Adaptation Strategies and Approaches for Managing Fire in a Changing Climate
Abstract
:1. Introduction
1.1. Climate Change, Fire, and Management Challenges
1.2. Menu-Based Framework for Climate Adaptation
2. Menu Development
2.1. Co-Production Model
2.2. Input and Organization
2.3. Pilot Test
3. Adaptation Menu for Fire Management (Fire Menu)
- Strategy 1: Sustain Fire as a Fundamental Ecological Process
- Approach 1.1: Restore or Maintain Fire in Fire-Adapted Ecosystems
- Approach 1.2: Develop Fire Use Strategies in Altered or Novel Ecosystems Where Fire Can Play a Beneficial Role
- Strategy 2: Reduce Biotic and Abiotic Stressors Affecting Fire Regimes
- Approach 2.1: Remove and Prevent Establishment of Non-Native Invasive Species That Alter Fuel Regimes
- Approach 2.2: Maintain or Improve the Ability of Forests to Resist Pests and Pathogens That May Alter Fuel Regimes
- Approach 2.3: Limit, Selectively Apply, and Monitor Land Uses That Increase Fire Risk or Threaten Fire Resilience
- Strategy 3: Reduce the Risk of Unacceptable Fire
- Approach 3.1: Protect Fire-Sensitive and Vulnerable Ecosystems from Fire
- Approach 3.2: Alter Forest Structure and Composition to Reduce the Risk and Spread of Unacceptable Fire
- Approach 3.3: Establish or Maintain Fuel Breaks to Stop the Spread of Unacceptable Fire
- Strategy 4: Limit the Effects of Unacceptable Fire and Promote Post-Fire Recovery
- Approach 4.1: Promote Habitat Connectivity and Increase Ecosystem Redundancy
- Approach 4.2: Maintain or Create Fire Refugia
- Approach 4.3: Stabilize and Enhance the Physical Fire Footprint
- Approach 4.4: Promote Recovery of Native Vegetation and Habitat
- Strategy 5: Maintain and Enhance Structural, Community, and Species Diversity Using Fire and Fuels Treatments
- Approach 5.1: Maintain or Increase Structural Diversity from Stand to Landscape Scales
- Approach 5.2: Promote Diversity within and among Communities to Enhance Fire Resilience
- Strategy 6: Identify, Promote, and Conserve Fire- and Climate Change-Adapted Species and Genotypes
- Approach 6.1: Promote Native Species and Genotypes That Are Better Adapted to Future Climate and Fire Regimes, Disfavor Species That Are Distinctly Maladapted
- Approach 6.2: Use Plant Materials from Regional Areas That Have Current Climate and Fire Regimes Similar to Anticipated Future Conditions
- Strategy 7: Facilitate Ecosystem Adaptation to Expected Future Climate and Fire Regimes
- Approach 7.1: Facilitate the Movement of Species That Are Expected to Be Adapted to Future Climate and Fire Regimes
- Approach 7.2: Use Fire as a Tool to Align Existing Vegetation Communities with Changing Climate and Fire Regimes
- Strategy 8: Use Fire Events as Opportunities for Ecosystem Realignment
- Approach 8.1: Revegetate Burned Areas Using Fire-Tolerant and Drought-Adapted Species and Genotypes
- Approach 8.2: Allow for Areas of Natural Regeneration to Test for Future-Adapted Species
- Approach 8.3: Maintain Ecosystems That Have Undergone Post-Fire Type Conversion or Realignment
- Strategy 9: Promote Organizational and Operational Flexibility
- Approach 9.1: Develop Adaptive Staffing and Budgeting Strategies
- Approach 9.2: Explicitly Consider Changing Climate and Fire Regimes during the Planning Process and Adaptive Management Cycle
- Approach 9.3: Engage and Incorporate Values of Indigenous Communities in Fire Management Decisions
- Strategy 10: Promote Fire-Adapted Human Communities
- Approach 10.1: Increase Fuel Reduction Treatments in the Wildland–Urban Interface (WUI)
- Approach 10.2: Actively Promote Broad Social Awareness and Increase Education about Anticipated Effects of Climate Change on Fire Regimes
4. Adaptation Demonstration Project
4.1. DEFINE Location and Project (Step 1)
4.2. ASSESS Regional and Local Climate Impacts (Step 2)
4.3. EVALUATE Management Objectives Given Projected Impacts and Vulnerabilities (Step 3)
4.4. IDENTIFY Adaptation Approaches and Tactics (Step 4)
4.5. MONITOR and Evaluate Effectiveness (Step 5)
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Fire Menu with Example Tactics
- Strategy 1: Sustain Fire as a Fundamental Ecological Process
- Approach 1.1 Restore or Maintain Fire in Fire-Adapted Ecosystems
- Restore fire resilience using prescribed fire and mechanical treatments to manipulate structure and fuels
- Promote fire- and drought-adapted species and communities
- Increase use of managed wildfires whenever possible
- Restore cultural fire practices
- Approach 1.2 Develop Fire Use Strategies in Altered or Novel Ecosystems Where Fire Can Play a Beneficial Role
- Manage forest restoration for future range of variability
- Consider using more prescribed fire, where supported by evidence
- Consider using prescribed fire in non-traditional ways (e.g., low-intensity controlled burning in mesic mixed conifer to reduce fuels and risk of high-severity fire)
- Strategy 2: Reduce the Effects of Biotic and Abiotic Stressors Affecting Fire Regimes
- Approach 2.1 Remove and Prevent Establishment of Non-Native Invasive Species That Alter Fuel Regimes
- Increase inventory and monitoring of non-native invasive species, especially early detection
- Use mechanical or chemical methods to eradicate high priority populations of non-native invasive species
- Create and enforce regulations for internal staff, contractors, and the public to prevent accidental introduction of non-native invasive plant material
- Approach 2.2 Maintain or Improve the Ability of Forests to Resist Pests and Pathogens That May Alter Fuel Regimes
- Increase inventory and monitoring of pests and pathogens, focusing on high priority areas
- Anticipate the arrival of pests and pathogens and prioritize management actions
- Promote species, age class, and stand-structure diversity to reduce density of a host species
- Use chemical control in heavily infested areas
- Promote pest- and pathogen-resistant species or genotypes during thinning and planting
- Restrict harvest and transportation of logs in or near stands with known infestations
- Approach 2.3 Limit, Selectively Apply, and Monitor Land Uses That Increase Fire Risk or Threaten Fire Resilience
- Actively manage fire risk in areas of heavy recreational use
- Encourage recreational use in areas with low fire risk
- Limit increased WUI area resulting from development and urban expansion
- Monitor and enforce contractor/lease holder fire safety compliance
- Strategy 3: Reduce the Risk of Unacceptable Fire
- Approach 3.1 Protect Fire-Sensitive and Vulnerable Ecosystems from Fire
- Suppress ignitions in areas sensitive to fire
- Control fire-adapted non-native invasive species in fire-sensitive native vegetation
- Implement and maintain fuel breaks in strategic locations
- Encourage acceptable fire in buffers surrounding fire-sensitive areas
- Full suppression of wildfires that threaten ecological consequences that conflict with management objectives
- Approach 3.2 Alter Forest Structure and Composition to Reduce the Risk and Spread of Unacceptable Fire
- Implement strategic fuel treatments/fuel breaks to reduce fire behavior
- Reduce tree density (total basal area) within stands (thinning, Rx burning), considering historic ranges of variation and anticipated future conditions
- Reduce ladder fuels and increase crown base height using mechanical or Rx burn treatments
- Approach 3.3 Establish or Maintain Fuel Breaks to Stop the Spread of Unacceptable Fire
- Create fuel breaks preventatively in strategic locations
- Create fuel breaks to protect infrastructure (WUI) and other non-negotiable resources
- Strategy 4: Limit the Effects of Unacceptable Fire and Promote Post-Fire Recovery
- Approach 4.1 Promote Habitat Connectivity and Increase Ecosystem Redundancy
- Increase overall area, number of patches, and sites in various successional stages of each community type
- Locate and map habitat types, corridors, and patches at a landscape scale, identify priorities for protection and/or restoration
- Restore native species and vegetation structure in areas of low connectivity
- Work with partners to achieve connectivity goals at the landscape level
- Approach 4.2 Maintain or Create Fire Refugia
- Inventory and study existing fire refugia to identify processes and conditions that create fire refugia
- Add refugia to maps/lists of resources requiring special protection during fire suppression/management, communicate this information to fire managers
- Identify and protect focal areas for regeneration and recovery following a disturbance
- Approach 4.3 Stabilize and Enhance the Physical Fire Footprint
- Use contour felling, wood mulching, and other slope stabilization techniques to reduce soil loss and post-fire flooding
- Create suitable physical conditions for natural regeneration through site preparation after a burn to promote seed establishment
- Seed and re-plant with native species
- Avoid or limit disturbances such as grazing, logging operations, and road construction
- Approach 4.4 Promote Recovery of Native Vegetation and Habitat
- Experiment with seeding or planting native species to compete with invasive non-native species expected to colonize after fire
- Restore or increase a community type across a range of topographic positions and elevations
- Plant native species with an emphasis on those adapted to expected future conditions
- Strategy 5: Maintain and Enhance Structural, Community, and Species Diversity Using Fire and Fuels Treatments
- Approach 5.1 Maintain or Increase Structural Diversity from Stand to Landscape Scales
- Employ techniques such as variable-density treatments or irregular fire return intervals to encourage the development of multiple age cohorts
- Promote age class and structural diversity through regeneration harvest, thinning, prescribed fire, and managed wildfire
- Implement a variety of management activities or silvicultural prescriptions across areas with similar starting conditions to diversify forest conditions and evaluate different management approaches
- Use prescribed burning to create openings or early successional habitat
- Approach 5.2 Promote Diversity within and among Communities to Enhance Fire Resilience
- Maintain up-to-date inventory of native understory plant species in management area, monitor health of populations
- Use silvicultural treatments to promote and enhance diverse regeneration of native species
- Plant desired native species to augment their populations in areas otherwise expected to regenerate naturally
- Identify keystone species and roles in fire-adapted systems, maintain or restore where possible
- Prioritize and maintain unique sites and sensitive or at-risk ecological communities
- Strategy 6: Identify, Promote, and Conserve Fire- and Climate Change-Adapted Species and Genotypes
- Approach 6.1 Promote Native Species and Genotypes That Are Better Adapted to Future Climate and Fire Regimes, Disfavor Species That Are Distinctly Maladapted
- Plant stock from seeds collected from local trees that have survived past fire and other disturbances
- Monitor areas of natural regeneration to identify well-adapted phenotypes
- Protect existing species resilient to fire and other disturbances
- Promote species with shorter times to sexual maturity
- Promote species with wider ecological amplitude
- Promote species with specific fire-/drought-resilient traits
- Remove unhealthy individuals of a declining species to promote other species known or expected to be better adapted
- Do not continue to promote species that are known or expected to be maladapted to future fire regimes
- Increase seed banking to preserve fire resilient species and genotypes
- Approach 6.2 Use Plant Materials from Regional Areas That Have Current Climate and Fire Regimes Similar to Anticipated Future Conditions
- Use mapping programs to match seeds collected from a known origin to planting sites based on climate and fire regime data
- Plant seedlings germinated from seeds collected from various locations (i.e., different ecotypes) throughout a species’ native range
- Plant stock from seeds of the same species, collected in warmer and drier locations in the region
- Strategy 7: Facilitate Ecosystem Adaptation to Expected Future Climate and Fire Regimes
- Approach 7.1 Facilitate the Movement of Species That Are Expected to Be Adapted to Future Climate and Fire Regimes
- Plant disturbance and fire-adapted species on sites within the current range that have not been historically occupied by those species
- Consider planting species native to lower elevations, drier, and/or warmer geographic areas nearby, or areas with more frequent fire, based on projected range expansion
- Approach 7.2 Use Fire as a Tool to Align Existing Vegetation Communities with Changing Climate and Fire Regimes
- Shift prescribed burn seasons to align with projected climatic changes
- Consider using managed and/or prescribed fire to facilitate transition to new fire regimes
- Consider increasing acreage treated with prescribed fire in the short term in areas where current regeneration responses are desirable (and future regeneration trends are uncertain)
- Strategy 8: Use Fire Events as Opportunities for Ecosystem Realignment
- Approach 8.1 Revegetate Burned Areas Using Fire-Tolerant and Drought-Adapted Species and Genotypes
- Integrate climate-sensitive revegetation planning into the Burned Area Emergency Response (BAER) and other post-fire activities
- Consider specific experiments such as common gardens to test performance of different species or genetically different populations
- Monitor and control invasive species
- Focus active revegetation efforts in areas where natural regeneration is slow or absent
- Approach 8.2 Allow for Areas of Natural Regeneration to Test for Future-Adapted Species
- Increase post-fire monitoring to collect information on mortality and regeneration at the species level
- Incorporate areas of natural regeneration or “passive realignment” into BAER and other post-fire management and monitor outcomes
- Consider traits such as drought tolerance, shade tolerance, and C3/C4 pathways in monitoring efforts
- Approach 8.3 Maintain Ecosystems That Have Undergone Post-Fire Type Conversion or Realignment
- Consider future range of variability in post-fire management
- Plant species expected to be better adapted to future conditions, especially where natural regeneration is slow or absent
- Create novel communities where the level of disturbance necessitates intensive remediation efforts to recover desired ecosystem services or characteristics (e.g., tree cover)
- Reduce or remove focus on eradication of non-native or aggressive native species where they may form part of a novel community that is preferable to a lack of vegetation
- Strategy 9: Promote Organizational and Operational Flexibility
- Approach 9.1 Develop Adaptive Staffing and Budgeting Strategies
- Cross train staff to prepare for short time frame/high-effort projects
- Implement new agreements with partners to increase implementation capacity
- Consider establishing a dedicated staff person to navigate partnerships and agreements
- Strategically use single-year funds
- Approach 9.2 Explicitly Consider Changing Climate and Fire Regimes during the Planning Process and Adaptive Management Cycle
- Devise flexible management protocols to avoid rigid requirements to restore historic conditions
- Explicitly consider opportunities created by a longer prescribed burning season
- Build “if/then” statements before fire or other disturbance events to plan and prepare for multiple future management scenarios
- Approach 9.3 Engage and Incorporate Values of Indigenous Communities in Fire Management Decisions
- Understand the role of Indigenous fire stewardship and cultural burning practices in your geographic area
- Engage in dialogue with Indigenous nations, agencies, and stakeholders early in the planning process, while respecting their right to opt out of participation
- Increase Indigenous representation by supporting Native early career professionals in the fire science and management communities
- Strategy 10: Promote Fire-Adapted Human Communities
- Approach 10.1 Increase Fuel Reduction Treatments in the Wildland–Urban Interface (WUI)
- Implement mechanical thinning in areas adjacent to developed areas and structures
- Develop spatial priorities for implementation of thinning or other fire mitigation efforts
- Consider the full spectrum of ecosystem services that may be compromised by unacceptable fire in the WUI (e.g., soil stabilization, flood control, water quality, wildlife habitat, recreation)
- Approach 10.2 Actively Promote Broad Social Awareness and Increase Education about Anticipated Effect of Climate Change on Fire Regimes
- Share climate adaptation plans and examples of implementation with the public
- Explicitly address climate adaptation in agency planning documents made available to the public
- Communicate examples of climate adaptation efforts that have social benefits to stakeholders and the public (e.g., increased opportunities for products such as fuelwood)
References
- Swetnam, T.W.; Betancourt, J.L. Fire-southern oscillation relations in the southwestern United States. Science 1990, 249, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Overpeck, J.T.; Rind, D.; Goldberg, R. Climate-induced changes in forest disturbance and vegetation. Nature 1990, 343, 51–53. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Guyette, R.P.; Muzika, R.M.; Dey, D.C. Dynamics of an anthropogenic fire regime. Ecosystems 2002, 5, 472–486. [Google Scholar]
- Whitlock, C.; Higuera, P.E.; McWethy, D.B.; Briles, C.E. Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. Open Ecol. J. 2010, 3, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Jia, G.; Shevliakova, E.; Artaxo, P.; Noblet-Ducoudré, D.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A. Land-climate interactions. In Climate Change and Land; IPCC: Geneva, Switzerland, 2019; pp. 131–247. [Google Scholar]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.; Cantin, A.S.; De Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA. 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [Green Version]
- Hessl, A.E. Pathways for climate change effects on fire: Models, data, and uncertainties. Prog. Phys. Geogr. 2011, 35, 393–407. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Status of Tribes and Climate Change Working Group (STACCWG). In Status of Tribes and Climate Change Report; Institute for Tribal Environmental Professionals, Northern Arizona University: Flagstaff, AZ, USA, 2021.
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- McKenzie, D.; Gedalof, Z.e.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Williams, A.P.; Seager, R.; Macalady, A.K.; Berkelhammer, M.; Crimmins, M.A.; Swetnam, T.W.; Trugman, A.T.; Buenning, N.; Noone, D.; McDowell, N.G.; et al. Correlations between compotents of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 2015, 24, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Parks, S.A.; Parisien, M.A.; Miller, C.; Dobrowski, S.Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 2014, 9, e99699. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wimberly, M.C.; Lamsal, A.; Sohl, T.L.; Hawbaker, T.J. Climate change and wildfire risk in an expanding wildland–urban interface: A case study from the Colorado Front Range Corridor. Landsc. Ecol. 2015, 30, 1943–1957. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Meador, A.J.S.; Iniguez, J.M. Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Pellegrini, A.F.; Refsland, T.; Averill, C.; Terrer, C.; Staver, A.C.; Brockway, D.G.; Caprio, A.; Clatterbuck, W.; Coetsee, C.; Haywood, J.D. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 2021, 5, 504–512. [Google Scholar] [CrossRef]
- Parmenter, R.R. Long-term effects of a summer fire on desert grassland plant demographics in New Mexico. Rangel. Ecol. Manag. 2008, 61, 156–168. [Google Scholar] [CrossRef]
- Abella, S.R. Post-fire plant recovery in the Mojave and Sonoran Deserts of western North America. J. Arid. Environ. 2009, 73, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Feddema, J.J.; Mast, J.N.; Savage, M. Modeling high-severity fire, drought and climate change impacts on ponderosa pine regeneration. Ecol. Model. 2013, 253, 56–69. [Google Scholar] [CrossRef]
- Tarancón, A.A.; Fulé, P.Z.; Shive, K.L.; Sieg, C.H.; Meador, A.S.; Strom, B. Simulating post-wildfire forest trajectories under alternative climate and management scenarios. Ecol. Appl. 2014, 24, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Loehman, R.; Flatley, W.; Holsinger, L.; Thode, A. Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States? Forests 2018, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.E.; Omi, P.N.; Martinson, E.J.; Chong, G.W. Establishment of non-native plant species after wildfires: Effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments. Int. J. Wildland Fire 2006, 15, 271–281. [Google Scholar] [CrossRef]
- Hoff, V.; Teske, C.C.; Riddering, J.P.; Queen, L.P.; Gdula, E.G.; Bunn, W.A. Changes in severity distribution after subsequent fires on the North Rim of Grand Canyon National Park, Arizona, USA. Fire Ecol. 2014, 10, 48–63. [Google Scholar] [CrossRef]
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to ponderosa pine regeneration following large high-severity forest fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar] [CrossRef]
- Adams, M.A. Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. For. Ecol. Manag. 2013, 294, 250–261. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Nesmith, J.C.; Keifer, M.; Knapp, E.E.; Flint, A.; Flint, L. Climatic stress increases forest fire severity across the western U nited S tates. Ecol. Lett. 2013, 16, 1151–1156. [Google Scholar] [CrossRef]
- Holden, Z.A.; Morgan, P.; Hudak, A.T. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA. Fire Ecol. 2010, 6, 77–85. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Climate change in western US deserts: Potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 2011, 64, 471–478. [Google Scholar] [CrossRef]
- Westerling, A.L.; Turner, M.G.; Smithwick, E.A.; Romme, W.H.; Ryan, M.G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA 2011, 108, 13165–13170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loehman, R.A.; Keane, R.E.; Holsinger, L.M. Simulation modeling of complex climate, wildfire, and vegetation dynamics to address wicked problems in land management. Front. For. Glob. Chang. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.R.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 2021, 31, e02433. [Google Scholar] [CrossRef] [PubMed]
- Swanston, C.W.; Janowiak, M.K.; Brandt, L.A.; Butler, P.R.; Handler, S.D.; Shannon, P.D.; Lewis, A.D.; Hall, K.; Fahey, R.T.; Scott, L.; et al. Forest Adaptation Resources: Climate Change Tools and Approaches for Land Managers, 2nd ed.; United States Department of Agriculture: Washington, DC, USA, 2016. [Google Scholar]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.A.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A.; Patt, A.; Takeuchi, K. Adaptation needs and options. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015; pp. 833–868. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Millar, C.I.; O’Halloran, K.A. US National Forests adapt to climate change through Science–Management partnerships. Clim. Chang. 2012, 110, 269–296. [Google Scholar] [CrossRef]
- Friggens, M.; Loehman, R.; Thode, A.; Flatley, W.; Evans, A.; Bunn, W.; Wilcox, C.; Mueller, S.; Yocom, L.; Falk, D. User Guide to the FireCLIME Vulnerability Assessment (VA) Tool: A Rapid and Flexible System for Assessing Ecosystem Vulnerability to Climate-Fire Interactions; General Technical Report RMRS-GTR-395; Department of Agriculture, Forest Service, Rocky Mountain Research Station 42p: Fort Collins, CO, USA, 2019; Volume 395, pp. 1–42. [Google Scholar]
- Southwest FireCLIME. Available online: https://swfireclime.org (accessed on 21 March 2022).
- Swanston, C.; Janowiak, M. Forest Adaptation Resources: Climate Change Tools and Approaches for Land Managers; General Technical Report NRS-87; Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012. [Google Scholar]
- Janowiak, M.K.; Swanston, C.W.; Nagel, L.M.; Brandt, L.A.; Butler, P.R.; Handler, S.D.; Shannon, P.D.; Iverson, L.R.; Matthews, S.N.; Prasad, A. A practical approach for translating climate change adaptation principles into forest management actions. J. For. 2014, 112, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Cross, M.S.; Zavaleta, E.S.; Bachelet, D.; Brooks, M.L.; Enquist, C.A.; Fleishman, E.; Graumlich, L.J.; Groves, C.R.; Hannah, L.; Hansen, L. The Adaptation for Conservation Targets (ACT) framework: A tool for incorporating climate change into natural resource management. Environ. Manag. 2012, 50, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Lynch, A.J.; Thompson, L.M.; Morton, J.M.; Beever, E.A.; Clifford, M.; Limpinsel, D.; Magill, R.T.; Magness, D.R.; Melvin, T.A.; Newman, R.A. RAD adaptive management for transforming ecosystems. BioScience 2022, 72, 45–56. [Google Scholar] [CrossRef]
- Janowiak, M.; Brandt, L.; Swanston, C.; Butler, P.; Handlerd, S. Applied Science and Assessment to Support Climate Adaptation. J. For. 2016, 114, 279. [Google Scholar]
- O’Toole, D.; Brandt, L.A.; Janowiak, M.K.; Schmitt, K.M.; Shannon, P.D.; Leopold, P.R.; Handler, S.D.; Ontl, T.A.; Swanston, C.W. Climate change adaptation strategies and approaches for outdoor recreation. Sustainability 2019, 11, 7030. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.D.; Swanston, C.W.; Janowiak, M.K.; Handler, S.D.; Schmitt, K.M.; Brandt, L.A.; Butler-Leopold, P.R.; Ontl, T. Adaptation strategies and approaches for forested watersheds. Clim. Serv. 2019, 13, 51–64. [Google Scholar] [CrossRef]
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest management for carbon sequestration and climate adaptation. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Janowiak, M.K.; Brandt, L.A.; Wolf, K.L.; Brady, M.; Darling, L.; Lewis, A.D.; Fahey, R.T.; Giesting, K.; Hall, E.; Henry, M. Climate Adaptation Actions for Urban Forests and Human Health; General Technical Report NRS-203; Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2021; Volume 203, pp. 1–115. [Google Scholar]
- Bresette, K.; Caldwell, C.; Chapman, E.; Clark, R.; Croll, R.; Gauthier, G.J.; Grignon, J.; Handler, S.; Jondreau, J.; Kaspar, T. Dibaginjigaadeg Anishinaabe Ezhitwaad: A Tribal Climate Adaptation Menu; Great Lakes Indian Fish and Wildlife Commission: Odanah, WI, USA, 2019; pp. 1–54. [Google Scholar]
- Roux, D.J.; Rogers, K.H.; Biggs, H.C.; Ashton, P.J.; Sergeant, A. Bridging the science–management divide: Moving from unidirectional knowledge transfer to knowledge interfacing and sharing. Ecol. Soc. 2006, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Beier, P.; Hansen, L.J.; Helbrecht, L.; Behar, D. A how-to guide for coproduction of actionable science. Conserv. Lett. 2017, 10, 288–296. [Google Scholar] [CrossRef]
- Meadow, A.M.; Ferguson, D.B.; Guido, Z.; Horangic, A.; Owen, G.; Wall, T. Moving toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc. 2015, 7, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Southwest FireCLIME Annotated Bibliography. Available online: http://www.frames.gov/swfireclime/bibliography (accessed on 21 March 2022).
- Loehman, R.A.; Bentz, B.J.; DeNitto, G.A.; Keane, R.E.; Manning, M.E.; Duncan, J.P.; Egan, J.M.; Jackson, M.B.; Kegley, S.; Lockman, I.B.; et al. Effects of Climate Change on Ecological Disturbance in the Northern Rockies Region [Chapter 8]. In Climate Change Vulnerability and Adaptation in the Northern Rocky Mountains [Part 2]; General Technical Report RMRS-GTR-374; Halofsky, J.E., Peterson, D.L., Dante-Wood, S.K., Hoang, L., Ho, J.J., Joyce, L.A., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; pp. 317–352. [Google Scholar]
- Halofsky, J.S.; Donato, D.C.; Franklin, J.F.; Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. The nature of the beast: Examining climate adaptation options in forests with stand-replacing fire regimes. Ecosphere 2018, 9, e02140. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L. Climate change vulnerabilities and adaptation options for forest vegetation management in the northwestern USA. Atmosphere 2016, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Climate Change Adaptation Library for the Western United States. Available online: http://adaptationpartners.org/library.php (accessed on 21 March 2022).
- Swanston, C.W.; Brandt, L.A.; Butler-Leopold, P.R.; Hall, K.R.; Handler, S.D.; Janowiak, M.K.; Merriam, K.; Meyer, M.; Molinari, N.; Schmitt, K.; et al. Adaptation Strategies and Approaches for California Forest Ecosystems; United States Department of Agriculture California Climate Hub Technical Report CACH-2020-1; Department of Agriculture, Climate Hubs: Davis, CA, USA, 2020; pp. 1–65. [Google Scholar]
- Schmitt, K.M.; Ontl, T.A.; Handler, S.D.; Janowiak, M.K.; Brandt, L.A.; Butler-Leopold, P.R.; Shannon, P.D.; Peterson, C.L.; Swanston, C.W. Beyond Planning Tools: Experiential Learning in Climate Adaptation Planning and Practices. Climate 2021, 9, 76. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- Huffman, M.R. The many elements of traditional fire knowledge: Synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 2013, 18, 3. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Covington, W.W.; Moore, M.M.; Heinlein, T.A.; Waltz, A.E. Natural variability in forests of the Grand Canyon, USA. J. Biogeogr. 2002, 29, 31–47. [Google Scholar] [CrossRef]
- Houghton, R.; Hackler, J. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Glob. Ecol. Biogeogr. 2000, 9, 125–144. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Southwestern ponderosa forest structure: Changes since Euro-American settlement. J. For. 1994, 92, 39–47. [Google Scholar]
- Noss, R.F.; Franklin, J.F.; Baker, W.L.; Schoennagel, T.; Moyle, P.B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 2006, 4, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.E.; Iniguez, J.M.; Lentile, L.B. Short-and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA. Fire Ecol. 2011, 7, 108–121. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S.; Welty, J.L. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. For. Ecol. Manag. 2012, 276, 174–184. [Google Scholar] [CrossRef]
- Lake, F.K.; Wright, V.; Morgan, P.; McFadzen, M.; McWethy, D.; Stevens-Rumann, C. Returning fire to the land: Celebrating traditional knowledge and fire. J. For. 2017, 115, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Fule, P.Z. Does it make sense to restore wildland fire in changing climate? Restor. Ecol. 2008, 16, 526–531. [Google Scholar] [CrossRef]
- Kimmerer, R.W.; Lake, F.K. The role of indigenous burning in land management. J. For. 2001, 99, 36–41. [Google Scholar]
- Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.A.; Hawkes, B.; Barron, J. The cascading effects of fire exclusion in Rocky Mountain ecosystems. Rocky Mt. Futures Ecol. Perspect. 2002, 133–152. [Google Scholar]
- Strom, B.A.; Fulé, P.Z. Pre-wildfire fuel treatments affect long-term ponderosa pine forest dynamics. Int. J. Wildland Fire 2007, 16, 128–138. [Google Scholar] [CrossRef]
- Adlam, C.; Almendariz, D.; Goode, R.W.; Martinez, D.J.; Middleton, B.R. Keepers of the Flame: Supporting the Revitalization of Indigenous Cultural Burning. Soc. Nat. Resour. 2021, 1–16. [Google Scholar] [CrossRef]
- Larson, A.J.; Belote, R.T.; Cansler, C.A.; Parks, S.A.; Dietz, M.S. Latent resilience in ponderosa pine forest: Effects of resumed frequent fire. Ecol. Appl. 2013, 23, 1243–1249. [Google Scholar] [CrossRef]
- Waltz, A.E.; Stoddard, M.T.; Kalies, E.L.; Springer, J.D.; Huffman, D.W.; Meador, A.S. Effectiveness of fuel reduction treatments: Assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. For. Ecol. Manag. 2014, 334, 43–52. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Caprio, A.C.; Stephenson, N.L.; Das, A.J. Does prescribed fire promote resistance to drought in low elevation forests of the Sierra Nevada, California, USA? Fire Ecol. 2016, 12, 13–25. [Google Scholar] [CrossRef]
- Walker, R.B.; Coop, J.D.; Parks, S.A.; Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 2018, 9, e02182. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Kral, K.; Limb, R.; Ganguli, A.; Hovick, T.; Sedivec, K. Seasonal prescribed fire variation decreases inhibitory ability of Poa pratensis L. and promotes native plant diversity. J. Environ. Manag. 2018, 223, 908–916. [Google Scholar] [CrossRef]
- Coates, T.A.; Johnson, A.; Aust, W.M.; Hagan, D.L.; Chow, A.T.; Trettin, C. Forest composition, fuel loading, and soil chemistry resulting from 50 years of forest management and natural disturbance in two southeastern Coastal Plain watersheds, USA. For. Ecol. Manag. 2020, 473, 118337. [Google Scholar] [CrossRef]
- Quigley, K.M.; Kolka, R.; Sturtevant, B.R.; Dickinson, M.B.; Kern, C.C.; Donner, D.M.; Miesel, J.R. Prescribed burn frequency, vegetation cover, and management legacies influence soil fertility: Implications for restoration of imperiled pine barrens habitat. For. Ecol. Manag. 2020, 470, 118163. [Google Scholar] [CrossRef]
- Quigley, K.M.; Kolka, R.; Sturtevant, B.R.; Dickinson, M.B.; Kern, C.C.; Miesel, J.R. Restoring open canopy pine barrens from the ground up: Repeated burns correspond with increased soil hydraulic conductivity. Sci. Total Environ. 2021, 767, 144258. [Google Scholar] [CrossRef]
- Kerns, B.K.; Day, M.A. Prescribed fire regimes subtly alter ponderosa pine forest plant community structure. Ecosphere 2018, 9, e02529. [Google Scholar] [CrossRef] [Green Version]
- Skowronski, N.S.; Gallagher, M.R.; Warner, T.A. Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches. Fire 2020, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Warner, T.A.; Skowronski, N.S.; La Puma, I. The influence of prescribed burning and wildfire on lidar-estimated forest structure of the New Jersey Pinelands National Reserve. Int. J. Wildland Fire 2020, 29, 1100–1108. [Google Scholar] [CrossRef]
- Bristow, K.D.; Harding, L.E.; Lucas, R.W.; McCall, T.C. Influence of fire severity and vegetation treatments on mule deer (Odocoileus hemionus) winter habitat use on the Kaibab Plateau, Arizona. Anim. Prod. Sci. 2020, 60, 1292–1302. [Google Scholar] [CrossRef]
- Vose, J.M.; Peterson, D.L.; Domke, G.M.; Fettig, C.J.; Joyce, L.A.; Keane, R.E.; Luce, C.H.; Prestemon, J.P.; Band, L.E.; Clark, J.S. Forests. In Impacts, Risks and Adaptation in the United States: Fourth National Climate Assessment, Volume II; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; Global Change Research Program: Washington, DC, USA, 2018; Volume 2, pp. 232–267. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. Abrupt climate-independent fire regime changes. Ecosystems 2014, 17, 1109–1120. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.; Curran, T.J. Shoot-level flammability of species mixtures is driven by the most flammable species: Implications for vegetation-fire feedbacks favouring invasive species. Ecosystems 2018, 21, 886–900. [Google Scholar] [CrossRef] [Green Version]
- Fusco, E.J.; Finn, J.T.; Balch, J.K.; Nagy, R.C.; Bradley, B.A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl. Acad. Sci. USA 2019, 116, 23594–23599. [Google Scholar] [CrossRef]
- Underwood, E.C.; Klinger, R.C.; Brooks, M.L. Effects of invasive plants on fire regimes and postfire vegetation diversity in an arid ecosystem. Ecol. Evol. 2019, 9, 12421–12435. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.J.; Clancy, K.M.; Mathiasen, R.L. Interactions among fire, insects and pathogens in coniferous forests of the interior western United States and Canada. Agric. For. Entomol. 2006, 8, 167–189. [Google Scholar] [CrossRef]
- Parisien, M.A.; Snetsinger, S.; Greenberg, J.A.; Nelson, C.R.; Schoennagel, T.; Dobrowski, S.Z.; Moritz, M.A. Spatial variability in wildfire probability across the western United States. Int. J. Wildland Fire 2012, 21, 313–327. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Loveland, T.; Domke, G.; Herold, N.; Wickham, J.; Wood, N. Land cover and land-use change. In Impacts Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; Global Change Research Program: Washington, DC, USA, 2018; Volume 2, pp. 202–231. [Google Scholar]
- Gralewicz, N.J.; Nelson, T.A.; Wulder, M.A. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. Int. J. Wildland Fire 2011, 21, 230–242. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E. Location, timing and extent of wildfire vary by cause of ignition. Int. J. Wildland Fire 2015, 24, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Syphard, A.D. Historical patterns of wildfire ignition sources in California ecosystems. Int. J. Wildland Fire 2018, 27, 781–799. [Google Scholar] [CrossRef] [Green Version]
- Butsic, V.; Kelly, M.; Moritz, M.A. Land use and wildfire: A review of local interactions and teleconnections. Land 2015, 4, 140–156. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Holden, Z.A.; Swanson, A.; Luce, C.H.; Jolly, W.M.; Maneta, M.; Oyler, J.W.; Warren, D.A.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.; Swetnam, T.W. Early 19th-century fire decline following sheep pasturing in a Navajo ponderosa pine forest. Ecology 1990, 71, 2374–2378. [Google Scholar] [CrossRef]
- Cortes Montano, C.; Fulé, P.Z.; Falk, D.A.; Villanueva-Díaz, J.; Yocom, L.L. Linking old-growth forest composition, structure, fire history, climate and land-use in the mountains of northern México. Ecosphere 2012, 3, 1–16. [Google Scholar] [CrossRef]
- Wilder, B.; Jarnevich, C.; Baldwin, E.; Black, J.; Franklin, K.; Grissom, P.; Hovanes, K.; Olsson, A.; Malusa, J.; Kibria, A.S. Grassification and Fast-Evolving Fire Connectivity and Risk in the Sonoran Desert, United States. Front. Ecol. Evol. 2021, 9, 655561. [Google Scholar] [CrossRef]
- Brooks, M.L.; D’antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. BioScience 2004, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Brooks, M.L.; Matchett, J. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J. Arid. Environ. 2006, 67, 148–164. [Google Scholar] [CrossRef]
- Goodrich, B.A.; Waring, K.M. Pinus strobiformis seedling growth in southwestern US mixed conifer forests in managed and non-managed stands. For. Int. J. For. Res. 2017, 90, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.C.; Ward, J.S. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA. Environ. Entomol. 2010, 39, 1911–1921. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Lynch, A.M.; Falk, D.A.; Swetnam, T.W. Post-fire forest dynamics and climate variability affect spatial and temporal properties of spruce beetle outbreaks on a Sky Island mountain range. For. Ecol. Manag. 2015, 336, 148–162. [Google Scholar] [CrossRef]
- MacDonald, A.J.; Hyon, D.W.; McDaniels, A.; O’Connor, K.E.; Swei, A.; Briggs, C.J. Risk of vector tick exposure initially increases, then declines through time in response to wildfire in California. Ecosphere 2018, 9, e02227. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Lynch, A.M. Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol. Monogr. 1993, 63, 399–424. [Google Scholar] [CrossRef]
- Hoffman, C.; Morgan, P.; Mell, W.; Parsons, R.; Strand, E.K.; Cook, S. Numerical simulation of crown fire hazard immediately after bark beetle-caused mortality in lodgepole pine forests. For. Sci. 2012, 58, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, S.W. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA 2010, 107, 21289–21294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, S.; Sala, A.; Heyerdahl, E.K.; Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 2015, 96, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutzen, P.J. The “anthropocene”. In Earth System Science in the Anthropocene; Springer: Berlin/Heidelberg, Germany, 2006; pp. 13–18. [Google Scholar]
- Whitlock, C.; Shafer, S.L.; Marlon, J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. For. Ecol. Manag. 2003, 178, 5–21. [Google Scholar] [CrossRef]
- Massada, A.B.; Syphard, A.D.; Stewart, S.I.; Radeloff, V.C. Wildfire ignition-distribution modelling: A comparative study in the Huron–Manistee National Forest, Michigan, USA. Int. J. Wildland Fire 2012, 22, 174–183. [Google Scholar] [CrossRef]
- Peters, M.P.; Iverson, L.R.; Matthews, S.N.; Prasad, A.M. Wildfire hazard mapping: Exploring site conditions in eastern US wildland–urban interfaces. Int. J. Wildland Fire 2013, 22, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Faivre, N.; Jin, Y.; Goulden, M.L.; Randerson, J.T. Controls on the spatial pattern of wildfire ignitions in Southern California. Int. J. Wildland Fire 2014, 23, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Yocom, L.L.; Jenness, J.; Fulé, P.Z.; Thode, A.E. Previous fires and roads limit wildfire growth in Arizona and New Mexico, USA. For. Ecol. Manag. 2019, 449, 117440. [Google Scholar] [CrossRef]
- Hardy, C.C. Wildland fire hazard and risk: Problems, definitions, and context. For. Ecol. Manag. 2005, 211, 73–82. [Google Scholar] [CrossRef]
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, S.; Toman, E.; Stidham, M.; Shindler, B. Social science research related to wildfire management: An overview of recent findings and future research needs. Int. J. Wildland Fire 2012, 22, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Olsson, A.D.; Betancourt, J.L.; Crimmins, M.A.; Marsh, S.E. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J. Arid. Environ. 2012, 87, 136–143. [Google Scholar] [CrossRef]
- Nagy, R.; Fusco, E.; Bradley, B.; Abatzoglou, J.T.; Balch, J. Human-related ignitions increase the number of large wildfires across US ecoregions. Fire 2018, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Agee, J.K. The landscape ecology of western forest fire regimes. Northwest Sci. 1998, 72, 24. [Google Scholar]
- Guyette, R.P.; Dey, D.C.; Stambaugh, M.C.; Muzika, R.-M. Fire scars reveal variability and dynamics of eastern fire regimes. In Fire in Eastern Oak Forests: Delivering Science to Land Managers, Proceedings of the Conference, Columbus, OH, USA, 15–17 November 2005; Technical Report NRS-P-1; Dickinson Matthew, B., Ed.; Department of Agriculture, Forest Service, Northern Research Station: General Newtown Square, PA, USA, 2006; pp. 20–39. [Google Scholar]
- Safford, H.D.; Stevens, J.T. Natural Range of Variation for Yellow Pine and Mixed-Conifer Forests in the Sierra Nevada, Southern Cascades, and Modoc and Inyo National Forests, California, USA; General Technical Report PSW-GTR-256; Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2017; Volume 256, pp. 1–229. [Google Scholar]
- Dewar, J.; Falk, D.A.; Swetnam, T.; Baisan, C.; Allen, C.D.; Parmenter, R.; Margolis, E.; Taylor, E. Valleys of fire: Historical fire regimes of forest-grassland ecotones across the montane landscape of the Valles Caldera National Preserve, New Mexico, USA. Landsc. Ecol. 2021, 36, 331–352. [Google Scholar] [CrossRef]
- Bailey, J.D.; Covington, W.W. Evaluating ponderosa pine regeneration rates following ecological restoration treatments in northern Arizona, USA. For. Ecol. Manag. 2002, 155, 271–278. [Google Scholar] [CrossRef]
- Knapp, E.E.; Lydersen, J.M.; North, M.P.; Collins, B.M. Efficacy of variable density thinning and prescribed fire for restoring forest heterogeneity to mixed-conifer forest in the central Sierra Nevada, CA. For. Ecol. Manag. 2017, 406, 228–241. [Google Scholar] [CrossRef]
- Johnson, M.C.; Kennedy, M.C.; Harrison, S. Fuel treatments change forest structure and spatial patterns of fire severity, Arizona, USA. Can. J. For. Res. 2019, 49, 1357–1370. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M. Prescribed fire science: The case for a refined research agenda. Fire Ecol. 2020, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Stephens, S.L.; Battaglia, M.A.; Churchill, D.J.; Collins, B.M.; Coppoletta, M.; Hoffman, C.M.; Lydersen, J.M.; North, M.P.; Parsons, R.A.; Ritter, S.M. Forest restoration and fuels reduction: Convergent or divergent? BioScience 2021, 71, 85–101. [Google Scholar] [CrossRef]
- North, M.; Collins, B.M.; Stephens, S. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J. For. 2012, 110, 392–401. [Google Scholar] [CrossRef]
- Huffman, D.W.; Roccaforte, J.P.; Springer, J.D.; Crouse, J.E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 2020, 16, 1–13. [Google Scholar] [CrossRef]
- Stevens, J.T.; Boisramé, G.F.; Rakhmatulina, E.; Thompson, S.E.; Collins, B.M.; Stephens, S.L. Forest vegetation change and its impacts on soil water following 47 years of managed wildfire. Ecosystems 2020, 23, 1–19. [Google Scholar] [CrossRef]
- Pollet, J.; Omi, P.N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int. J. Wildland Fire 2002, 11, 1–10. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 2009, 36, L17808. [Google Scholar] [CrossRef] [Green Version]
- Safford, H.D.; Stevens, J.T.; Merriam, K.; Meyer, M.D.; Latimer, A.M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 2012, 274, 17–28. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.; Shive, K.; Fulé, P.; Sieg, C.H. Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire. Int. J. Wildland Fire 2013, 22, 1108–1117. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- Vernon, M.J.; Sherriff, R.L.; van Mantgem, P.; Kane, J.M. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. For. Ecol. Manag. 2018, 422, 190–198. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Brennan, T.J. Comparing the role of fuel breaks across southern California national forests. For. Ecol. Manag. 2011, 261, 2038–2048. [Google Scholar] [CrossRef]
- Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Weatherspoon, C.P. The use of shaded fuelbreaks in landscape fire management. For. Ecol. Manag. 2000, 127, 55–66. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Brennan, T.J. Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California. Int. J. Wildland Fire 2011, 20, 764–775. [Google Scholar] [CrossRef]
- Thompson, M.P.; Gannon, B.M.; Caggiano, M.D. Forest Roads and Operational Wildfire Response Planning. Forests 2021, 12, 110. [Google Scholar] [CrossRef]
- Wei, Y. Optimize landscape fuel treatment locations to create control opportunities for future fires. Can. J. For. Res. 2012, 42, 1002–1014. [Google Scholar] [CrossRef]
- Rytwinski, A.; Crowe, K.A. A simulation-optimization model for selecting the location of fuel-breaks to minimize expected losses from forest fires. For. Ecol. Manag. 2010, 260, 1–11. [Google Scholar] [CrossRef]
- Merriam, K.E.; Keeley, J.E.; Beyers, J.L. Fuel breaks affect nonnative species abundance in Californian plant communities. Ecol. Appl. 2006, 16, 515–527. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Stanturf, J.A. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
- Luo, L.; Tang, Y.; Zhong, S.; Bian, X.; Heilman, W.E. Will future climate favor more erratic wildfires in the western United States? J. Appl. Meteorol. Climatol. 2013, 52, 2410–2417. [Google Scholar] [CrossRef] [Green Version]
- Roccaforte, J.P.; Fulé, P.Z.; Chancellor, W.W.; Laughlin, D.C. Woody debris and tree regeneration dynamics following severe wildfires in Arizona ponderosa pine forests. Can. J. For. Res. 2012, 42, 593–604. [Google Scholar] [CrossRef]
- Collins, B.M.; Roller, G.B. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA. Landsc. Ecol. 2013, 28, 1801–1813. [Google Scholar] [CrossRef]
- Yocom-Kent, L.L.; Fulé, P.Z.; Bunn, W.A.; Gdula, E.G. Historical high-severity fire patches in mixed-conifer forests. Can. J. For. Res. 2015, 45, 1587–1596. [Google Scholar] [CrossRef]
- Dodson, E.K.; Root, H.T. Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. For. Ecol. Manag. 2013, 302, 163–170. [Google Scholar] [CrossRef]
- Petrie, M.; Wildeman, A.; Bradford, J.B.; Hubbard, R.; Lauenroth, W. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. For. Ecol. Manag. 2016, 361, 328–338. [Google Scholar] [CrossRef]
- Shive, K.; Fule, P.Z.; Sieg, C.; Strom, B.; Hunter, M.E. Managing burned landscapes: Evaluating future management strategies for resilient forests under a warming climate. Int. J. Wildland Fire 2014, 23, 915–928. [Google Scholar] [CrossRef]
- Chambers, J.C.; Pyke, D.A.; Maestas, J.D.; Pellant, M.; Boyd, C.S.; Campbell, S.B.; Espinosa, S.; Havlina, D.W.; Mayer, K.E.; Wuenschel, A. Using Resistance And Resilience Concepts to Reduce Impacts of Invasive Annual Grasses and Altered Fire Regimes on the Sagebrush Ecosystem and Greater Sage-Grouse: A Strategic Multi-Scale Approach; General Technical Report RMRS-GTR-326; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2014; Volume 326, pp. 1–73. [Google Scholar]
- Bognounou, F.; Venier, L.; Van Wilgenburg, S.; Aubin, I.; Candau, J.N.; Arsenault, A.; Hebert, C.; Ibarzabal, J.; Song, S.; De Grandpre, L. Early avian functional assemblages after fire, clearcutting, and post-fire salvage logging in North American forests. Can. J. For. Res. 2021, 51, 393–407. [Google Scholar] [CrossRef]
- Franklin, J.; Bergman, E. Patterns of pine regeneration following a large, severe wildfire in the mountains of southern California. Can. J. For. Res. 2011, 41, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Kemp, K.B.; Blades, J.J.; Klos, P.Z.; Hall, T.E.; Force, J.E.; Morgan, P.; Tinkham, W.T. Managing for climate change on federal lands of the western United States: Perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation. Ecol. Soc. 2015, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Welch, K.R.; Safford, H.D.; Young, T.P. Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone. Ecosphere 2016, 7, e01609. [Google Scholar] [CrossRef]
- Beier, P.; Hunter, M.L.; Anderson, M. Conserving nature’s stage. Conserv. Biol. J. Soc. Conserv. Biol. 2015, 29, 613–617. [Google Scholar] [CrossRef]
- Lawler, J.J.; Ackerly, D.D.; Albano, C.M.; Anderson, M.G.; Dobrowski, S.Z.; Gill, J.L.; Heller, N.E.; Pressey, R.L.; Sanderson, E.W.; Weiss, S.B. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 2015, 29, 618–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meddens, A.J.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire refugia: What are they, and why do they matter for global change? BioScience 2018, 68, 944–954. [Google Scholar] [CrossRef]
- Coop, J.D.; DeLory, T.J.; Downing, W.M.; Haire, S.L.; Krawchuk, M.A.; Miller, C.; Parisien, M.A.; Walker, R.B. Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes. Ecosphere 2019, 10, e02809. [Google Scholar] [CrossRef]
- Tucker, M.M.; Kashian, D.M. Pre-fire forest remnants affect post-fire plant community structure and composition. For. Ecol. Manag. 2018, 408, 103–111. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Meigs, G.W.; Cartwright, J.M.; Coop, J.D.; Davis, R.; Holz, A.; Kolden, C.; Meddens, A.J. Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Front. Ecol. Environ. 2020, 18, 235–244. [Google Scholar] [CrossRef]
- Bixby, R.J.; Cooper, S.D.; Gresswell, R.E.; Brown, L.E.; Dahm, C.N.; Dwire, K.A. Fire effects on aquatic ecosystems: An assessment of the current state of the science. Freshw. Sci. 2015, 34, 1340–1350. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Liang, S.; Martin, K.L.; North, M.P.; Koch, G.W.; Hungate, B.A. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests. Ecol. Appl. 2016, 26, 382–391. [Google Scholar] [CrossRef]
- Pierce, J.L.; Meyer, G.A.; Jull, A.T. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature 2004, 432, 87–90. [Google Scholar] [CrossRef]
- Robichaud, P.R.; MacDonald, L.H.; Foltz, R.B. Fuel management and erosion. In Cumulative Watershed Effects of Fuel Management in the Western United States; General Technical Report RMRS-GTR-231; Elliot, W.J., Miller, I.S., Audin, L., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 231, pp. 79–100. [Google Scholar]
- Long, J.W.; Davis, J. Erosion and restoration of two headwater wetlands following a severe wildfire. Ecol. Restor. 2016, 34, 317–332. [Google Scholar] [CrossRef]
- Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, R.E.; Minshall, G.W.; Karr, J.R.; Perry, D.A.; Hauer, F.R.; Frissell, C.A. Postfire management on forested public lands of the western United States. Conserv. Biol. 2004, 18, 957–967. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; General Technical Report RMRS-GTR-63; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000. [Google Scholar]
- Davies, K.W.; Bates, J.D. Re-introducing fire in sagebrush steppe experiencing decreased fire frequency: Does burning promote spatial and temporal heterogeneity? Int. J. Wildland Fire 2020, 29, 686–695. [Google Scholar] [CrossRef]
- Haire, S.L.; McGarigal, K. Inhabitants of landscape scars: Succession of woody plants after large, severe forest fires in Arizona and New Mexico. Southwest. Nat. 2008, 53, 146–161. [Google Scholar] [CrossRef]
- Shive, K.L.; Sieg, C.H.; Fulé, P.Z. Pre-wildfire management treatments interact with fire severity to have lasting effects on post-wildfire vegetation response. For. Ecol. Manag. 2013, 297, 75–83. [Google Scholar] [CrossRef]
- Ouzts, J.; Kolb, T.; Huffman, D.; Meador, A.S. Post-fire ponderosa pine regeneration with and without planting in Arizona and New Mexico. For. Ecol. Manag. 2015, 354, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Herron, C.M.; Jonas, J.L.; Meiman, P.J.; Paschke, M.W. Using native annual plants to restore post-fire habitats in western North America. Int. J. Wildland Fire 2013, 22, 815–821. [Google Scholar] [CrossRef]
- Mccormick, M.L.; Carr, A.N.; DeAngelis, P.; Olwell, M.; Murray, R.; Park, M. National Seed Strategy Progress Report, 2015–2020; Bureau of Land Management (National Operations Center): Denver, CO, USA, 2021. [Google Scholar]
- Lavorel, S.; Colloff, M.J.; Mcintyre, S.; Doherty, M.D.; Murphy, H.T.; Metcalfe, D.J.; Dunlop, M.; Williams, R.J.; Wise, R.M.; Williams, K.J. Ecological mechanisms underpinning climate adaptation services. Glob. Chang. Biol. 2015, 21, 12–31. [Google Scholar] [CrossRef]
- Hof, A.R.; Dymond, C.C.; Mladenoff, D.J. Climate change mitigation through adaptation: The effectiveness of forest diversification by novel tree planting regimes. Ecosphere 2017, 8, e01981. [Google Scholar] [CrossRef]
- Greiner, S.M.; Grimm, K.E.; Waltz, A.E. Managing for resilience? Examining management implications of resilience in southwestern national forests. J. For. 2020, 118, 433–443. [Google Scholar] [CrossRef]
- Davis, K.T.; Higuera, P.E.; Sala, A. Anticipating fire-mediated impacts of climate change using a demographic framework. Funct. Ecol. 2018, 32, 1729–1745. [Google Scholar] [CrossRef] [Green Version]
- Guirguis, K.; Gershunov, A.; Cayan, D.R.; Pierce, D.W. Heat wave probability in the changing climate of the Southwest US. Clim. Dyn. 2018, 50, 3853–3864. [Google Scholar] [CrossRef]
- Eiswerth, M.E.; Krauter, K.; Swanson, S.R.; Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 2009, 90, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Millar, C.I.; Collins, B.M. Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environ. Res. Lett. 2010, 5, 024003. [Google Scholar] [CrossRef]
- Knutson, K.C.; Pyke, D.A.; Wirth, T.A.; Arkle, R.S.; Pilliod, D.S.; Brooks, M.L.; Chambers, J.C.; Grace, J.B. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 2014, 51, 1414–1424. [Google Scholar] [CrossRef]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B. Managing climate change refugia for climate adaptation. PLoS ONE 2016, 11, e0159909. [Google Scholar]
- DeRose, R.J.; Long, J.N. Resistance and resilience: A conceptual framework for silviculture. For. Sci. 2014, 60, 1205–1212. [Google Scholar] [CrossRef]
- Naumburg, E.; DeWald, L.E. Relationships between Pinus ponderosa forest structure, light characteristics, and understory graminoid species presence and abundance. For. Ecol. Manag. 1999, 124, 205–215. [Google Scholar] [CrossRef]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective. Ecol. Appl. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Graham, R.T.; McCaffrey, S.; Jain, T.B. Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity; General Technical Report RMRS-GTR-120; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; pp. 1–43. [Google Scholar]
- Ziegler, J.P.; Hoffman, C.; Battaglia, M.; Mell, W. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests. For. Ecol. Manag. 2017, 386, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K. The influence of forest structure on fire behavior. In Proceedings of the 17th annual forest vegetation management conference, Redding, CA, USA, 16–18 January 1996; pp. 52–68. [Google Scholar]
- Cansler, C.A.; McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol. Appl. 2014, 24, 1037–1056. [Google Scholar] [CrossRef]
- Richter, D.; Grün, R.; Joannes-Boyau, R.; Steele, T.E.; Amani, F.; Rué, M.; Fernandes, P.; Raynal, J.-P.; Geraads, D.; Ben-Ncer, A. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 2017, 546, 293. [Google Scholar] [CrossRef]
- Noss, R.F. Beyond Kyoto: Forest management in a time of rapid climate change. Conserv. Biol. 2001, 15, 578–590. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Bradford, J.B.; Fulé, P.Z.; Taylor, A.H.; Martin, K.L. Climate change, fire management, and ecological services in the southwestern US. For. Ecol. Manag. 2014, 327, 280–289. [Google Scholar] [CrossRef]
- Spasojevic, M.J.; Bahlai, C.A.; Bradley, B.A.; Butterfield, B.J.; Tuanmu, M.N.; Sistla, S.; Wiederholt, R.; Suding, K.N. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: The recovery of productivity after wildfire. Glob. Chang. Biol. 2016, 22, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Leys, B.; Curt, T.; Elkin, C. Mosaic landscape pattern explains vegetation resistance to high fire frequency in Corsica over the last six millennia. Int. J. Earth Sci. Geophys. 2018, 4, 1–7. [Google Scholar]
- Jump, A.S.; Hunt, J.M.; Martínez-Izquierdo, J.A.; Peñuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Cudmore, T.J.; Björklund, N.; Carroll, A.L.; Staffan Lindgren, B. Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 2010, 47, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Siepielski, A.M.; Morrissey, M.B.; Buoro, M.; Carlson, S.M.; Caruso, C.M.; Clegg, S.M.; Coulson, T.; DiBattista, J.; Gotanda, K.M.; Francis, C.D. Precipitation drives global variation in natural selection. Science 2017, 355, 959–962. [Google Scholar] [CrossRef] [Green Version]
- Bemmels, J.B.; Anderson, J.T. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains. Evolution 2019, 73, 2247–2262. [Google Scholar] [CrossRef]
- Hultine, K.R.; Allan, G.J.; Blasini, D.; Bothwell, H.M.; Cadmus, A.; Cooper, H.F.; Doughty, C.E.; Gehring, C.A.; Gitlin, A.R.; Grady, K.C. Adaptive capacity in the foundation tree species Populus fremontii: Implications for resilience to climate change and non-native species invasion in the American Southwest. Conserv. Physiol. 2020, 8, coaa061. [Google Scholar] [CrossRef] [PubMed]
- Simonson, W.D.; Miller, E.; Jones, A.; García-Rangel, S.; Thornton, H.; McOwen, C. Enhancing climate change resilience of ecological restoration—A framework for action. Perspect. Ecol. Conserv. 2021, 19, 300–310. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Strahan, R.T.; Huffman, D.W.; Sánchez Meador, A.J. Using trait-based ecology to restore resilient ecosystems: Historical conditions and the future of montane forests in western North America. Restor. Ecol. 2017, 25, S135–S146. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Whitham, T.G.; Gehring, C.A.; Bothwell, H.M.; Cooper, H.F.; Hull, J.B.; Allan, G.J.; Grady, K.C.; Markovchick, L.; Shuster, S.M.; Parker, J. Using the Southwest Experimental Garden Array to Enhance Riparian Restoration in Response to Global Environmental Change: Identifying and Deploying Genotypes and Populations for Current and Future Environments [Chapter 4]. In Riparian Research and Management: Past, Present, Future. Volume 2; General Technical Report RMRS-GTR-411; Carothers, S.W., Johnson, R.R., Finch, D.M., Kingsley, K.J., Hamre, R.H., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; Volume 411, pp. 63–79. [Google Scholar]
- Havens, K.; Vitt, P.; Still, S.; Kramer, A.T.; Fant, J.B.; Schatz, K. Seed sourcing for restoration in an era of climate change. Nat. Areas J. 2015, 35, 122–133. [Google Scholar] [CrossRef]
- Isaac-Renton, M.; Montwé, D.; Hamann, A.; Spiecker, H.; Cherubini, P.; Treydte, K. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brady, S.P.; Bolnick, D.I.; Angert, A.L.; Gonzalez, A.; Barrett, R.D.; Crispo, E.; Derry, A.M.; Eckert, C.G.; Fraser, D.J.; Fussmann, G.F. Causes of maladaptation. Evol. Appl. 2019, 12, 1229–1242. [Google Scholar] [CrossRef] [Green Version]
- Breshears, D.D.; Huxman, T.E.; Adams, H.D.; Zou, C.B.; Davison, J.E. Vegetation synchronously leans upslope as climate warms. Proc. Natl. Acad. Sci. USA 2008, 105, 11591–11592. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [Green Version]
- Crimmins, S.M.; Dobrowski, S.Z.; Greenberg, J.A.; Abatzoglou, J.T.; Mynsberge, A.R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 2011, 331, 324–327. [Google Scholar] [CrossRef]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, A.; Kolb, T.; Burney, O.; Mock, K.; Grady, K. Provenance Variation in Early Survival, Growth, and Carbon Isotope Discrimination of Southwestern Ponderosa Pine Growing in Three Common Gardens across an Elevational Gradient. Forests 2021, 12, 1561. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Williams, M.I.; Stanturf, J.A.; Clair, J. Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering. New For. 2015, 46, 947–964. [Google Scholar] [CrossRef]
- Sebastian-Azcona, J.; Hacke, U.G.; Hamann, A. Adaptations of white spruce to climate: Strong intraspecific differences in cold hardiness linked to survival. Ecol. Evol. 2018, 8, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
- Etterson, J.R.; Cornett, M.W.; White, M.A.; Kavajecz, L.C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 2020, 30, e02092. [Google Scholar] [CrossRef]
- Peterson, M.L.; Angert, A.L.; Kay, K.M. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 2020, 10, 612–625. [Google Scholar]
- Martín-Alcón, S.; Coll, L.; Ameztegui, A. Diversifying sub-Mediterranean pinewoods with oak species in a context of assisted migration: Responses to local climate and light environment. Appl. Veg. Sci. 2016, 19, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.H.; Petit, R.J. The oak syngameon: More than the sum of its parts. New Phytol. 2020, 226, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Leech, S.M.; Almuedo, P.L.; O’Neill, G. Assisted migration: Adapting forest management to a changing climate. J. Ecosyst. Manag. 2011, 12, 18–34. [Google Scholar]
- Chmura, D.J.; Anderson, P.D.; Howe, G.T.; Harrington, C.A.; Halofsky, J.E.; Peterson, D.L.; Shaw, D.C.; Clair, J.B.S. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For. Ecol. Manag. 2011, 261, 1121–1142. [Google Scholar] [CrossRef]
- Coop, J.D.; Parks, S.A.; Stevens-Rumann, C.S.; Crausbay, S.D.; Higuera, P.E.; Hurteau, M.D.; Tepley, A.; Whitman, E.; Assal, T.; Collins, B.M. Wildfire-driven forest conversion in western North American landscapes. BioScience 2020, 70, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M.-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 035002. [Google Scholar] [CrossRef] [Green Version]
- Roccaforte, J.P.; Fule, P.Z.; Covington, W.W. Monitoring landscape-scale ponderosa pine restoration treatment implementation and effectiveness. Restor. Ecol. 2010, 18, 820–833. [Google Scholar] [CrossRef]
- Buma, B.; Wessman, C. Forest resilience, climate change, and opportunities for adaptation: A specific case of a general problem. For. Ecol. Manag. 2013, 306, 216–225. [Google Scholar] [CrossRef]
- Liu, Z.; Wimberly, M.C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 2016, 542, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Bloom, T.D.; Flower, A.; Medler, M.; DeChaine, E.G. The compounding consequences of wildfire and climate change for a high-elevation wildflower (Saxifraga austromontana). J. Biogeogr. 2018, 45, 2755–2765. [Google Scholar] [CrossRef]
- Brusca, R.C.; Wiens, J.F.; Meyer, W.M.; Eble, J.; Franklin, K.; Overpeck, J.T.; Moore, W. Dramatic response to climate change in the Southwest: Robert Whittaker’s 1963 Arizona Mountain plant transect revisited. Ecol. Evol. 2013, 3, 3307–3319. [Google Scholar] [CrossRef]
- Edwards, M.; Franklin-Smith, L.; Clarke, C.; Baker, J.; Hill, S.; Gallagher, K. The role of fire in the mid-Holocene arrival and expansion of lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson) in Yukon, Canada. Holocene 2015, 25, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Lafleur, B.; Pare, D.; Munson, A.D.; Bergeron, Y. Response of northeastern North American forests to climate change: Will soil conditions constrain tree species migration? Environ. Rev. 2010, 18, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Parks, S.A.; Holsinger, L.M.; Miller, C.; Nelson, C.R. Wildland fire as a self-regulating mechanism: The role of previous burns and weather in limiting fire progression. Ecol. Appl. 2015, 25, 1478–1492. [Google Scholar] [CrossRef]
- Keeley, J.E.; Fotheringham, C. Impact of past, present, and future fire regimes on North American Mediterranean shrublands. In Fire and Climatic Change in Temperate Ecosystems of the Western Americas; Springer: Berlin/Heidelberg, Germany, 2003; pp. 218–262. [Google Scholar]
- Swan, M.; Sitters, H.; Cawson, J.; Duff, T.; Wibisono, Y.; York, A. Fire planning for multispecies conservation: Integrating growth stage and fire severity. For. Ecol. Manag. 2018, 415, 85–97. [Google Scholar] [CrossRef]
- Young, D.J.; Werner, C.M.; Welch, K.R.; Young, T.P.; Safford, H.D.; Latimer, A.M. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. Ecology 2019, 100, e02571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, J.L.; Burney, O.T.; Pinto, J.R. Drought-conditioning of quaking aspen (Populus tremuloides Michx.) seedlings during nursery production modifies seedling anatomy and physiology. Front. Plant Sci. 2020, 11, 1325. [Google Scholar] [CrossRef] [PubMed]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J. Climate change and forest disturbances: Climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.J.; Nagel, L.M.; Palik, B.J. Forest adaptation strategies aimed at climate change: Assessing the performance of future climate-adapted tree species in a northern Minnesota pine ecosystem. For. Ecol. Manag. 2019, 451, 117539. [Google Scholar] [CrossRef]
- Nagel, L.M.; Palik, B.J.; Battaglia, M.A.; D’Amato, A.W.; Guldin, J.M.; Swanston, C.W.; Janowiak, M.K.; Powers, M.P.; Joyce, L.A.; Millar, C.I. Adaptive silviculture for climate change: A national experiment in manager-scientist partnerships to apply an adaptation framework. J. For. 2017, 115, 167–178. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere 2019, 10, e02796. [Google Scholar] [CrossRef]
- Holling, C. Resilience and stability as shown by models of ecological systems. In Mathematical Problems in Biology; Springer: Berlin/Heidelberg, Germany, 1974; pp. 93–95. [Google Scholar]
- Brooks, M.L.; Chambers, J.C. Resistance to invasion and resilience to fire in desert shrublands of North America. Rangel. Ecol. Manag. 2011, 64, 431–438. [Google Scholar] [CrossRef]
- Barton, A.M.; Poulos, H.M. Pine vs. oaks revisited: Conversion of Madrean pine-oak forest to oak shrubland after high-severity wildfire in the Sky Islands of Arizona. For. Ecol. Manag. 2018, 414, 28–40. [Google Scholar] [CrossRef]
- Keeley, J.E.; van Mantgem, P.; Falk, D.A. Fire, climate and changing forests. Nat. Plants 2019, 5, 774–775. [Google Scholar] [CrossRef]
- Johnston, M.; Hesseln, H. Climate change adaptive capacity of the Canadian forest sector. For. Policy Econ. 2012, 24, 29–34. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate change impacts and adaptation in forest management: A review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Williamson, T.B.; Johnston, M.H.; Nelson, H.W.; Edwards, J.E. Adapting to climate change in Canadian forest management: Past, present and future. For. Chron. 2019, 95, 76–90. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, C.A.; Thompson, M.P.; McCaffrey, S.M. Forest Service fire management and the elusiveness of change. Fire Ecol. 2019, 15, 1–15. [Google Scholar] [CrossRef]
- Wilson, P.I.; Paveglio, T.; Becker, D. The politically possible and wildland fire research. Fire 2018, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Young, J.D.; Evans, A.M.; Iniguez, J.M.; Thode, A.; Meyer, M.D.; Hedwall, S.J.; McCaffrey, S.; Shin, P.; Huang, C.-H. Effects of policy change on wildland fire management strategies: Evidence for a paradigm shift in the western US? Int. J. Wildland Fire 2020, 29, 857–877. [Google Scholar] [CrossRef]
- Timberlake, T.J.; Schultz, C.A. Policy, practice, and partnerships for climate change adaptation on US national forests. Clim. Chang. 2017, 144, 257–269. [Google Scholar] [CrossRef]
- Wilson, N.; Bradstock, R.; Bedward, M. Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). For. Ecol. Manag. 2021, 488, 119037. [Google Scholar] [CrossRef]
- Rutherford, T.K.; Schultz, C.A. Adapting wildland fire governance to climate change in Alaska. Ecol. Soc. 2019, 24, 27. [Google Scholar] [CrossRef] [Green Version]
- Weir, J.R.; Twidwell, D.; Wonkka, C.L. From grassroots to national alliance: The emerging trajectory for landowner prescribed burn associations. Rangelands 2016, 38, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Marks-Block, T.; Tripp, W. Facilitating Prescribed Fire in Northern California through Indigenous Governance and Interagency Partnerships. Fire 2021, 4, 37. [Google Scholar] [CrossRef]
- Wang, X.; Thompson, D.K.; Marshall, G.A.; Tymstra, C.; Carr, R.; Flannigan, M.D. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Chang. 2015, 130, 573–586. [Google Scholar] [CrossRef]
- Meyer, M.D.; Roberts, S.L.; Wills, R.; Brooks, M.; Winford, E.M. Principles of effective USA federal fire management plans. Fire Ecol. 2015, 11, 59–83. [Google Scholar] [CrossRef]
- Mason, L.; White, G.; Morishima, G.; Alvarado, E.; Andrew, L.; Clark, F.; Durglo Sr, M.; Durglo, J.; Eneas, J.; Erickson, J. Listening and learning from traditional knowledge and Western science: A dialogue on contemporary challenges of forest health and wildfire. J. For. 2012, 110, 187–193. [Google Scholar] [CrossRef]
- Stan, A.B.; Fulé, P.Z.; Ireland, K.B.; Sanderlin, J.S. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American lands. Int. J. Wildland Fire 2014, 23, 686–697. [Google Scholar] [CrossRef] [Green Version]
- Wynecoop, M.D.; Morgan, P.; Strand, E.K.; Sanchez Trigueros, F. Getting back to fire suméŝ: Exploring a multi-disciplinary approach to incorporating traditional knowledge into fuels treatments. Fire Ecol. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Kolden, C.A.; Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: A case study from the 2017 Thomas fire. Fire 2019, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Paveglio, T.B.; Carroll, M.S.; Stasiewicz, A.M.; Williams, D.R.; Becker, D.R. Incorporating social diversity into wildfire management: Proposing “pathways” for fire adaptation. For. Sci. 2018, 64, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Smith, C.M.; Swain, D.L.; Ptak, T.; Kolden, C.A. Population exposure to pre-emptive de-energization aimed at averting wildfires in Northern California. Environ. Res. Lett. 2020, 15, 094046. [Google Scholar] [CrossRef]
- Rosenthal, A.; Stover, E.; Haar, R.J. Health and social impacts of California wildfires and the deficiencies in current recovery resources: An exploratory qualitative study of systems-level issues. PLoS ONE 2021, 16, e0248617. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.; Kornbluh, M.; Withers, M.C.; Grennan, G.; Ramanathan, V.; Mishra, J. Chronic mental health sequelae of climate change extremes: A case study of the deadliest Californian wildfire. Int. J. Environ. Res. Public Health 2021, 18, 1487. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Day, M.A.; Palaiologou, P.; Houtman, R.M.; Ringo, C.; Evers, C.R. Cross-Boundary Wildfire and Community Exposure: A Framework and Application in the Western US; General Technical Report RMRS-GTR-392; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2019; Volume 392, pp. 1–36. [Google Scholar]
- Toman, E.; Stidham, M.; Shindler, B.; McCaffrey, S. Reducing fuels in the wildland–urban interface: Community perceptions of agency fuels treatments. Int. J. Wildland Fire 2011, 20, 340–349. [Google Scholar] [CrossRef]
- Weir, J.R.; Kreuter, U.P.; Wonkka, C.L.; Twidwell, D.; Stroman, D.A.; Russell, M.; Taylor, C.A. Liability and Prescribed fire: Perception and reality. Rangel. Ecol. Manag. 2019, 72, 533–538. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Troumbis, A.; Day, M.A.; Nielsen-Pincus, M.; Ager, A.A. Socio-Ecological Perceptions of Wildfire Management and Effects in Greece. Fire 2021, 4, 18. [Google Scholar] [CrossRef]
- Ingalsbee, T. Whither the paradigm shift? Large wildland fires and the wildfire paradox offer opportunities for a new paradigm of ecological fire management. Int. J. Wildland Fire 2017, 26, 557–561. [Google Scholar] [CrossRef]
- Spencer, A.G.; Schultz, C.A.; Hoffman, C.M. Enhancing adaptive capacity for restoring fire-dependent ecosystems: The Fire Learning Network’s Prescribed Fire Training Exchanges. Ecol. Soc. 2015, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Maletsky, L.D.; Evans, W.P.; Singletary, L.; Sicafuse, L.L. Joint Fire Science Program (JFSP) Fire Science Exchange Network: A National Evaluation of Initiative Impacts. J. For. 2018, 116, 328–335. [Google Scholar] [CrossRef]
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- McCaffrey, S. Crucial factors influencing public acceptance of fuels treatments. Fire Manag. Today Winter 2009, 69, 9–12. [Google Scholar]
- Toman, E.; Shindler, B.; McCaffrey, S.; Bennett, J. Public acceptance of wildland fire and fuel management: Panel responses in seven locations. Environ. Manag. 2014, 54, 557–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paveglio, T.B.; Edgeley, C.M.; Carroll, M.; Billings, M.; Stasiewicz, A.M. Exploring the influence of local social context on strategies for achieving fire adapted communities. Fire 2019, 2, 26. [Google Scholar] [CrossRef] [Green Version]
Strategy | Approach |
---|---|
1: Sustain fire as a fundamental ecological process Resistance—Resilience—Transition | 1.1: Restore or maintain fire in fire-adapted ecosystems |
1.2: Develop fire use strategies in altered or novel ecosystems where fire can play a beneficial role | |
2: Reduce biotic and abiotic stressors affecting fire regimes Resistance—Resilience | 2.1: Remove and prevent establishment of non-native invasive species |
2.2: Maintain or improve the ability of forests to resist pests and pathogens that may alter fuel regimes | |
2.3: Limit, selectively apply, and monitor land uses that increase fire risk or threaten fire resilience | |
3: Reduce the risk of unacceptable fire Resistance—Resilience | 3.1: Protect fire-sensitive and vulnerable ecosystems from fire |
3.2: Alter forest structure and composition to reduce the risk and spread of unacceptably severe fire | |
3.3: Establish or maintain fuel breaks to stop the spread of unacceptable fire | |
4: Limit the effects of unacceptable fire and promote post-fire recovery Resistance—Resilience | 4.1: Promote habitat connectivity and increase ecosystem redundancy |
4.2: Maintain or create fire refugia | |
4.3: Stabilize and enhance the physical fire footprint | |
4.4: Promote recovery of native vegetation and habitat | |
5: Maintain and enhance structural, community, and species diversity using fire and fuels treatments Resilience | 5.1: Maintain or increase structural diversity from stand to landscape scale |
5.2: Promote diversity within and among communities to enhance fire resilience | |
6: Identify, promote, and conserve fire- and climate change-adapted species and genotypes Resilience | 6.1: Promote native species and genotypes that are better adapted to future climate and fire regimes, disfavor species that are distinctly maladapted |
6.2: Use plant materials from regional areas that have current climate and fire regimes similar to anticipated future conditions | |
7: Facilitate ecosystem adaptation to expected future climate and fire regimes Resilience—Transition | 7.1: Facilitate the movement of species that are expected to be adapted to future climate and fire regimes |
7.2: Use fire as a tool to align existing vegetation communities with changing climate and fire regimes | |
8: Use fire events as opportunities for ecosystem realignment Transition | 8.1: Revegetate burned areas using fire-tolerant and drought-adapted species and genotypes |
8.2: Allow for areas of natural regeneration to test for future-adapted species | |
8.3: Maintain ecosystems that have undergone post-fire type conversion or realignment | |
9: Promote organizational and operational flexibility Resilience—Transition | 9.1: Develop adaptive staffing and budgeting strategies |
9.2: Explicitly consider changing climate and fire regimes during the planning process and adaptive management cycle | |
9.3: Engage and incorporate values of Indigenous communities in fire management decisions | |
10: Promote fire-adapted human communities Resilience—Transition | 10.1: Increase fuel reduction treatments in the wildland–urban interface (WUI) |
10.2: Actively promote broad social awareness and increase education about anticipated effects of climate change on fire regimes |
Strategy | Approach |
---|---|
1: Sustain fire as a fundamental ecological process | 1.1: Restore or maintain fire in fire-adapted ecosystems |
3: Reduce the risk of unacceptable fire | 3.2: Alter forest structure and composition to reduce the risk and spread of unacceptably severe fire |
5: Maintain and enhance structural, community, and species diversity using fire and fuels treatments | 5.1: Maintain or increase structural diversity from stand to landscape scale |
6: Identify, promote, and conserve fire- and climate change-adapted species and genotypes | 6.1: Promote native species and genotypes that are better adapted to future climate and fire regimes, disfavor species that are distinctly maladapted |
7: Facilitate ecosystem adaptation to expected future climate and fire regimes | 7.1: Facilitate the movement of species that are expected to be adapted to future climate and fire regimes |
7.2: Use fire as a tool to align existing vegetation communities with changing climate and fire regimes | |
9: Promote organizational and operational flexibility | 9.1: Develop adaptive staffing and budgeting strategies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sample, M.; Thode, A.E.; Peterson, C.; Gallagher, M.R.; Flatley, W.; Friggens, M.; Evans, A.; Loehman, R.; Hedwall, S.; Brandt, L.; et al. Adaptation Strategies and Approaches for Managing Fire in a Changing Climate. Climate 2022, 10, 58. https://doi.org/10.3390/cli10040058
Sample M, Thode AE, Peterson C, Gallagher MR, Flatley W, Friggens M, Evans A, Loehman R, Hedwall S, Brandt L, et al. Adaptation Strategies and Approaches for Managing Fire in a Changing Climate. Climate. 2022; 10(4):58. https://doi.org/10.3390/cli10040058
Chicago/Turabian StyleSample, Martha, Andrea E. Thode, Courtney Peterson, Michael R. Gallagher, William Flatley, Megan Friggens, Alexander Evans, Rachel Loehman, Shaula Hedwall, Leslie Brandt, and et al. 2022. "Adaptation Strategies and Approaches for Managing Fire in a Changing Climate" Climate 10, no. 4: 58. https://doi.org/10.3390/cli10040058