Historic Climate in Heritage Building and Standard 15757: Proposal for a Common Nomenclature
Abstract
:1. Introduction: A Short Overview of Scientific Literature
1.1. Observations about the Monitoring Period: Several Kinds of Approach
Authors | Reference | Museum | Visitors (i) | Artworks (ii) | Monitoring (iii) | Energy (iv) | Building Simulatio | IAQ (v) |
---|---|---|---|---|---|---|---|---|
Andretta et al., 2016 | [10] | ● | ● | ◊ | ||||
Bencs et al., 2007 | [11] | ◊ | ● | ● | ||||
Bernardi et al., 1985 | [12] | ● | ● | |||||
Bucur et al., 2015 | [13] | ● | ● | |||||
Camuffo D et al., 1999 | [14] | ● | ● | ◊ | ● | |||
Becherini F, et al., 2016 | [15] | ● | ● | ◊ | ||||
Camuffo et al., 2001 | [16] | ● | ||||||
Cardinale and Ruggiero 2002 | [17] | ● | ● | ● | ||||
Cardinale N et al., 2010 | [18] | ◊ | ● | |||||
Caucheteux A et al., 2013 | [19] | ◊ | ● | |||||
Corgnati, Fabi and Filippi 2009 | [20] | ● * | ◊ | |||||
Fabbri and Pretelli 2014 | [20] | ● | ● | x | ||||
Ferdyn-Grygierek J. 2014 | [21] | ● | ○ | ● | ||||
G Litti and Audenaert 2018 | [22] | ● | ● | ○ | ||||
Garci et al., 2015 | [23] | ● | ◊ | ● | ||||
García-Diego et al., 2016 | [24] | ● * | ● | ● (x) | ||||
Gigliarelli et al., 2016 | [25] | ● | ● | ● | ||||
Silva HE and Henriques FMS 2015 | [26] | ● ** | ◊ | |||||
Klein et al., 2017 | [27] | ● | ● (x) | ● | ||||
Kupczak et al., 2018 | [28] | ● | ● | ● | ● | |||
Litti G et al., 2015 | [29] | ● | ◊ | |||||
Martinez-Molina et al., 2018 | [30] | ● | ● | ○ | ||||
Maurerová et al., 2017 | [31] | ● | ● | ● | ||||
Mesas-Carrascosa et al., 2016 | [32] | ● | ● (x) | |||||
Napp M et al., 2015 | [33] | ○ | ● | |||||
Neri et al., 2009 | [34] | ● | ● | ● | ||||
Pasquarella et al., 2015 | [35] | ● | ◊ | ● | ● | |||
Pereira, Gaspar, and Costa 2017 | [36] | ● | ● | ● | ● | |||
Pisello et al., 2015 | [37] | ● * | ● | ● | ● | |||
Pisello et al., 2018 | [38] | ● | ● | ● | ● | |||
Roberti F et al., 2015 | [39] | ● | ◊ | ● | ● | |||
Said et al., 1999 | [40] | ◊ | ● | |||||
Saraga D et al., 2011 | [41] | ● | ◊ | ● | ||||
Scatigno et al., 2016 | [42] | ● | ◊ | ● | ||||
Silva and Henriques 2014 | [43] | ● | ● | |||||
Silva and Henriques 2016 | [44] | ● * | ○ | |||||
Zivkovic V et al., 2013 | [45] | ● | ○ |
1.2. The Standard EN 15757
2. A Nomenclature Proposal for Historic Climate and Microclimate in Heritage Buildings
- a distinction between ‘climate’ and ‘environment’; where ‘climate’ includes all thermogeometric phenomena that depend on a spatial contest (e.g., room, building, courtyard, etc.) and with ‘environment’ all the phenomena that have an effect on the object of study (e.g., artifact, object. etc.) and their damage also including indoor air pollutants or thermal comfort;
- a distinction between ‘historic’ (last 1 year) and ‘historical’ where historical refers to past events (10 or more years);
- the word “-micro”, as prefix or suffix, must refer to a portion of space to a human scale;
- “proximity”, or “nearness in place, time or relation” of artifact.
- ‘climate’ is a word with several declinations, generally we intend it as “the weather conditions prevailing in an area in general or over a long period” (online Oxford Dictionary); another is ‘climate change’, also in heritage buildings [53] defined as, “A change in global or regional climate patterns, in particular a change apparent from the mid to late 20th century onwards and attributed largely to the increased levels of atmospheric carbon dioxide produced by the use of fossil fuels.” (online Oxford Dictionary). In the case of buildings with or without heating systems, ‘climate’ should be intended as ‘indoor microclimate’. In our research field the word ‘climate’ includes all energy or mass exchange of air that should be explained with psychrometric, fluid dynamics or comfort studies;
- ‘microclimate’ is defined as: “climate on a small spatial scale”, by EN 15757 at point 3.8, and air volume inside a room.
- ‘environment’ is defined as an “Area within a building where cultural heritage objects are preserved”, by EN 15757 point 3.7, and refers to all physical and chemical phenomena included in indoor air quality, chemical reactions, dust etc.
- ‘microenvironment’ is defined as: the volume in proximity of an artifact (of less than 1 meter) inside or outside of a building.
- ‘Indoor microclimate’, if referring to a room or a space inside a building.
- ‘Outdoor microclimate’, if referring to an outdoor space, e.g., garden, park, square, etc.
- ‘heritage buildings’, as buildings for several cultural activities e.g., churches, offices, schools, etc.
- museums, as the design of new museums must respect all indoor microclimate reference values [54];
- heritage buildings used as museums, a heritage building as a museum in itself, or a heritage building used as a museum.
- research on the artifact conservation, where the period coincides with a monitoring period;
- research on heritage buildings, including their history, restoration, etc. where the period depends on the history of the building and/or their future.
3. Conclusions
Funding
Conflicts of Interest
References
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.L. Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Lucchi, E. Review of preventive conservation in museum buildings. J. Cult. Herit. 2018, 29, 180–193. [Google Scholar] [CrossRef]
- Vieites, E.; Vassileva, I.; Arias, J.E. European Initiatives Towards Improving the Energy Efficiency in Existing and Historic Buildings. Energy Procedia 2015, 75, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Roberti, F.; Oberegger, U.F.; Lucchi, E.; Troi, A. Energy retrofit and conservation of a historic building using multi-objective optimization and an analytic hierarchy process. Energy Build. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Berg, F.; Flyen, A.C.; Godbolt, Å.L.; Broström, T. User-driven energy efficiency in historic buildings: A review. J. Cult. Herit. 2017, 28, 188–195. [Google Scholar] [CrossRef] [Green Version]
- EN 15757 Conservation of Cultural Property. Specifications for Temperature and Relative Humidity to Limit Climate-Induced Mechanical Damage in Organic Hygroscopic Materials; CEN European Committee for Standardization: Bruxelle, Belgium, 2013. [Google Scholar]
- Camuffo, D.; Pagan, E.; Rissanen, S.; Bratasz, Ł.; Kozłowski, R.; Camuffo, M.; della Valle, A. An advanced church heating system favourable to artworks: A contribution to European standardisation. J. Cult. Herit. 2010, 11, 205–219. [Google Scholar] [CrossRef]
- Bertolin, C.; Camuffo, D.; Bighignoli, I. Past reconstruction and future forecast of domains of indoor relative humidity fluctuations calculated according to EN 15757:2010. Energy Build. 2015, 102, 197–206. [Google Scholar] [CrossRef]
- Bertolin, C.; Luciani, A.; Valisi, L.; Camuffo, D.; Landi, A.; Del Curto, D. Laboratory tests for the evaluation of the heat distribution efficiency of the Friendly-Heating heaters. Energy Build. 2015, 107, 319–328. [Google Scholar] [CrossRef]
- Andretta, M.; Coppola, F.; Seccia, L. Investigation on the interaction between the outdoor environment and the indoor microclimate of a historical library. J. Cult. Herit. 2016, 17, 75–86. [Google Scholar] [CrossRef]
- Bencs, L.; Spolnik, Z.; Limpens-Neilen, D.; Schellen, H.L.; Jütte, B.A.H.G.; Van Grieken, R. Comparison of hot-air and low-radiant pew heating systems on the distribution and transport of gaseous air pollutants in the mountain church of Rocca Pietore from artwork conservation points of view. J. Cult. Herit. 2007, 8, 264–271. [Google Scholar] [CrossRef]
- Bernardi, A.; Camuffo, D.; Del Monte, M.; Sabbioni, C. Microclimate and weathering of a historical building: The Ducal Palace in Urbino. Sci. Total Environ. 1985, 46, 243–260. [Google Scholar] [CrossRef]
- Bucur, E.; Vasile, A.; Diodiu, R.; Catrangiu, A.; Petrescu, M. Assessment of indoor air quality in a wooden church for preventive conservation. J. Environ. Prot. Ecol. 2015, 16, 7–17. [Google Scholar]
- Camuffo, D.; Brimblecombe, P.; Van Grieken, R.; Busse, H.J.; Sturaro, G.; Valentino, A.; Bernardi, A.; Blades, N.; Shooter, D.; De Bock, L.; et al. Indoor air quality at the Correr Museum, Venice, Italy. Sci. Total Environ. 1999, 236, 135–152. [Google Scholar] [CrossRef]
- Becherini, F.; Bernardi, A.; Di Tuccio, M.C.; Vivarelli, A.; Pockelè, L.; De Grandi, S.; Fortuna, S.; Quendolo, A. Microclimatic monitoring for the investigation of the different state of conservation of the stucco statues of the Longobard Temple in Cividale del Friuli (Udine, Italy). J. Cult. Herit. 2016, 18, 375–379. [Google Scholar] [CrossRef]
- Camuffo, D.; Van Grieken, R.; Busse, H.-J.; Sturaro, G.; Valentino, A.; Bernardi, A.; Blades, N.; Shooter, D.; Gysels, K.; Deutsch, F.; et al. Environmental monitoring in four European museums. Atmos. Environ. 2001, 35, S127–S140. [Google Scholar] [CrossRef]
- Cardinale, N.; Ruggiero, F. A case study on the environmental measures’ techniques for the conservation in the vernacular settlements in Southern Italy. Build. Environ. 2002, 37, 405–414. [Google Scholar] [CrossRef]
- Cardinale, N.; Rospi, G.; Stazi, A. Energy and microclimatic performance of restored hypogeous buildings in south Italy: The “Sassi” district of Matera. Build. Environ. 2010, 45, 94–106. [Google Scholar] [CrossRef]
- Caucheteux, A.; Stephan, E.; Ouest, C. Transient simulation calibration of an old building using an experimental design: evaluating uncertainty results. In Proceedings of the 13th Conference of the International Building Performance Simulation Association, Chambery, France, 25–28 August 2013; pp. 677–684. [Google Scholar]
- Fabbri, K.; Pretelli, M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014, 76, 15–31. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J. Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Litti, G.; Audenaert, A. An integrated approach for indoor microclimate diagnosis of heritage and museum buildings: The main exhibition hall of Vleeshuis museum in Antwerp. Energy Build. 2018, 162, 91–108. [Google Scholar] [CrossRef]
- Astiaso Garcia, D.; Di Matteo, U.; Cumo, F. Selecting Eco-friendly Thermal Systems for the “Vittoriale Degli 8 Italiani” Historic Museum Building. Sustainability 2015, 7, 12615–12633. [Google Scholar] [CrossRef] [Green Version]
- García-Diego, F.-J.; Verticchio, E.; Beltrán, P.; Siani, A. Assessment of the minimum sampling frequency to avoid measurement redundancy in microclimate field surveys in museum buildings. Sensors 2016, 16, 1291. [Google Scholar] [CrossRef]
- Gigliarelli, E.; Calcerano, F.; Cessari, L. Implementation analysis and design for energy efficient intervention on heritage buildings. Lect. Notes Comput. Sci. 2016, 10058 LNCS, 91–103. Available online: https://link.springer.com/chapter/10.1007%2F978-3-319-48496-9_8. (accessed on 5 December 2021).
- Silva, H.E.; Henriques, F.M.A. Preventive conservation of historic buildings in temperate climates. The importance of a risk-based analysis on the decision-making process. Energy Build. 2015, 107, 26–36. [Google Scholar] [CrossRef]
- Klein, L.J.; Bermudez, S.A.; Schrott, A.G.; Tsukada, M.; Dionisi-Vici, P.; Kargere, L.; Marianno, F.; Hamann, H.F.; López, V.; Leona, M. Wireless sensor platform for cultural heritage monitoring and modeling system. Sensors 2017, 17, 1998. [Google Scholar] [CrossRef] [Green Version]
- Kupczak, A.; Sadłowska-Sałęga, A.; Krzemień, L.; Sobczyk, J.; Radoń, J.; Kozłowski, R. Impact of paper and wooden collections on humidity stability and energy consumption in museums and libraries. Energy Build. 2018, 158, 77–85. [Google Scholar] [CrossRef]
- Litti, G.; Khoshdel, S.; Audenaert, A.; Braet, J. Hygrothermal performance evaluation of traditional brick masonry in historic buildings. Energy Build. 2015, 105, 393–411. [Google Scholar] [CrossRef]
- Martinez-Molina, A.; Boarin, P.; Tort-Ausina, I.; Vivancos, J.-L. Assessing visitors’ thermal comfort in historic museum buildings: Results from a Post-Occupancy Evaluation on a case study. Build. Environ. 2018, 132, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Maurerová, L.; Selucká, A.; Jakubec, P.; Hirš, J. Use of simulation analysis to assess efficiency of heating by the “conservation heating” method in a historical building [Uplatnění simulační analýzy při o věření efektivity vytápění metodou “conser vation heating” v historické budově]. Vytap. Vetr. Instal. 2017, 26, 270–277, ISBN-978-80-87967-17-1. Available online: https://mck.technicalmuseum.cz/wp-content/uploads/2018/06/Buildings-for-Storing-Cultural-Heritage-Objects-%E2%80%93-Principles-and-Methods-for-Assessing-Indoor-Environments.-N%C3%A1rodn%C3%AD-pam%C3%A1tkov%C3%BD-%C3%BAstav-2017.-ISBN-978-80-87967-17-1.pdf (accessed on 5 December 2021).
- Mesas-Carrascosa, F.J.; Verdú Santano, D.; de Larriva, J.E.M.; Ortíz Cordero, R.; Hidalgo Fernández, R.E.; García-Ferrer, A. Monitoring heritage buildings with open-source hardware sensors: A case study of the mosque-cathedral of Córdoba. Sensors 2016, 16, 1620. [Google Scholar] [CrossRef]
- Napp, M.; Kalamees, T. Energy use and indoor climate of conservation heating, dehumidification and adaptive ventilation for the climate control of a mediaeval church in a cold climate. Energy Build. 2015, 108, 61–71. [Google Scholar] [CrossRef]
- Neri, A.; Corbellini, S.; Parvis, M.; Arcudi, L.; Grassini, S.; Piantanida, M.; Angelini, E. Environmental monitoring of heritage buildings. In Proceedings of the 2009 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, EESMS 2009—Proceedings, Crema, Italy, 25 September 2009; pp. 93–97. [Google Scholar]
- Pasquarella, C.; Balocco, C.; Pasquariello, G.; Petrone, G.; Saccani, E.; Manotti, P.; Ugolotti, M.; Palla, F.; Maggi, O.; Albertini, R. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma. Sci. Total Environ. 2015, 536, 557–567. [Google Scholar] [CrossRef]
- Pereira, L.D.; Gaspar, A.R.; Costa, J.J. Assessment of the indoor environmental conditions of a baroque library in Portugal. Energy Procedia 2017, 133, 257–267. [Google Scholar] [CrossRef]
- Pisello, A.L.; Castaldo, V.L.; Pignatta, G.; Cotana, F. Integrated numerical and experimental methodology for thermal-energy analysis and optimization of heritage museum buildings. Build. Serv. Eng. Res. Technol. 2015, 37, 334–354. [Google Scholar] [CrossRef]
- Pisello, A.L.; Castaldo, V.L.; Piselli, C.; Cotana, F. Coupling artworks preservation constraints with visitors’ environmental satisfaction: Results from an indoor microclimate assessment procedure in a historical museum building in central Italy. Indoor Built Environ. 2018, 27, 846–869. [Google Scholar] [CrossRef]
- Roberti, F.; Oberegger, U.F.; Gasparella, A. Calibrating historic building energy models to hourly indoor air and surface temperatures: Methodology and case study. Energy Build. 2015, 108, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Saïd, M.N.A.; Brown, W.C.; Shirtliffe, C.J.; Maurenbrecher, A.H.P. Monitoring of the building envelope of a heritage house: A case study. Energy Build. 1999, 30, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Saraga, D.; Pateraki, S.; Papadopoulos, A.; Vasilakos, C.; Maggos, T. Studying the indoor air quality in three non-residential environments of different use: A museum, a printery industry and an office. Build. Environ. 2011, 46, 2333–2341. [Google Scholar] [CrossRef]
- Scatigno, C.; Gaudenzi, S.; Sammartino, M.P.; Visco, G. A microclimate study on hypogea environments of ancient roman building. Sci. Total Environ. 2016, 566–567. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A. Microclimatic analysis of historic buildings: A new methodology for temperate climates. Build. Environ. 2014, 82, 381–387. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A. Hygrothermal analysis of historic buildings: Statistical methodologies and their applicability in temperate climates. Struct. Surv. 2016, 34, 12–23. [Google Scholar] [CrossRef]
- Živković, V.; Džikić, V. Return to basics—Environmental management for museum collections and historic houses. Energy Build. 2015, 95, 116–123. [Google Scholar] [CrossRef]
- Corgnati, S.P.; Fabi, V.; Filippi, M. A methodology for microclimatic quality evaluation in museums: Application to a temporary exhibit. Build. Environ. 2009, 44, 1253–1260. [Google Scholar] [CrossRef]
- Sciurpi, F.; Carletti, C.; Cellai, G.; Pierangioli, L. Environmental monitoring and microclimatic control strategies in “la Specola” museum of Florence. Energy Build. 2015, 95, 190–201. [Google Scholar] [CrossRef]
- Huijbregts, Z.; Schellen, H.; van Schijndel, J.; Ankersmit, B. Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet. J. Cult. Herit. 2015, 16, 419–427. [Google Scholar] [CrossRef]
- Bichlmair, S.; Raffler, S.; Kilian, R. The Temperierung heating systems as a retrofitting tool for the preventive conservation of historic museums buildings and exhibits. Energy Build. 2015, 95, 80–85. [Google Scholar] [CrossRef]
- Caratelli, A.; Siani, A.M.; Casale, G.R.; Paravicini, A.; Fiore, K.H.; Camuffo, D. Stucco panels of Room VI in the Galleria Borghese (Rome): Physical-chemical analysis and microclimate characterization. Energy Build. 2013, 61, 133–139. [Google Scholar] [CrossRef]
- De Backer, L.; Janssens, A.; Steeman, M.; De Paepe, M. Evaluation of display conditions of the Ghent altarpiece at St. Bavo Cathedral. J. Cult. Herit. 2018, 29, 168–172. [Google Scholar] [CrossRef]
- Muñoz-González, C.M.; León-Rodríguez, A.L.; Navarro-Casas, J. Air conditioning and passive environmental techniques in historic churches in Mediterranean climate. A proposed method to assess damage risk and thermal comfort pre-intervention, simulation based. Energy Build. 2016, 130, 567–577. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Bonazzi, A.; Campana, F.; Merlo, C. Past, present and future effects of climate change on a wooden inlay bookcase cabinet: A new methodology inspired by the novel European Standard EN 15757:2010. J. Cult. Herit. 2014, 15, 26–35. [Google Scholar] [CrossRef]
- Pavlogeorgatos, G. Environmental parameters in museums. Build. Environ. 2003, 38, 1457–1462. [Google Scholar] [CrossRef]
- Fabbri, K. Energy incidence of historic building: Leaving no stone unturned. J. Cult. Herit. 2013, 14, 25–27. [Google Scholar] [CrossRef]
- Pretelli, M.; Fabbri, K. Historic Indoor Microclimate. In Historic Indoor Microclimate of the Heritage Buildings; Springer: Cham, Switzerland, 2018; pp. 73–83. [Google Scholar] [CrossRef]
- Fabbri, K. The Study of Historic Indoor Microclimate. In Historic Indoor Microclimate of the Heritage Buildings; Springer: Cham, Switzerland, 2018; pp. 85–117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, K. Historic Climate in Heritage Building and Standard 15757: Proposal for a Common Nomenclature. Climate 2022, 10, 4. https://doi.org/10.3390/cli10010004
Fabbri K. Historic Climate in Heritage Building and Standard 15757: Proposal for a Common Nomenclature. Climate. 2022; 10(1):4. https://doi.org/10.3390/cli10010004
Chicago/Turabian StyleFabbri, Kristian. 2022. "Historic Climate in Heritage Building and Standard 15757: Proposal for a Common Nomenclature" Climate 10, no. 1: 4. https://doi.org/10.3390/cli10010004
APA StyleFabbri, K. (2022). Historic Climate in Heritage Building and Standard 15757: Proposal for a Common Nomenclature. Climate, 10(1), 4. https://doi.org/10.3390/cli10010004