climate, 10(6), 84. https://doi.org/10.3390/cli10060084