Multicriteria Spatial Modeling: Methodological Contribution to the Analysis of Atmospheric and Surface Heat Islands in Presidente Prudente, Brazil
Abstract
1. Introduction
Some Considerations about the UHI Discussion in Brazil and in the World
2. Materials and Methods
2.1. Acquisition of Primary Data
2.2. Multicriteria Modeling: Selection of Independent Variables
High vegetation class 33 × 33 + 0.0245 Hypsometry,
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, D.C.F.; Amorim, M.C.C.T. Ilhas de calor: Representações espaciais de cidades de pequeno porte por meio de modelagem. GEOUSP Espaço Tempo 2017, 21, 239–256. [Google Scholar] [CrossRef][Green Version]
- Lang, S.; Blaschke, T. Análise da Paisagem com SIG; Kux, H., Translator; Oficina de Textos: São Paulo, Brazil, 2009. [Google Scholar]
- Foissard, X. L’ilot de Chaleur Urbain et le Changement Climatique: Application a L’agglomeration Rennaise. Ph.D. Thesis, Universite de Rennes II, Rennes, France, 2015. [Google Scholar]
- Foissard, X.; Dubreuil, V.; Quenol, H. Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Clim. 2019, 29, 100490. [Google Scholar] [CrossRef]
- Amorim, M.C.C.T.; Dubreuil, V.; Cardoso, R.S. Modelagem espacial da ilha de calor urbana em Presidente Prudente (SP) Brasil. Rev. Bras. Climatol. 2015, 16, 29–45. [Google Scholar] [CrossRef]
- Ortiz-Porangaba, G.F.; Teixeira, D.C.F.; Amorim, M.C.C.T.; Silva, M.H.S.; Dubreuil, V. Modeling the urban heat island at a winter event in Três Lagoas, Brazil. Urban Clim. 2021, 37, 100853. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; pp. 14–43. [Google Scholar]
- Amorim, M.C.C.T.; Dubreuil, V.; Amorim, A.T. Day and night surface and atmospheric heat islands in a continental and temperate tropical environment. Urban Clim. 2021, 38, 100918. [Google Scholar] [CrossRef]
- Agathangelidis, I.; Cartalis, C.; Santamouris, M. Urban Morphological Controls on Surface Thermal Dynamics: A Comparative Assessment of Major European Cities with a Focus on Athens, Greece. Climate 2020, 8, 131. [Google Scholar] [CrossRef]
- Gatto, E.; Ippolito, F.; Rispoli, G.; Oliver, S.C.; Santiago, J.L.; Aarrevaara, E.; Rohinton, E.; Buccolieri, R. Analysis of Urban Greening Scenarios for Improving Outdoor Thermal Comfort in Neighbourhoods of Lecce (Southern Italy). Climate 2021, 9, 116. [Google Scholar] [CrossRef]
- Monteiro, C.A.F. Geographic climatology in Brazil and the proposal of a new paradigm. In The Construction of Geographical Climatology in Brazil; Alínea: Campinas, Brazil, 2015; pp. 61–153. [Google Scholar]
- Lauwaet, D.; Maiheu, B.; De Ridder, K.; Boënne, W.; Hooyberghs, H.; Demuzere, M.; Verdonck, M.L. A New Method to Assess Fine-Scale Outdoor Thermal Comfort for Urban Agglomerations. Climate 2020, 8, 6. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Garcia, F.F. Manual de Climatologia Aplicada: Clima, Medio Ambiente y Planificacion; Editorial Sintesis: Madrid, Spain, 1996. [Google Scholar]
- Huang, F.; Zhan, W.; Voogt, J.; Hu, L.; Wang, Z.; Quan, J.; Ju, W.; Guo, Z. Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. Remote Sens. Environ. 2016, 186, 1–12. [Google Scholar] [CrossRef]
- Walker, J.J.; Beurs, K.M.; Henebry, G.M. Land surface phenology along urban to rural gradients in the U.S. Great Plains. Remote Sens. Environ. 2015, 165, 42–52. [Google Scholar] [CrossRef]
- Amorim, M.C.C.T. Daily evolution of urban heat islands in a Brazilian tropical continental climate during dry and rainy periods. Urban Clim. 2020, 34, 100715. [Google Scholar] [CrossRef]
- Cardoso, R.S.; Amorim, M.C.C.T. Variações espaciais das temperaturas noturnas em Presidente Prudente-SP em episódios de verão. RA’E GA-Espaco Geogr. Anal. 2017, 42, 257–268. [Google Scholar] [CrossRef]
- Dorigon, L.P.; Amorim, M.C.C.T. Spatial modeling of an urban Brazilian heat island in a tropical continental climate. Urban Clim. 2019, 28, 100461. [Google Scholar] [CrossRef]
- Pimentel, F.O.; Ferreira, C.C.M. Clima urbano: O uso de modelos geoespaciais na investigação do comportamento térmico em Juiz de Fora-MG. Rev. Bras. Climatol. 2019, 24, 49–66. [Google Scholar] [CrossRef]
- Ferreira, C.C.M.; Pimentel, F.O.; Vianna, Y.C.G. Proposta Metodológica Aplicada ao Estudo de Clima Urbano. Rev. Bras. Geogr. Física 2019, 12, 2023–2040. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- von Bertalanffy, L. General System Theory: Foundations, Development, Applications, Ed. Reviewed; George Braziller: New York, NY, USA, 1968; p. 289. [Google Scholar]
- Porangaba, G.F.O.; Amorim, M.C.C.T. Analysis of diagnosed heat islands by means of mobile transects in Assis, Cândido Mota, Maracaí and Tarumã (SP). Confins 2017, 33. [Google Scholar] [CrossRef]
- Giridharan, R.; Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustain. Cities Soc. 2018, 40, 677–687. [Google Scholar] [CrossRef]
- Jin, L.; Schubert, S.; Salim, M.H.; Schneider, C. Impact of air conditioning systems on the outdoor thermal environment during summer in Berlin, Germany. Int. J. Environ. Res. Public Health 2020, 17, 4645. [Google Scholar] [CrossRef]
- Romano, P.; Prataviera, E.; Carnieletto, L.; Vivian, J.; Zinzi, M.; Zarrella, A. Assessment of the Urban Heat Island Impact on Building Energy Performance at District Level with the EUReCA Platform. Climate 2021, 9, 48. [Google Scholar] [CrossRef]
- Short, J.R.; Farmer, A. Cities and Climate Change. Earth 2021, 2, 1038–1045. [Google Scholar] [CrossRef]
- Dubreuil, V.; Fante, K.P.; Planchon, O.; Sant’Anna Neto, J.L. Climate change evidence in Brazil from Koppen’s climate annual types frequency. Int. J. Climatol. 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Populacao Estimada. 2021. Available online: https://ibge.gov.br/cidades-e-estados/sp/presidente-prudente.html (accessed on 12 January 2022).
- Environmental Systems Research Institute (ESRI). ArcGis: World Imagery; Environmental Systems Research Institute: Redlands, CA, USA, 2022. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Malha de Setor Censitário. 2010. Available online: https://ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?=&t=downloadshttps://cidades.ibge.gov.br/brasil/sp/presidenteprudente/panorama (accessed on 12 January 2022).
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q. Fractal Analysis of Satellite-Detected Urban Heat Island Effect. Photogramm. Eng. Remote Sens. 2003, 69, 555–566. [Google Scholar] [CrossRef]
- Amorim, M.C.C.T. Spatial variability and intensity frequency of surface heat island in a Brazilian city with continental tropical climate through remote sensing. Remote Sens. Appl. Soc. Environ. 2018, 9, 10–16. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). 2021. Available online: https://earthexplorer.usgs.gov/ (accessed on 25 August 2021).
- Hobo Data Loggers. HOBO® Pro v2 (U23-00x) Manual. 2017. Available online: https://www.hobodataloggers.com.au/hobo-pro-v2-u23-002-external-temperaturerh-datalogger (accessed on 17 January 2022).
- Instituto Nacional de Meteorologia (INMET). Estações Automáticas. 2020. Available online: https://mapas.inmet.gov.br/ (accessed on 17 January 2022).
- Amorim, M.C.C.T. Ilhas de Calor em Cidades Tropicais de Médio e Pequeno Porte: Teoria e Prática, 1st ed.; Appris: Curitiba, Brazil, 2020; pp. 75–76. [Google Scholar]
- Google Earth Pro. Available online: https://earth.google.com/web/ (accessed on 11 December 2021).
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Ferreira, M.C. Iniciação a Analise Geoespacial: Teoria, Técnicas e Exemplos para Geoprocessamento, 1st ed.; UNESP: São Paulo, Brazil, 2014; pp. 96–104. [Google Scholar]
- Long, N.; Gardes, T.; Hidalgo, J.; Masson, V.; Schoetter, R. Influence of the urban morphology on the urban heat island intensity: An approach based on the Local Climate Zone classification. PeerJ 2018, 6, e27208v1. [Google Scholar] [CrossRef][Green Version]
- Xiong, K.; Yang, Z.; He, B.J. Spatiotemporal heterogeneity of street thermal environments and development of an optimised method to improve field measurement accuracy. Urban Clim. 2022, 42, 101121, preprints. [Google Scholar] [CrossRef]
- Leeper, R.D.; Kochendorfer, J.; Henderson, T.A.; Palecki, M. Impacts of Small-Scale Urban Encroachment on Air Temperature Observations. Am. Meteorol. Soc. 2019, 58, 1369–1380. [Google Scholar] [CrossRef]
- Fante, K.P. Variabilidade da Temperatura em Áreas Urbanas Não Metropolitanas do Estado de São Paulo-Brasil no Período de 1961 a 2011. Master’s Thesis, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brazil, 2014. [Google Scholar]
TIRS Image Presidente Prudente | Daytime | Night-Time |
---|---|---|
Applied bands | 3, 4, 5 | 10 |
Point set and orbit | 222/075 | 104/169 |
Date | 5 April 2020 | 5 October 2020 |
Shooting time (local time) | 10 h 22 a.m. | 10 h 51 p.m. |
Presidente Prudente 33 × 33 window (990 × 990 m) | 05 October 2020 Air Temperature at 11 p.m. | |||
---|---|---|---|---|
Multicriteria model 3 variables | r | p-value | Significant F value | Adjusted R2 |
Construction class | 0.73 | 0.62 | ||
High vegetation | −0.93 | 0.03 | 0.000 | 0.80 |
Relief | 0.56 | 0.00 |
Air Temperature X Surface Temperature | r | p-Value | Significant F Value | Adjusted R2 |
---|---|---|---|---|
Surface temperature | 0.93 | 0.00 | 0.00 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, D.C.F.; Amorim, M.C.d.C.T. Multicriteria Spatial Modeling: Methodological Contribution to the Analysis of Atmospheric and Surface Heat Islands in Presidente Prudente, Brazil. Climate 2022, 10, 56. https://doi.org/10.3390/cli10040056
Teixeira DCF, Amorim MCdCT. Multicriteria Spatial Modeling: Methodological Contribution to the Analysis of Atmospheric and Surface Heat Islands in Presidente Prudente, Brazil. Climate. 2022; 10(4):56. https://doi.org/10.3390/cli10040056
Chicago/Turabian StyleTeixeira, Danielle Cardozo Frasca, and Margarete Cristiane de Costa Trindade Amorim. 2022. "Multicriteria Spatial Modeling: Methodological Contribution to the Analysis of Atmospheric and Surface Heat Islands in Presidente Prudente, Brazil" Climate 10, no. 4: 56. https://doi.org/10.3390/cli10040056
APA StyleTeixeira, D. C. F., & Amorim, M. C. d. C. T. (2022). Multicriteria Spatial Modeling: Methodological Contribution to the Analysis of Atmospheric and Surface Heat Islands in Presidente Prudente, Brazil. Climate, 10(4), 56. https://doi.org/10.3390/cli10040056