Common Issues in Verification of Climate Forecasts and Projections
Abstract
:1. Introduction
2. Skill
2.1. Initial Condition Skill
2.2. Forcing Skill
2.2.1. Changing Shape
2.2.2. Climatology Shift
3. Forecast and Projection Experiments
3.1. No Initial Conditions, No Forcing
3.2. Initial Conditions, No Forcing
3.3. No Initial Conditions, Forcing
3.4. Initial Conditions, Forcing
4. Mixing Forecasts and Projections
4.1. Forecasts as Projections
4.2. Projections as Forecasts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
gmst | global mean surface temperature |
S2S | subseasonal to seasonal |
S2D | seasonal to decadal |
ENSO | El Niño Southern Oscillation |
MSE | mean square error |
MSSS | mean squared skill score |
References
- Fiedler, T.; Pitman, A.; Mackenzie, K.; Wood, N.; Jakob, C.; Perkins-Kirkpatrick, S. Business risk and the emergence of climate analytics. Nat. Clim. Chang. 2021, 11, 87–94. [Google Scholar] [CrossRef]
- Lorenz, E. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Kirtman, B.; Min, D.; Infanti, J.; Kinter, J.K.; Paolino, D.; Zhang, Q.; Dool, H.V.D.; Saha, S.; Mendez, M.; Becker, E.; et al. The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Am. Met. Soc. 2014, 95, 585–601. [Google Scholar] [CrossRef]
- Pegion, K.; Kirtman, B.P.; Becker, E.; Collins, D.C.; LaJoie, E.; Burgman, R.; Bell, R.; DelSole, T.; Min, D.; Zhu, Y.; et al. The Subseasonal Experiment (SubX): A Multimodel Subseasonal Prediction Experiment. Bull. Am. Met. Soc. 2019, 100, 2043–2060. [Google Scholar] [CrossRef]
- Goddard, L.; Kumar, A.; Solomon, A.; Smith, D.; Boer, G.; Gonzalez, P.; Kharin, V.; Merryfield, W.; Deser, C.; Mason, S.; et al. A verification framework for interannual-to-decadal predictions experiments. Clim. Dyn. 2013, 40, 245–272. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Richter, J.H.; Teng, H.; Capotondi, A.; Cobb, K.; Doblas-Reyes, F.; Donat, M.G.; Engl, M.H.; Fyfe, J.C.; Han, W.; et al. Initialized Earth system prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2021, 2, 340–357. [Google Scholar] [CrossRef]
- Dessai, S.; Lu, X.; Risbey, J. On the role of climate scenarios for adaptation planning. Glob. Environ. Chang. 2005, 15, 87–97. [Google Scholar] [CrossRef]
- Simmons, A.; Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteor. Soc. 2002, 128, 647–677. [Google Scholar] [CrossRef]
- Shukla, J. Predictability in the midst of chaos: A scientific basis for climate forecasting. Science 1998, 282, 728–731. [Google Scholar] [CrossRef]
- Dessai, S.; Hulme, M. Does climate adaptation policy need probabilities? Clim. Policy 2004, 4, 107–128. [Google Scholar] [CrossRef]
- Dessai, S.; Hulme, M. Assessing the robustness of adaptation decisions to climate change uncertainties: A case study on water resources management in the East of England. Glob. Environ. Chang. 2007, 17, 59–72. [Google Scholar] [CrossRef]
- Weisheimer, A.; Palmer, T. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 2003, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baldissera Pacchetti, M.; Dessai, S.; Bradley, S.; Stainforth, D. Assessing the quality of regional climate information. Bull. Am. Met. Soc. 2021, 102, 476–491. [Google Scholar] [CrossRef]
- Held, I. Large-scale dynamics and global warming. Bull. Am. Met. Soc. 1993, 74, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Held, I.; Soden, B. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Risbey, J.S.; Lamb, P.J.; Miller, R.L.; Morgan, M.C.; Roe, G.H. Exploring the Structure of Regional Climate Scenarios by Combining Synoptic and Dynamic Guidance and GCM output. J. Clim. 2002, 15, 1036–1050. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; O’Gorman, P.; Levine, X. Water vapor and the dynamics of climate changes. Rev. Geophys. 2010, 48, RG3001. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Naik, N.; Vecchi, G. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 2010, 23, 4561–4668. [Google Scholar] [CrossRef] [Green Version]
- Tamarin-Brodsky, T.; Hodges, K.; Hoskins, B.; Shepherd, T. A Dynamical Perspective on Atmospheric Temperature Variability and its Response to Climate Change. J. Clim. 2019, 32, 1707–1724. [Google Scholar] [CrossRef] [Green Version]
- Risbey, J.S.; Stone, P.H. A Case Study of the Adequacy of GCM Simulations for Input to Regional Climate Change Assessments. J. Clim. 1996, 9, 1441–1467. [Google Scholar] [CrossRef]
- Risbey, J.; O’Kane, T. Sources of knowledge and ignorance in climate research. Clim. Chang. 2011, 108, 755–773. [Google Scholar] [CrossRef]
- Shepherd, T. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014, 7, 703–708. [Google Scholar] [CrossRef]
- Barnston, A.G.; Tippett, M.; L’Heureux, M.; Li, S.; DeWitt, D. Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing? Bull. Am. Met. Soc. 2012, 93, 631–651. [Google Scholar] [CrossRef]
- Grose, M.; Risbey, J.; Whetton, P. Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’. Clim. Chang. 2017, 140, 307–322. [Google Scholar] [CrossRef]
- Barnston, A.G.; Tippett, M.; Ranganathan, M.; L’Heureux, M. Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim. Dynam. 2019, 53, 7215–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolliffe, I.; Stephenson, D. Forecast Verification: A Practioner’s Guide in Atmospheric Science; Wiley: Exeter, UK, 2012; 292p. [Google Scholar]
- Bray, D.; von Storch, H. Prediction or projection: The nomenclature of climate science. Sci. Commun. 2009, 30, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Risbey, J.; Lewandowsky, S.; Langlais, C.; Monselesan, D.; O’Kane, T.; Oreskes, N. Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Clim. Chang. 2014, 4, 835–840. [Google Scholar] [CrossRef]
- Murphy, A. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge Univ. Press: Cambridge, UK, 2002; 364p. [Google Scholar]
- Peña, M.; Kalnay, E. Separating fast and slow modes in coupled chaotic systems. Nonlinear Proc. Geoph. 2004, 11, 319–327. [Google Scholar] [CrossRef]
- O’Kane, T.; Squire, D.; Sandery, P.; Kitsios, V.; Matear, R.; Moore, T.; Risbey, J.; Watterson, I. Enhanced ENSO prediction via augmentation of multi-model ensembles with initial thermocline perturbations. J. Clim. 2020, 33, 2281–2293. [Google Scholar] [CrossRef]
- Forster, P.; Andrews, T.; Good, P.; Gregory, J.; Jackson, L.; Zelinka, M. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. 2013, 118, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Power, S.; Haylock, M.; Colman, R.; Wang, X. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Clim. 2006, 19, 4755–4771. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.H. What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting. Weather Forecast. 1993, 8, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Gerrity, J. A note on Gandin and Murphy’s equitable skill score. Mon. Weather Rev. 1992, 120, 2709–2712. [Google Scholar] [CrossRef]
- Mittermaier, M. The Potential Impact of Using Persistence as a Reference Forecast on Perceived Forecast Skill. Weather Forecast. 2008, 23, 1022–1031. [Google Scholar] [CrossRef]
- DelSole, T.; Tippett, M.K. Forecast comparison based on random walks. Mon. Weather Rev. 2016, 144, 615–626. [Google Scholar] [CrossRef]
- Barnston, A.; Li, S.; Mason, S.; DeWitt, D.; Goddard, L.; Gong, X. Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteorol. Climatol. 2010, 49, 493–520. [Google Scholar] [CrossRef]
- Risbey, J.; Squire, D.; Black, A.; DelSole, T.; Lepore, C.; Matear, R.; Monselesan, D.; Moore, T.; Richardson, D.; Schepen, A.; et al. Standard assessments of climate forecast skill can be misleading. Nat. Commun. 2021, 12, 4346. [Google Scholar] [CrossRef]
- Kharin, V.; Boer, G.; Merryfield, W.; Scinocca, J.; Lee, W. Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. Lett. 2012, 39, L19705. [Google Scholar] [CrossRef]
- Hansen, J.; Takahashi, T. Climate processes and climate sensitivity. AGU Geophys. Monogr. 1984, 29, 1–32. [Google Scholar]
- Rahmstorf, S.; Cazenave, A.; Church, J.; Hansen, J.; Keeling, R.; Parker, D.; Somerville, R. Recent climate observations compared to projections. Science 2007, 316, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessai, S.; Hulme, M. How do UK climate scenarios compare with recent observations? Atmos. Sci. Let. 2008, 9, 189–195. [Google Scholar] [CrossRef]
- Hausfather, Z.; Drake, H.; Abbott, T.; Schmidt, G. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 2020, 47, e2019GL085378. [Google Scholar] [CrossRef]
- Stockdale, T. Coupled ocean-atmosphere forecasts in the presence of climate drift. Mon. Weather Rev. 1997, 125, 809–818. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutierrez, J.; Bhend, J.; Hemri, S.; Doblas-Reyes, F.; Torralba, V.; Penabad, E. Bias adjustment and ensemble recalibration methods for seasonal forecasting: A comprehensive intercomparison using the C3S dataset. Clim. Dynam. 2019, 53, 1287–1305. [Google Scholar] [CrossRef]
- Choudhury, D.; Sen Gupta, A.; Sharma, A.; Mehrotra, R.; Sivakumar, B. An Assessment of Drift Correction Alternatives for CMIP5 Decadal Predictions. J. Geophys. Res. 2017, 122, 10282–10296. [Google Scholar] [CrossRef]
- Mantua, N.; Hare, S. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Risbey, J.; Lewandowsky, S.; Hunter, J.; Monselesan, D. Betting strategies on fluctuations in the transient response of greenhouse warming. Phil. Trans. R. Soc. A 2015, 373, 14–27. [Google Scholar] [CrossRef]
- Sospedra-Alfonso, R.; Boer, G. Assessing the Impact of Initialization on Decadal Prediction Skill. Geophys. Res. Lett. 2020, 47, e2019GL086361. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E. Climatic determinism. Meteor. Monogr. 1968, 8, 1–3. [Google Scholar]
- Charney, J.G.; DeVore, J.G. Multiple Flow Equilibria in the Atmosphere and Blocking. J. Atmos. Sci. 1979, 36, 1205–1216. [Google Scholar] [CrossRef] [Green Version]
- Corti, S.; Molteni, F.; Palmer, T. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 1999, 398, 799–802. [Google Scholar] [CrossRef]
- Hansen, J.; Russell, G.; Lacis, A.; Fung, I.; Rind, D.; Stone, P. Climate response times: Dependence on climate sensitivity and ocean mixing. Science 1985, 229, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Hulme, M.; Dessai, S.; Lorenzoni, I.; Nelson, D. Unstable climates: Exploring the statistical and social constructions of ‘normal’ climate. Geoforum 2009, 40, 197–206. [Google Scholar] [CrossRef]
- Arguez, A.; Vose, R. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Met. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- Cowtan, K.; Way, R. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteor. Soc. 2014, 140, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Cowtan, K.; Hausfather, Z.; Hawkins, E.; Jacobs, P.; Mann, M.; Miller, S.; Steinman, B.; Stolpe, M.; Way, R. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 2015, 42, 6526–6534. [Google Scholar] [CrossRef] [Green Version]
- Lewandowsky, S.; Risbey, J.; Oreskes, N. On the definition and identifiability of the alleged “hiatus” in global warming. Sci. Rep. 2015, 5, 16784. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Risbey, J.; Oreskes, N. The ‘pause’ in global warming: Turning a routine fluctuation into a problem for science. Bull. Am. Met. Soc. 2016, 97, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Risbey, J.; Lewandowsky, S.; Cowtan, K.; Oreskes, N.; Rahmstorf, S.; Jokimäki, A.; Foster, G. A fluctuation in surface temperature in historical context: Reassessment and retrospective on the evidence. Environ. Res. Lett. 2018, 13, 123008. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Franzke, C.; Crommelin, D.; Fischer, A.; Majda, A. A hidden Markov model perspective on regimes and metastability in atmospheric flows. J. Clim. 2008, 21, 1740–1757. [Google Scholar] [CrossRef]
- Monselesan, D.; O’Kane, T.; Risbey, J.; Church, J. Internal climate memory in observations and models. Geophys. Res. Lett. 2015, 42, 1232–1242. [Google Scholar] [CrossRef]
- Tippett, M.; Ranganathan, M.; L’Heureux, M.; Barnston, A.; DelSole, T. Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble. Clim. Dynam. 2019, 53, 7497–7518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risbey, J.; Grose, M.; Monselesan, D.; O’Kane, T.; Lewandowsky, S. Transient response of the global mean warming rate and its spatial variation. Weather Clim. Extrem. 2017, 18, 55–64. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Cowtan, K.; Risbey, J.; Mann, M.; Steinman, B.; Oreskes, N.; Rahmstorf, S. The ‘pause’ in global warming in historical context: Comparing models to observations. Environ. Res. Lett. 2018, 13, 123007. [Google Scholar] [CrossRef]
- Kumar, A.; Hu, Z.; Jha, B.; Peng, P. Estimating ENSO predictability based on multi-model hindcasts. Clim. Dynam. 2017, 48, 39–51. [Google Scholar] [CrossRef]
- Schmidt, G.; Shindell, D.; Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 2014, 7, 158–160. [Google Scholar] [CrossRef]
- Marotzke, J.; Forster, P. Forcing, feedback, and internal variability in global temperature trends. Nature 2015, 517, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Squire, D.; Richardson, D.; Risbey, J.; Black, A.; Kitsios, V.; Matear, R.; Monselesan, D.; Moore, T.; Tozer, C. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. NPJ Clim. Atmos. Sci. 2021, 4, 64. [Google Scholar] [CrossRef]
- Thompson, V.; Dunstone, N.; Scaife, A.; Smith, D.; Slingo, J.; Brown, S.; Belcher, S. High risk of unprecedented UK rainfall in the current climate. Nat. Commun. 2017, 8, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tozer, C.; Risbey, J.; Grose, M.; Monselesan, D.; Squire, D.; Black, A.; Richardson, D.; Sparrow, S.; Li, S.; Wallom, D. A one-day extreme rainfall event in Tasmania: Process evaluation and long tail attribution. Bull. Am. Met. Soc. 2020, 101, s123–s128. [Google Scholar] [CrossRef] [Green Version]
- Kelder, T.; Müller, M.; Slater, L.; Marjoribanks, T.; Wilby, R.; Prudhomme, C.; Bohlinger, P.; Ferranti, L.; Nipen, T. Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes. NPJ Clim. Atmos. Sci. 2020, 3, 47. [Google Scholar] [CrossRef]
- Kay, G.; Dunstone, N.; Smith, D.; Dunbar, T.; Eade, R.; Scaife, A. Current likelihood and dynamics of hot summers in the UK. Environ. Res. Lett. 2020, 15, 094099. [Google Scholar] [CrossRef]
- Katz, R. Extreme value theory for precipitation: Sensitivity analysis for climate change. Adv. Water Res. 1999, 23, 133–139. [Google Scholar] [CrossRef]
- Kelder, T.; Wanders, N.; van der Wiel, K.; Marjoribanks, T.; Slater, L.; Wilby, R.; Prudhomme, C. Interpreting extreme climate impacts from large ensemble simulations; are they unseen or unrealistic? Environ. Res. Lett. 2022, 17, 044052. [Google Scholar] [CrossRef]
- Deser, C.; Lehner, F.; Rodgers, K.; Ault, T.; Delworth, T.; DiNezio, P.; Fiore, A.; Frankignoul, C.; Fyfe, J.; Horton, D.; et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Chang. 2020, 10, 277–286. [Google Scholar] [CrossRef]
- Baldissera Pacchetti, M. A role for spatiotemporal scales in modeling. Stud. Hist. Phil. Sci. 2018, 67, 14–21. [Google Scholar] [CrossRef]
- Fyfe, J.; Gillett, N.; Zwiers, F. Overestimated global warming over the past 20 years. Nat. Clim. Chang. 2013, 3, 767–769. [Google Scholar] [CrossRef]
- Meehl, G.; Teng, H.; Arblaster, J. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Chang. 2014, 4, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.; Ballinger, A.; Booth, B.; Borchert, L.; Brunner, L.; Donat, M.; Doblas-Reyes, F.; Harris, G.; Lowe, J.; Mahmood, R.; et al. Toward Consistent Observational Constraints in Climate Predictions and Projections. Front. Clim. 2021, 3, 678109. [Google Scholar] [CrossRef]
- Mahmood, R.; Donat, M.; Ortega, P.; Doblas-Reyes, F.; Ruprich-Robert, Y. Constraining Decadal Variability Yields Skillful Projections of Near-Term Climate Change. Geophys. Res. Lett. 2021, 48, e2021GL094915. [Google Scholar] [CrossRef]
- Ebert, B.; Wilson, L.; Weigel, A.; Mittermaier, M.; Nurmi, P.; Gill, P.; Gober, M.; Joslyn, S.; Brown, B.; Fowler, T.; et al. Progress and challenges in forecast verification. Meteorol. Appl. 2013, 20, 130–139. [Google Scholar] [CrossRef]
- Bojovic, D.; Nicodemou, A.; Clair, A.S.; Christel, I.; Doblas-Reyes, F. Exploring the landscape of seasonal forecast provision by Global Producing Centres. Clim. Chang. 2002, 172, 8. [Google Scholar] [CrossRef]
- Ebert, P.; Milne, P. Methodological and conceptual challenges in rare and severe event forecast verification. Nat. Hazards Earth Syst. Sci. 2022, 22, 539–557. [Google Scholar] [CrossRef]
- Meehl, G.; Teng, H.; Smith, D.; Yeager, S.; Merryfield, W.; Doblas-reyes, F.; Glanville, A. The effects of bias, drift, and trends in calculating anomalies for evaluating skill of seasonal-to-decadal initialized climate predictions. Clim. Dynam. 2022, 7–8, 1–22. [Google Scholar] [CrossRef]
No Initial Conditions | Initial Conditions | |
---|---|---|
No forcing | Control run | Weather forecast |
Forcing | Historical run | Climate forecast |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risbey, J.S.; Squire, D.T.; Baldissera Pacchetti, M.; Black, A.S.; Chapman, C.C.; Dessai, S.; Irving, D.B.; Matear, R.J.; Monselesan, D.P.; Moore, T.S.; et al. Common Issues in Verification of Climate Forecasts and Projections. Climate 2022, 10, 83. https://doi.org/10.3390/cli10060083
Risbey JS, Squire DT, Baldissera Pacchetti M, Black AS, Chapman CC, Dessai S, Irving DB, Matear RJ, Monselesan DP, Moore TS, et al. Common Issues in Verification of Climate Forecasts and Projections. Climate. 2022; 10(6):83. https://doi.org/10.3390/cli10060083
Chicago/Turabian StyleRisbey, James S., Dougal T. Squire, Marina Baldissera Pacchetti, Amanda S. Black, Christopher C. Chapman, Suraje Dessai, Damien B. Irving, Richard J. Matear, Didier P. Monselesan, Thomas S. Moore, and et al. 2022. "Common Issues in Verification of Climate Forecasts and Projections" Climate 10, no. 6: 83. https://doi.org/10.3390/cli10060083
APA StyleRisbey, J. S., Squire, D. T., Baldissera Pacchetti, M., Black, A. S., Chapman, C. C., Dessai, S., Irving, D. B., Matear, R. J., Monselesan, D. P., Moore, T. S., Richardson, D., Sloyan, B. M., & Tozer, C. R. (2022). Common Issues in Verification of Climate Forecasts and Projections. Climate, 10(6), 83. https://doi.org/10.3390/cli10060083