Climate Changes in Southeastern Poland and Food Security
Abstract
:1. Introduction
- −
- Food availability refers to the availability of a sufficient quantity of food of appropriate quality, either domestically produced or imported (including food aid). What is particularly important is the access to food as a result of sudden shocks (e.g., economic crisis, refugee or climate crisis) or cyclical events (e.g., seasonal food insecurity),
- −
- Access to food means the availability of natural persons to adequate food resources; entitlements to acquire a sufficient amount of food for the preparation of a nutritious diet. Powers are defined as the collection of all commodity packages over which an individual can establish command, taking into account the legal, political, economic and social patterns of the community in which he lives (including traditional rights such as access to shared resources),
- −
- Utilization means using food through an appropriate diet, clean water, proper sanitation and health care in order to achieve a state of good nutrition in which all human physiological needs are met. This also underlines the high importance of non-food inputs for food security,
- −
- Stability means that people must have access to appropriate food at all times in order to ensure food security for the entire public, for households or for an individual person. People should not risk losing their health. The concept of stability can, therefore, refer to both the dimensions of accessibility and access to food security [2,3].
2. Material and Methods
2.1. Climatic Conditions
2.2. Soil Conditions
2.3. Meteorological Conditions
2.4. Monitoring of Potato Blight
2.5. Statistical Analyses
3. Results
3.1. Cultivation Area
3.2. Shaping the Efficiency of Potatoes
3.3. Potato Harvest Variability
3.4. Potato Harvest Simulation
3.5. Influence of Air Temperature on Tuber Yield
3.6. Influence of Precipitation on the Formation of Tuber Yield
3.7. Influence of Hydrothermal Conditions on the Formation of Tuber Yield
3.8. The Rate of Spread of Potato Blight
4. Discussion
4.1. Climate Changes and Potato Yield and Productivity
4.2. Climate Change and the Spread of Pathogens
4.3. Ensuring Food Security
- (1)
- Food health requirements—in the scope not regulated in the regulations of the European Union.
- (2)
- Requirements for compliance with hygiene rules:
- (a)
- Food—within the scope not regulated in Regulation (EC) No. 852/2004 of the European Parliament (Journal of Laws UE L 139 of 30 April 2004, p. 1),
- (b)
- Materials and articles intended to come into contact with food—within the scope not regulated in Regulation (EC) No. 1935/2004 of the European Parliament of 27 October 2004 on materials and articles intended to come into contact with food (Journal of Laws UE L 338 from 13 November 2004),
- (3)
- The competence of the authorities to carry out official food controls in accordance with the principles set out in Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to verify compliance with feed law and food and animal health and animal welfare rules (Journal of Laws UE L 191 of 30 April 2004, p. 1), hereinafter referred to as “Regulation No. 882/2004”,
- (4)
- Requirements for the performance of official food controls—within the scope not regulated in Regulation No 882/2004.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Hunger Hotspots—FAO-WFP Early Warnings on Acute Food Insecurity: February to May 2022 Outlook; FAO, WFP: Rome, Italy, 2022; ISBN 978-92-5-135662-3. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021. In Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar]
- WHO. Draft WHO Global Strategy for Food Safety 2022–2030. Towards Stronger Food Safety Systems and Global Cooperation. 2021, p. 48. Available online: https://cdn.who.int/media/docs/default-source/food-safety/who-global-strategy-food-safety-2022-2030.pdf (accessed on 30 March 2022).
- Otekunrin, O.A.; Otekunrin, O.A.; Sawicka, B.; Pszczółkowski, P. Assessing Food Insecurity and Its Drivers among Smallholder Farming Households in Rural Oyo State, Nigeria. HFIAS Approach. Agric. 2021, 11, 1189. [Google Scholar]
- Kulig, B.; Skowera, B.; Klimek-Kopyra, A.; Kołodziej, S.; Grygierzec, W. The Use of the WOFOST Model to Simulate Water-Limited Yield of Early Potato Cultivars. Agronomy 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Ziernicka-Wojtaszek, A. Porównanie wybranych wskaźników oceny suszy atmosferycznej na obszarze województwa Podkarpackiego (1901−2000). Woda Środowisko Obszary Wiejskie 2012, 12, 365–376. (In Polish) [Google Scholar]
- Ziernicka-Wojtaszek, A. Pluviothermic conditions concerning the vegetation of key crops in south-eastern Poland 1901–2010. Appl. Ecol. Environ. Res. 2020, 18, 839–848. [Google Scholar] [CrossRef]
- Yuen, J.E.; Andersson, B. What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathol. 2013, 62, 485–491. [Google Scholar] [CrossRef]
- Bostancı, S.H.; Yıldırım, S. Sustainable Communities vs. Climate Refugees: Two Opposite Results of Climate Change. In Handbook of Research on Novel Practices and Current Successes in Achieving the Sustainable Development Goals; Popescu, C., Raluca, G., Eds.; IGI Global: Hershey, PA, USA, 2021; pp. 298–319. [Google Scholar] [CrossRef]
- Mezghani, A.; Parding, K.M.; Dobler, A.; Benestad, R.E.; Haugen, J.E.; Piniewski, M. Projections of Changes in Temperature, Precipitation and Cove in Poland. In Climate Changes and Their Impact on Selected Sectors in Poland; Zbigniew, W., Kundzewicz, Ø.H., Okruszko, T., Eds.; Polska Akademia Nauk: Poznań, Poland, 2017; pp. 94–118. (In Polish) [Google Scholar]
- Yuen, J. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Sec. 2021, 13, 247–253. [Google Scholar] [CrossRef]
- Sawicka, B.; Michałek, W.; Pszczółkowski, P. The relationship of potato tubers chemical composition with selected physiological indicators. Zemdirb. Agric. 2015, 102, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Sawicka, B.; Kapsa, J. Effect of varietal resistance and chemical protection on the potato late blight (Phytophthora infestans [Mont.] de Bary) development. Potato Res. 2001, 44, 303–304. [Google Scholar]
- Sawicka, B.; Pszczółkowski, P.; Krochmal-Marczak, B. Efektywność różnych strategii ochrony ziemniaka przed Phytophthora infestans. Pamiętnik Puławski 2006, 142, 411–428. (In Polish) [Google Scholar]
- Osowski, J. The rate of potato late blight development (Phytophthora infestans) in 2005–2007 depending on weather conditions and cultivar resistance. Biuletyn IHAR 2010, 255, 109–118. [Google Scholar]
- Kisinga, B. Predicting potato late blight disease pressure using in artificial neural network. Res. Rep. Math. 2019, 42, 1–46. [Google Scholar]
- Kapsa, J. Zmiany stanu zagrożenia i ochrony plantacji przed zarazą (P. infestans) w Polsce na tle krajów europejskich. Prog. Plant Protect 2004, 44, 129–137. [Google Scholar]
- Kapsa, J. Effect of climatic conditions on infection pressure of Phytophthora infestans and harmfulness of the pathogen to potato crops. J. Plant Prot. Res. 2007, 47, 357–366. [Google Scholar]
- Kaszewski, B.M. Polish climate changes in the works of Polish climatologists. Geophys. Rev. 2015, 3–4, 217–235. (In Polish) [Google Scholar]
- The State of the Environment in the Podkarpackie Province in 1999–2008. VII Soils. Available online: https://wios.rzeszow.pl/cms/upload/edit/file/opracowania/raporty/1999-2008/r7.pdf (accessed on 30 January 2022). (In Polish).
- Biuletyn Państwowej Służby Hydrologiczno-Meteorologicznej 2000−2019; Wydawnictwo IMiGW: Warszawa, Poland, 2019. (In Polish)
- Stöckle, C.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Skowera, B.; Puła, J. Skrajne warunki pluwiometryczne w okresie wiosennym na obszarze Polski w latach 1971–2000. Acta Agroph. 2000, 3, 171–177. (In Polish) [Google Scholar]
- Skowera, B.; Kopcińska, J.; Ziernicka-Wojtaszek, A.; Wojkowski, J. Niedobory i nadmiary opadów w okresie wegetacji ziemniaka późnego w województwie opolskim (1981–2010). Acta Sci. Pol. Form. Circumiectus 2016, 15, 137–149. (In Polish) [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971−2010). Fragm. Agron. 2014, 31, 74–87. [Google Scholar]
- Van der Plank, J.E. Plant Disease: Epidemics and Control; Academic Press: New York, NY, USA, 1963; p. 345. [Google Scholar]
- Koronacki, J.; Ćwik, J. Statystyczne Systemy Uczące Się; Wydanie, A.L., II, Ed.; Akademicka Oficyna Wydawnicza EXIT Andrzej Lang: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Muriithi, D.K. Application of Response Surface Methodology for Optimization of Potato Tuber Yield. Am. J. Theor. Appl. Stat. 2015, 4, 300–304. [Google Scholar] [CrossRef]
- GUS. Rocznik Statystyczny Rzeczypospolitej Polskiej 2020. 2020. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rzeczypospolitej-polskiej-2020,2,20.html (accessed on 30 January 2022).
- WUSP. Wojewódzki Urząd Statystyczny Podkarpacia 1999–2018—Statistical Yearbook Podkarpackie Voievodship 2000–2019; Urząd Statystyczny: Rzeszowie, Poland, 2000.
- WUSP. Rocznik Statystyczny Województwa Podkarpackiego 2020. 2020. Available online: https://rzeszow.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-podkarpackiego-2020,5,17.html (accessed on 30 January 2022).
- Kranz, J. Epidemics of Plant Diseases. Mathematical Analysis and Modeling; Springer: Berlin/Heidelberg, Germany, 1990; Volume 268. [Google Scholar] [CrossRef]
- Bis, K. Przewidywane zmiany klimatyczne i ich ekonomiczne konsekwencje dla rolnictwa polskiego. [w:] Rolnictwo w gospodarce rynkowej. In Proceedings of the Międzynarodowa Konferencja Naukowa, Kraków, Poland, 13–15 May 1993; Zeszyty Naukowe AR w Krakowie: Krakow, Poland, 1993; Volume 279, pp. 187–199. [Google Scholar]
- Bartoszuk, W. Zniżka plonu powodowana niedoborem wody w czasie wegetacji. Biuletyn Instytutu Ziemniaka 1987, 36, 43–51. (In Polish) [Google Scholar]
- Boguszewska, D. Zmiany klimatyczne Polski w latach 1983–2002, A perspektywy uprawy ziemniaka. Ziemniak Polski 2008, 3, 19–22. (In Polish) [Google Scholar]
- Boguszewska, D.; Grudkowska, M.; Zagdańska, B. Drought-responsie antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res. 2010, 53, 373–382. [Google Scholar] [CrossRef]
- Boguszewska-Mańkowska, D. Potato soil drought resistance and assessment methods. Biul. Inst. Hod. I Aklim. Roślin 2016, 279, 65–75. [Google Scholar]
- Kacperska, A. Plant reactions to abiotic stress factors. In Plant Physiology; Kopcewicz, J., Lewak, S., Eds.; PWN: Warsaw, Poland, 2005; pp. 612–678. (In Polish) [Google Scholar]
- Kalbarczyk, E.; Kalbarczyk, A. The Course of Phenological Phases of Potato and Its Determination by Multi-Annual Variability of Air Temperature in Poland; Annales Universitatis Mariae Curie-Skłodowska: Lublin, Poland, 2010; Volume 64. [Google Scholar]
- Kalbarczyk, R. Próba prognozowania plonów ziemniaka w Polsce na podstawie danych meteorologicznych. Folia. Univ. Agric. Stetin. 2004, 234, 145–158. (In Polish) [Google Scholar]
- Kalbarczyk, R. Strefy klimatycznego ryzyka uprawy ziemniaka w Polsce. Folia Univ. Agric. Stetin Agric. 2005, 244, 83–90. (In Polish) [Google Scholar]
- Kalbarczyk, R. Wpływ warunków agrometeorologicznych na rozwój ziemniaka średnio późnego w Polsce. Folia. Univ. Agric. Stetin. 2003, 231, 39–46. (In Polish) [Google Scholar]
- Kalbarczyk, R.; Kalbarczyk, E. Needs, and deficiencies of atmospheric precipitation in the cultivation of medium late and late potato in Poland. Infrastruct. Ecol. Rural. Areas 2009, 3, 129–140. [Google Scholar]
- Tomczyk, A.M.; Piniewski, M.; Eini, M.R.; Bednorz, E. Forecasts of changes in the maximum air temperature and hot days in Poland. Int. J. Climatol. 2022, 42. [Google Scholar] [CrossRef]
- Karaczun, Z.M.; Kozyra, J. The Impact of Climate Change on Poland’s Food Security; SGGW Publishing House: Warsaw, Poland, 2020; p. 120. Available online: http://www.koalicjaklimatyczna.org/uploads/publikacje/Raport_Klimat_bezpieczenstwo_zywienowe_Karaczun_20.03.pdf (accessed on 28 January 2022).
- Anonymous. SMSR—System Monitoringu Suszy Rolniczej. 2021. Available online: https://susza.iung.pulawy.pl/ (accessed on 30 January 2022).
- Chmura, K.; Chylińska, E.; Dmowski, Z.; Nowak, L. Role of the Water Factor in Yield Formation of Chosen Field Crops. Infrastructure and Ecology of Rural Areas. Nr 9/2009; Polska Akademia Nauk, Oddział w Krakowie, Komisja Technicznej Infrastruktury Wsi: Krakow, Poland, 2009; pp. 33–44. (In Polish) [Google Scholar]
- Anonymous. Prognozowanie Plonów. 2015. Available online: http://www.igik.edu.pl/pl/teledetekcjaprognozowanie-plonow (accessed on 18 January 2022). (In Polish).
- Stark, C.; Love, S.; King, B.; Marshall, J.; Bohl, H.; Salaiz, T. Potato variety response to seasonal drought patterns. Am. J. Potato Res. 2013, 90, 207–216. [Google Scholar] [CrossRef]
- Sadowski, M. Zmiany Klimatu i Ich Skutki Teraz i w Przyszłości. 2020. Available online: https://www.pzh.gov.pl/wp-content/uploads/2020/11/1_-prof-Sadowski.pdf (accessed on 29 January 2022).
- Rykaczewska, K. Influence of high temperature during the growing season on the potato (Solanum tuberosum L.) yield, tuber dormancy period and the yield value of seed potatoes. I. Plant development and yield. Zesz. Probl. Post. Nauk Roln. 2004, 496, 185–198. (In Polish) [Google Scholar]
- Rykaczewska, K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am. J. Plant Sci. 2013, 4, 2386–2393. [Google Scholar] [CrossRef] [Green Version]
- Rykaczewska, K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am. J. Potato Res. 2015, 92, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Otekunrin, O.A.; Otekunrin, O.A. Healthy and Sustainable Diets: Implications for Achieving SDG2. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli Özuyar, P., Wall, T., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. The role of meteorological elements in the formation of daily (24 h) variability of the light soil moisture in winter. Ann. Univ. Mariae Curie-Skłodowska Sect. B Geogr. Geol. Min. Alogia Petrogr. 2006, 61, 125–130. [Google Scholar]
- Fry, W.E. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef]
- Harrison, J.G. The effect of aerial environment on late blight of potato foliage—A review. Plant Pathol. 1992, 41, 384–416. [Google Scholar] [CrossRef]
- Andrivon, D.; Evenhuis, B.; Schepers, H.; Gaucher, D.; Kapsa, J.; Lebecka, R.; Nielsen, B.; Ruocco, M. Reducing Primary Inoculum Sources of Late Blight. ENDURE Potato Case Study-Guide 2008, 1, 4. Available online: www.endure-network.eu (accessed on 5 January 2022).
- Aylor, D.E.; Fry, W.E.; Mayton, H.; Andrade-Piedra, J.L. Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy. Phytopathology 2001, 91, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Lung’aho, C.S.K.N.; Nderitu, S.K.N.; Kabira, J.N.; El Bedewy, R.; Olanya, O.M.; Walingo, A. Yield performance and release of four late blight tolerant potato varieties In Kenya. J. Agron. 2006, 5, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Kapsa, J. Zaraza (Phytophthora infestans/Mont./de Bary) występująca na łodygach ziemniaka. Monography 11. IHAR Radzików 2001, 11, 7–10. [Google Scholar]
- Kapsa, J.; Mrówczyński, M.; Erlichowski, T.; Gawińska-Urbanowicz, H.; Matysek, K.; Osowski, J.; Pawińska, M.; Urbanowicz, J.; Wróbel, S. Ochrona ziemniaka zgodna z zasadami integrowanej ochrony roślin. Cz. II. Metoda zrównoważonej chemicznej ochrony ziemniaka. Biul. IHAR 2014, 273, 145–159. (In Polish) [Google Scholar]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Visser, R.G.F.; van der Vossen, E.A.G. Societal costs of late blight in potato and prospects of durable resistance through congenic modification. Potato Res. 2008, 51, 47–57. [Google Scholar] [CrossRef]
- Croxall, M.E.; Smith, L.P. The epidemiology of potato blight in the east Midlands. Ann. Biol. 1976, 82, 451–466. [Google Scholar] [CrossRef]
- Małysz, J. Economic interpretation of food security. In Food Safety in the Era of Globalization; Kowalczyk, S., Ed.; Wydawnictwo SGH: Warszawa, Poland, 2009. (In Polish) [Google Scholar]
- Kraciuk, J. Food security from the perspective of underdeveloped and highly developed countries. Sci. Ann. Assoc. Agric. Agribus. Econ. 2015, 17, 205–209. (In Polish) [Google Scholar]
- ACT of 25 August 2006, on food and nutrition safety. Journal of Laws 2020.2021, i.e., the current act. Version from 1 January 2021, to 3 February 2022. Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/bezpieczenstwo-bezpiecznosci-i-zywien-17302608 (accessed on 25 January 2022).
- Articles 43, 114 and 168 (1) 4 and art. 169 of the Treaty on the Functioning of the European Union. Available online: https://www.europarl.europa.eu/ftu/pdf/pl/FTU_2.2.6.pdf (accessed on 25 January 2022).
- Fortuna, G.; Łobodziński, W. What Is the Level of Food Security in the EU? Available online: https://www.euractiv.pl/section/rolnictwowpr/news/zywnosc-unia-europejska-bezpieczenstwo-zywnosciowe-pandemia-koronawirus-lancuchy-dostaw-od-pola-do-stolu-wpr-wojciechowski-srodowisko-susza-klimat-powodz/ (accessed on 25 January 2022).
- Scott, G.J.; Rosegrant, M.W.; Ringler, C. Global projections for root and tuber crops to the year 2020. Food Policy 2000, 25, 561–597. [Google Scholar] [CrossRef]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N.; Singh, G.S. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11 December 2019 COM (2019) 640 Final. Available online: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf (accessed on 30 January 2022).
Specification | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Average air temperature | ||||||||||||||||||||
Mean | 15.2 | 15.0 | 14.7 | 15.6 | 15.2 | 14.0 | 14.6 | 15.3 | 15.7 | 14.6 | 15.3 | 15.1 | 16.1 | 15.3 | 15.4 | 15.1 | 15.9 | 15.7 | 15.7 | 17.0 |
Median | 16.4 | 16.3 | 14.7 | 16.9 | 17.2 | 15.2 | 15.0 | 15.6 | 18.1 | 16.9 | 16.9 | 17.4 | 18.0 | 17.0 | 17.5 | 16.8 | 17.5 | 17.2 | 17.3 | 16.8 |
Stand. deviation | 3.8 | 2.9 | 4.1 | 4.5 | 4.5 | 3.8 | 3.6 | 3.9 | 4.3 | 3.8 | 4.1 | 4.5 | 4.2 | 3.9 | 3.9 | 3.8 | 4.2 | 3.4 | 3.9 | 2.7 |
Kurtosis | −1.1 | −1.4 | −0.9 | −0.6 | −0.2 | −1.3 | −0.5 | −0.8 | −1.0 | −1.1 | −0.8 | −1.4 | −1.5 | −0.6 | −1.3 | −0.9 | −0.9 | −1.0 | −1.0 | −1.3 |
Skewness | −0.4 | −0.4 | −0.3 | −0.8 | −1.1 | −0.4 | −0.6 | −0.3 | −0.7 | −0.6 | −0.6 | −0.5 | −0.3 | −0.8 | −0.6 | −0.6 | −0.6 | −0.6 | −0.6 | −0.1 |
Range | 11.5 | 8.4 | 13.0 | 13.9 | 13.5 | 10.8 | 11.9 | 13.1 | 12.2 | 11.6 | 12.3 | 12.2 | 12.1 | 11.3 | 10.6 | 11.3 | 12.9 | 10.3 | 11.6 | 8.4 |
Minimum | 8.8 | 10.7 | 7.4 | 7.1 | 6.1 | 7.6 | 7.9 | 8.4 | 8.0 | 7.9 | 8.1 | 7.9 | 9.3 | 8.0 | 8.8 | 8.1 | 8.4 | 9.7 | 8.8 | 12.4 |
Maximum | 20.3 | 19.1 | 20.4 | 21.0 | 19.6 | 18.4 | 19.8 | 21.5 | 20.2 | 19.5 | 20.4 | 20.1 | 21.4 | 19.3 | 19.4 | 19.4 | 21.3 | 20.0 | 20.4 | 20.8 |
V (%) | 24.8 | 19.1 | 27.9 | 28.5 | 29.7 | 26.8 | 24.4 | 25.3 | 27.6 | 25.7 | 26.8 | 29.6 | 26.0 | 25.3 | 25.3 | 25.3 | 26.7 | 21.6 | 25.0 | 16.1 |
Sum of rainfall | ||||||||||||||||||||
Mean | 78 | 82 | 102 | 78 | 63 | 82 | 77 | 72 | 71 | 79 | 73 | 89 | 71 | 66 | 68 | 77 | 66 | 66 | 80 | 71 |
Median | 73 | 72 | 90 | 67 | 61 | 65 | 74 | 75 | 54 | 73 | 72 | 93 | 54 | 73 | 66 | 75 | 75 | 56 | 83 | 83 |
Stand. deviation | 30 | 54 | 55 | 45 | 35 | 54 | 36 | 50 | 43 | 31 | 29 | 40 | 51 | 24 | 42 | 21 | 32 | 37 | 31 | 35 |
Kurtosis | 0 | 1 | 6 | 7 | 2 | 3 | −1 | 3 | 0 | −1 | −1 | 0 | 1 | 0 | −1 | 0 | −1 | 2 | −1 | −1 |
Skewness | 1 | 1 | 2 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | −1 | 1 | 1 | 1 | 1 | −1 | 2 | −1 | 0 |
Range | 111 | 188 | 252 | 214 | 154 | 230 | 138 | 223 | 156 | 108 | 105 | 145 | 178 | 96 | 132 | 79 | 107 | 143 | 108 | 115 |
Minimum | 37 | 19 | 40 | 25 | 10 | 19 | 11 | 7 | 19 | 28 | 20 | 6 | 19 | 33 | 18 | 43 | 8 | 24 | 21 | 16 |
Maximum | 148 | 207 | 292 | 239 | 164 | 249 | 149 | 230 | 175 | 136 | 125 | 151 | 197 | 129 | 150 | 122 | 115 | 167 | 129 | 131 |
V (%) | 39 | 66 | 54 | 57 | 56 | 66 | 47 | 69 | 61 | 40 | 40 | 45 | 72 | 37 | 63 | 27 | 48 | 55 | 38 | 48 |
HCH * | ||||||||||||||||||||
Mean | 1.9 | 1.8 | 2.4 | 1.7 | 1.5 | 1.9 | 1.8 | 1.6 | 1.5 | 1.9 | 1.5 | 1.9 | 1.6 | 1.4 | 1.5 | 1.7 | 1.5 | 1.4 | 1.7 | 1.3 |
Median | 1.6 | 1.7 | 2.2 | 1.6 | 1.4 | 1.7 | 1.7 | 1.4 | 1.2 | 1.8 | 1.6 | 1.8 | 1.4 | 1.4 | 1.5 | 1.6 | 1.5 | 1.4 | 1.7 | 1.3 |
Stand. deviation | 1.0 | 1.0 | 1.1 | 0.7 | 0.8 | 0.9 | 0.7 | 0.9 | 1.1 | 0.7 | 0.4 | 1.0 | 1.2 | 0.5 | 0.8 | 0.4 | 0.6 | 0.6 | 0.7 | 0.5 |
Kurtosis | 3.7 | 0.1 | 0.1 | 1.4 | −0.1 | 3.1 | −0.2 | 4.9 | 3.5 | 0.4 | 1.0 | 0.1 | 3.3 | 0.6 | −1.1 | −0.1 | 0.5 | −0.0 | −0.1 | −0.5 |
Skewness | 1.7 | 0.7 | 0.8 | 0.8 | 0.5 | 1.3 | 0.2 | 1.4 | 1.9 | 0.5 | −0.6 | 0.6 | 1.8 | 0.6 | −0.0 | 0.8 | −0.8 | 0.7 | 0.0 | 0.3 |
Range | 4.2 | 3.7 | 4.1 | 3.1 | 3.1 | 4.2 | 3.2 | 4.8 | 4.6 | 3.0 | 1.9 | 3.9 | 5.1 | 1.8 | 2.4 | 1.4 | 2.5 | 2.5 | 2.8 | 2.2 |
Minimum | 0.7 | 0.3 | 0.9 | 0.6 | 0.2 | 0.5 | 0.3 | 0.2 | 0.5 | 0.5 | 0.5 | 0.2 | 0.3 | 0.7 | 0.3 | 1.2 | 0.1 | 0.4 | 0.3 | 0.4 |
Maximum | 4.9 | 4.1 | 5.0 | 3.7 | 3.2 | 4.8 | 3.4 | 4.9 | 5.1 | 3.5 | 2.4 | 4.1 | 5.4 | 2.5 | 2.7 | 2.6 | 2.6 | 2.9 | 3.1 | 2.6 |
V (%) | 51.1 | 52.3 | 45.0 | 40.9 | 51.7 | 47.9 | 42.0 | 60.0 | 72.1 | 38.9 | 28.2 | 50.3 | 76.9 | 31.4 | 51.8 | 21.7 | 43.6 | 45.0 | 38.8 | 41.8 |
Traits | Y | X1 | X2 | X3 | X4 | X5 |
---|---|---|---|---|---|---|
Minimum | 16.9 | 1.42 | 16.01 | 14.31 | 23.52 | 0.61 |
Maximum | 29.0 | 17.5 | 19.62 | 19.63 | 133.1 | 3.52 |
Median | 18.15 | 11.32 | 18.03 | 15.6 | 67.02 | 1.94 |
Mean | 22.96 | 9.46 | 17.96 | 16.97 | 78.31 | 2.07 |
Standard deviation | 3.66 | 2.17 | 0.98 | 0.89 | 22.12 | 0.65 |
Skewness | 0.06 | −1.81 | −0.15 | 2.34 | 0.42 | 0.25 |
Kurtosis | −1.33 | 12.52 | −0.99 | 10.56 | 1.12 | 0.11 |
Coefficient of variation V [%] | 15.95 | 22.94 | 5.46 | 5.24 | 28.25 | 31.41 |
Variables | Y | X1 | X2 | X3 | X4 | X5 |
---|---|---|---|---|---|---|
Y | 1.000 | |||||
X1 | 0.316 * | 1.000 | ||||
X2 | 0.270 * | 0.090 | 1.000 | |||
X3 | 0.380 ** | 0.096 | 0.399 ** | 1.000 | ||
X4 | 0.488 ** | −0.183 | −0.301 * | −0.222 | 1.000 | |
X5 | 0.496 ** | −0.211 | −0.447 ** | −0.296 * | 0.838 ** | 1.000 |
Years | Earliness Group | Mean | |||
---|---|---|---|---|---|
Very Early | Early | Medium Early | Medium Late and Late | ||
2000 | 0.275 | 0.204 | 0.196 | 0.075 | 0.188 |
2001 | 0.218 | 0.201 | 0.132 | 0.089 | 0.160 |
2002 | 0.278 | 0.189 | 0.111 | 0.078 | 0.164 |
2003 | 0.290 | 0.226 | 0.128 | 0.069 | 0.178 |
2004 | 0.301 | 0.187 | 0.151 | 0.070 | 0.177 |
2005 | 0.412 | 0.325 | 0.273 | 0.189 | 0.300 |
2006 | 0.523 | 0.356 | 0.298 | 0.176 | 0.338 |
2007 | 0.568 | 0.486 | 0.378 | 0.311 | 0.436 |
2008 | 0.218 | 0.178 | 0.143 | 0.073 | 0.153 |
2009 | 0.290 | 0.226 | 0.156 | 0.069 | 0.185 |
2010 | 0.356 | 0.334 | 0.279 | 0.168 | 0.284 |
2011 | 0.189 | 0.079 | 0.075 | 0.073 | 0.104 |
2012 | 0.209 | 0.184 | 0.156 | 0.071 | 0.155 |
2013 | 0.298 | 0.191 | 0.151 | 0.089 | 0.182 |
2014 | 0.314 | 0.243 | 0.181 | 0.083 | 0.205 |
2015 | 0.191 | 0.206 | 0.122 | 0.069 | 0.147 |
2016 | 0.521 | 0.378 | 0.295 | 0.179 | 0.343 |
2017 | 0.351 | 0.181 | 0.120 | 0.073 | 0.181 |
2018 | 0.246 | 0.148 | 0.114 | 0.073 | 0.145 |
2019 | 0.231 | 0.134 | 0.110 | 0.056 | 0.133 |
Mean | 0.314 | 0.233 | 0.178 | 0.107 | 0.208 |
LSD0.05 | 0.016 | 0.012 | 0.009 | 0.006 | 0.011 |
Specification | X1 | X2 | X3 | X4 | X5 | Y1 | Y2 | Y3 | Y4 |
---|---|---|---|---|---|---|---|---|---|
X1 | 1.00 | ||||||||
X2 | 0.90 ** | 1.00 | |||||||
X3 | 0.89 ** | 0.96 ** | 1.00 | ||||||
X4 | 0.87 ** | 0.92 ** | 0.93 ** | 1.00 | |||||
X5 | 0.96 ** | 0.98 ** | 0.98 ** | 0.95 ** | 1.00 | ||||
Y1 | −0.67 ** | −0.67 ** | −0.65 ** | −0.59 ** | −0.68 ** | 1.00 | |||
Y2 | −0.68 ** | −0.71 ** | −0.70 ** | −0.62 ** | −0.70 ** | 0.98 ** | 1.00 | ||
Y3 | −0.40 ** | −0.37 ** | −0.36 ** | −0.40 ** | −0.39 ** | 0.50 ** | 0.46 ** | 1.00 | |
Y4 | −0.15 | −0.17 | −0.12 | −0.19 * | −0.16 | 0.36 * | 0.31 * | 0.85 ** | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka, B.; Barbaś, P.; Pszczółkowski, P.; Skiba, D.; Yeganehpoor, F.; Krochmal-Marczak, B. Climate Changes in Southeastern Poland and Food Security. Climate 2022, 10, 57. https://doi.org/10.3390/cli10040057
Sawicka B, Barbaś P, Pszczółkowski P, Skiba D, Yeganehpoor F, Krochmal-Marczak B. Climate Changes in Southeastern Poland and Food Security. Climate. 2022; 10(4):57. https://doi.org/10.3390/cli10040057
Chicago/Turabian StyleSawicka, Barbara, Piotr Barbaś, Piotr Pszczółkowski, Dominika Skiba, Farhood Yeganehpoor, and Barbara Krochmal-Marczak. 2022. "Climate Changes in Southeastern Poland and Food Security" Climate 10, no. 4: 57. https://doi.org/10.3390/cli10040057
APA StyleSawicka, B., Barbaś, P., Pszczółkowski, P., Skiba, D., Yeganehpoor, F., & Krochmal-Marczak, B. (2022). Climate Changes in Southeastern Poland and Food Security. Climate, 10(4), 57. https://doi.org/10.3390/cli10040057