A Comprehensive Analysis of LoRa Network Wireless Signal Quality in Indoor Propagation Environments
Abstract
1. Introduction
2. Related Work
3. LoRa Technology and Wireless Signal Propagation Characteristics
3.1. LoRa Transmission Parameters
3.2. Characteristics of LoRa Wireless Signal Transmission
3.3. Overview of Path-Loss Modeling for Indoor Wireless Signal Propagation
4. Architecture of the Test Network
4.1. Design and Implementation of a LoRaWAN Data Processing System
4.1.1. Containerized Architecture of the Application Server
4.1.2. Inter-Service Communication
4.1.3. Node-RED Application
4.1.4. InfluxDB and Grafana Applications
4.1.5. Collected Metadata Structure
5. Measurement Setup
5.1. Test Network Topology
5.2. Measurement Procedure
5.3. Measurement Sets of the LoRa End DV Transmission Parameters
5.4. Measurement Setup of LoRa End DV Transmission Parameters
- Mean RSSI and SNR levels, which represent the arithmetic average of all recorded values.
- Minimum and maximum RSSI and SNR levels, which represent the lowest and highest measured values, respectively.
6. Results and Discussion
6.1. Packet Delivery Ratio Analysis of the Test LoRa Measurements
- The LoRA transmission parameters selected in simultaneous testing of two MSs (Table 6) are characterized by high diversity among transmission periods (DC) between LoRa messages (ranging from 2 min to 30 min). This diversity is based on combining either long DCs or DCs having very distinct transmission periods in terms of DC duration. This results in a low possibility of the simultaneous transmission of both the LoRa end DVs and consequently in no inter-SF interference.
- According to Table 6 and Table 7, the LoRA transmission parameters selected in simultaneous testing of two MSs (Table 6) are characterized by high diversity among the periods of transmission duration (ToA), which range between 25 ms and 2.3 s. This results in a low possibility of LoRa message transmission collisions among end DVs.
6.2. Impact of Tx Power on RSSI and SNR
6.3. Impact of LoRa Message Payload Size on RSSI and SNR
6.4. Impact of Spreading Factor on RSSI and SNR
6.5. Impact of Wireless Signal Propagation Environments on SNR and RSSI
6.6. Correlation of Obtained Results with Indoor Signal Propagation Path-Loss Models
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADR | Adaptive Data Rate |
| API | Application Programming Interface |
| BW | Bandwidth |
| CF | Carrier Frequency |
| CO2 | Carbon Dioxide |
| CR | Coding Rate |
| CSS | Chirp Spread Spectrum |
| DC | Duty Cycle |
| DV | LoRa end device |
| EIRP | Effective Isotropic Radiated Power |
| ETSI | European Telecommunications Standards Institute |
| EU | Europe |
| FCC | Federal Communications Commission |
| FEC | Forward Error Correction |
| FESB | Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture |
| FSK | Frequency Shift Keying |
| GW | LoRa Gateway |
| HTTP | Hypertext Transfer Protocol |
| ID | Identifier |
| IDP | Indoor Dominant Path |
| IP | Internet Protocol |
| IoT | Internet of Things |
| ISM | Industrial, Scientific and Medical |
| JS | JavaScript |
| LDPLSM | Log-Distance Path Loss and Shadowing Model |
| LoRa | Long Range |
| LoRaWAN | LoRa Wide Area Network |
| LoS | Line-of-Sight |
| LPWAN | Low Power Wide Area Network |
| M2M | Machine-to-Machine |
| MAC | Media Access Control |
| MS | Measurement Set |
| MQTT | Message Queuing Telemetry Transport |
| MWM | Multi-Wall Model |
| NLoS | Non-Line-of-Sight |
| OSI | Open System Interconnection |
| PDR | Packet Delivery Ratio |
| PRR | Packet Reception Rate |
| PHY | Physical layer |
| PS | Packet size |
| RF | Radio Frequency |
| RSSI | Received Signal Strength Indicator |
| SF | Spreading Factor |
| SNR | Signal-to-Noise Ratio |
| SRD | Short Range Device |
| ToA | Time-on-Air |
| TTN | The Things Network |
| TX | Tx power |
| UI | User Interface |
| URL | Uniform Resource Locator |
| US | United States |
| WiFi | Wireless Fidelity |
References
- Slats, L. A Brief History of LoRa®: Three Inventors Share Their Personal Story at the Things Conference; Semtech: Camarillo, CA, USA, 2020; Available online: https://blog.semtech.com/a-brief-history-of-lora-three-inventors-share-their-personal-story-at-the-things-conference (accessed on 1 September 2025).
- Semtech’s LoRa® Devices and the LoRaWAN® Standard Optimize Smart Metering with Sindcon; Semtech: Camarillo, CA, USA, 2023; Available online: https://www.semtech.com/company/press/semtechs-lora-devices-and-the-lorawan-standard-optimize-smart-metering-with-sindcon (accessed on 1 September 2025).
- Alliance, L. LoRa Alliance 2024 End of Year Report. 2024. Available online: https://resources.lora-alliance.org/document/lora-alliance-2024-end-of-year-report#main-content (accessed on 5 August 2025).
- Insight, B. Cellular and LPWA IoT Device Ecosystems 7th Edition. 2023. Available online: https://media.berginsight.com/2023/06/14201238/bi-deviceecosystems7-ps.pdf (accessed on 5 August 2025).
- Satyajit, S. LPWAN Market 2024: Licensed Technologies Boost Their Share Among Global 1.3 Billion Connections as LoRa Leads Outside China. IoT Analytics 2024. Available online: https://iot-analytics.com/lpwan-market (accessed on 5 August 2025).
- Statista. Number of Internet of Things (IoT) Connections Worldwide from 2022 to 2023, with Forecasts from 2024 to 2034. Statista. 2025. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 5 August 2025).
- Semtech. What Is LoRa®? Semtech: Camarillo, CA, USA, 2025; Available online: https://www.semtech.com/lora (accessed on 8 September 2025).
- Sinha, S. State of IoT 2025: Number of Connected IoT Devices Growing 14% to 21.1 Billion Globally. IoT Analytics 2024. Available online: https://iot-analytics.com/number-connected-iot-devices (accessed on 1 September 2025).
- Ould, S.; Bennett, N.S. Energy Performance Analysis and Modelling of LoRa Prototyping Boards. Sensors 2021, 21, 7992–8009. [Google Scholar] [CrossRef]
- Casals, L.; Mir, B.; Vidal, R.; Gomez, C. Modeling the Energy Performance of LoRaWAN. Sensors 2017, 17, 2364–2394. [Google Scholar] [CrossRef]
- Soy, H. Coverage Analysis of LoRa and NB-IoT Technologies on LPWAN-Based Agricultural Vehicle Tracking Application. Sensors 2023, 23, 8859–8878. [Google Scholar] [CrossRef]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466–1484. [Google Scholar] [CrossRef]
- Povalac, A.; Kral, J.; Arthaber, H.; Kolar, O.; Novak, M. Exploring LoRaWAN Traffic: In-Depth Analysis of IoT Network Communications. Sensors 2023, 23, 7333. [Google Scholar] [CrossRef] [PubMed]
- Lorincz, J.; Chiaraviglio, L.; Cuomo, F. A measurement study of short-time cell outages in mobile cellular networks. Comput. Commun. 2016, 79, 92–102. [Google Scholar] [CrossRef]
- Pires, L.M.; Martins, J. Experimental Insights into the Performance of LoRa/LoRaWAN Radio Interface in Smart City Deployments 2025; Brazilian Journals Editora: São José dos Pinhais, Brazil, 2025; pp. 1–70. ISBN 978-65-6016-106-1. [Google Scholar]
- Busacca, F.; Mangione, S.; Palazzo, S.; Restuccia, F.; Tinnirello, I. SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation. Comput. Netw. 2024, 241, 110197. [Google Scholar] [CrossRef]
- Lorincz, J.; Ramljak, I.; Begušić, D. A review of the noise uncertainty impact on energy detection with different OFDM system designs. Comput. Commun. 2019, 148, 185–207. [Google Scholar] [CrossRef]
- Lorincz, J.; Ramljak, I.; Begušić, D. Analysis of the Impact of Detection Threshold Adjustments and Noise Uncertainty on Energy Detection Performance in MIMO-OFDM Cognitive Radio Systems. Sensors 2022, 22, 631–660. [Google Scholar] [CrossRef]
- Jansen, C.L.; Amalinda, G.; Agustinus, W.T.; Li, M. Known and Unknown Facts of LoRa: Experiences from a Large-scale Measurement Study. ACM Trans. Sens. Netw. 2019, 15, 1–35. [Google Scholar] [CrossRef]
- Anders, C.; Ievgeniia, K.; Franksson, R.; Liljegren, A. Measuring a LoRa Network: Performance, Possibilities and Limitations. In Proceedings of the 18th International Conference NEW2AN 2018 and 11th Conference ruSMART 2018, St. Petersburg, Russia, 27–29 August 2018. [Google Scholar] [CrossRef]
- Marco, C.; Carlo, A.B.; Kay, R. An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication. Sens. Actuator Netw. 2017, 6, 7–26. [Google Scholar] [CrossRef]
- Ayele, E.D.; Hakkenberg, C.; Meijers, J.P.; Zhang, K.; Meratnia, N.; Havinga, P.J.M. Performance analysis of LoRa radio for an indoor IoT applications. In Proceedings of the 2017 International Conference on Internet of Things for the Global Community (IoTGC), Funchal, Portugal, 10–13 July 2017. [Google Scholar] [CrossRef]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015. [Google Scholar] [CrossRef]
- Obiri, N.M.; Laerhoven, K.V. A Comprehensive Data Description for LoRaWAN Path Loss Measurements in an Indoor Office Setting: Effects of Environmental Factors. IEEE Access 2025, 13, 83148–83170. [Google Scholar] [CrossRef]
- Alkhazmi, E.H.; Elkawafi, S.M.; Aldarrat, A.A.; Abbas, M.A.; Abubakr, H.; Shamatah, H.A. Analysis of Real-World LoRaWAN Network Performance Across Outdoor and Indoor Scenarios. In Proceedings of the 2023 IEEE 11th International Conference on Systems and Control (ICSC), Sousse, Tunisia, 18–20 December 2023. [Google Scholar] [CrossRef]
- Grübel, J.; Thrash, T.; Aguilar, L.; Gath-Morad, M.; Hélal, D.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. Dense Indoor Sensor Networks: Towards passively sensing human presence with LoRaWAN. Pervasive Mob. Comput. 2022, 84, 101640–101678. [Google Scholar] [CrossRef]
- Semtech Corporation. LoRa® and LoRaWAN®; Semtech: Camarillo, CA, USA, 2024; Available online: https://www.semtech.com/uploads/technology/LoRa/lora-and-lorawan.pdf (accessed on 4 August 2025).
- Kufakunesu, R.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors 2020, 20, 5044–5069. [Google Scholar] [CrossRef] [PubMed]
- Andri, R.; Fernando, K. When LoRaWAN Frames Collide. In Proceedings of the WiNTECH’18: Proceedings of the 12th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, New Delhi, India, 2 November 2018. [Google Scholar] [CrossRef]
- ETSI EN 300 220-2 V3.2.1. Short Range Devices (SRD) Operating in the Frequency Range 25 MHz to 1 000 MHz; Part 2: Harmonised Standard for Access to Radio Spectrum for Non Specific Radio Equipment. ETSI 2018. Available online: https://www.etsi.org/deliver/etsi_en/300200_300299/30022002/03.02.01_60/en_30022002v030201p.pdf (accessed on 1 September 2025).
- Guo, Q.; Yang, F.; Wei, J. Experimental Evaluation of the Packet Reception Performance of LoRa. Sensors 2021, 21, 1071–1094. [Google Scholar] [CrossRef] [PubMed]
- The Things Network. Spreading Factors. The Things Network. Available online: https://www.thethingsnetwork.org/docs/lorawan/spreading-factors/ (accessed on 1 September 2025).
- Greitans, M.; Gaigals, G.; Levinskis, A. Implementation of LoRa TDMA-Based Mobile Cell Broadcast Protocol for Vehicular Networks. Information 2025, 16, 447–466. [Google Scholar] [CrossRef]
- Islam, K.Z.; Murray, D.; Diepeveen, D.; Jones, M.G.; Sohel, F. Deep Learning based Payload Optimization for Image Transmission over LoRa with HARQ. Internet Things 2025, 33, 101701. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B.; Zhang, X. Performance Research of LoRa at High Transmission Rate. In Proceedings of the 2020 5th International Conference on Intelligent Computing and Signal Processing (ICSP), Suzhou, China, 20–22 March 2020. [Google Scholar] [CrossRef]
- Semtech. SX1276/77/78/79-137 MHz to 1020 MHz Low Power Long Range Transceiver; Semtech: Camarillo, CA, USA, 2020; Available online: https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE (accessed on 1 September 2025).
- Semtech. SX1272/3/6/7/8: LoRa Modem; Semtech: Camarillo, CA, USA, 2013; Available online: https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OK4/K1xBJSCPflEbqU03CfABAjL29tRKA9KsdAdTIsWBA8s (accessed on 1 September 2025).
- Mobilefish.com. LoRa/LoRaWAN tutorial. Mobilefish. Available online: https://www.mobilefish.com/download/lora/lora_part10.pdf (accessed on 1 September 2025).
- Andrade, R.O.; Yoo, S.G. A Comprehensive Study of the Use of LoRa in the Development of Smart Cities. Appl. Sci. 2019, 9, 4753–4792. [Google Scholar] [CrossRef]
- Technology: LoraWan® (Long Range Wide Area Network). VDMA. Available online: https://www.vdma.eu/documents/34570/129782943/Technology_LoRaWAN.pdf/ada97151-989c-9f4c-1b8c-6567fb6df598?t=1728295132956 (accessed on 11 September 2025).
- Tempiem, P.; Silapunt, R. Enhancing Spreading Factor Assignment in LoRaWAN with a Geometric Distribution Approach for Practical Node Distributions. Telecom 2024, 5, 941–960. [Google Scholar] [CrossRef]
- Pagliari, E. What is LoRaWAN Internet of Things Protocol and How does It Work? 2020. Available online: https://emanuelepagliari.it/2020/10/13/lorawan-internet-of-things/ (accessed on 11 September 2025).
- Mobilefish.com. LoRa/LoRaWAN Tutorial 15: Data Rate, Chip Rate, Symbol Rate, Chip Duration and Symbol Duration. Mobilefish. 2018. Available online: https://www.youtube.com/watch?v=r84GMLeiqg8 (accessed on 28 August 2025).
- Seidel, S.Y.; Rappaport, T.S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Antennas Propag. 1992, 40, 207–217. [Google Scholar] [CrossRef]
- COST Action 231. COST Action 231: Digital Mobile Radio Towards Future Generation Systems, Final Report; Publications Office of the European Union: Brussels, Belgium, 1999. [Google Scholar]
- Plets, D.; Joseph, W.; Vanhecke, K.; Tanghe, E.; Martens, L. Simple Indoor Path Loss Prediction Algorithm and Validation in Living Lab Setting. Wirel. Pers. Commun. 2011, 68, 535–552. [Google Scholar] [CrossRef]
- Tuan, S.-C.; Chen, J.-C.; Chou, H.-T.; Chou, H.-H. Optimization of propagation models for the radio performance evaluation of wireless local area network. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting, Columbus, OH, USA, 22–27 June 2003. [Google Scholar] [CrossRef]
- Barbosa, R.N.S.; Rodrigues, J.D.C.; Fraiha, S.G.C.; Gomes, H.S.; Cavalcante, G.P.S. An empirical model for propagation loss prediction in indoor mobile communications using Pade approximant. In Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, Brasilia, Brazil, 25 June 2005. [Google Scholar] [CrossRef]
- Degli-Esposti, V.; Falciasecca, G.; Fuschini, F.; Vitucci, E.M. A Meaningful Indoor Path-Loss Formula. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 872–875. [Google Scholar] [CrossRef]
- HOPERF. RFM95/96/97/98(W)—Low Power Long Range Transceiver Module V1.0, pp. 1–121. Available online: https://www.alldatasheet.com/view.jsp?Searchword=RFM95W&sField=4 (accessed on 8 November 2025).
- iC880A: Multichannel and High Performance. IMST GmbH. Available online: https://wireless-solutions.de/products/lora-ic880a.html (accessed on 8 November 2025).
- The Things Network. Laird RG1xx. The Things Network. Available online: https://www.thethingsnetwork.org/docs/gateways/laird/ (accessed on 8 November 2025).
- RAKwireless. RAK831: 8-Channel LoRaWAN Gateway Concentrator. RAKwireless. Available online: https://www.rakwireless.com/en-us/products/lpwan-gateways-and-concentrators/rak831 (accessed on 8 November 2025).
- Docker. Docker docs. docker.com. Available online: https://docs.docker.com/ (accessed on 7 August 2025).
- The Croatian Regulatory Authority for Network Industries. General licence. HAKOM 2022. Available online: https://www.hakom.hr/UserDocsImages/Op%C4%87e%20dozvole%20prosinac%202009.g/Opca_dozvola_74a.pdf (accessed on 8 August 2025).
- The Things Network. EU863-870 MHz Band. The Things Network. Available online: https://www.thethingsnetwork.org/docs/lorawan/regional-parameters/eu868/ (accessed on 8 August 2025).
- The Things Network. Duty Cycle. The Things Network. Available online: https://www.thethingsnetwork.org/docs/lorawan/duty-cycle (accessed on 8 August 2025).
- Lorenc, A.; Szarata, J.; Czuba, M. Real-Time Location System (RTLS) Based on the Bluetooth Technology for Internal Logistics. Sustainability 2023, 15, 4976–4998. [Google Scholar] [CrossRef]













| Path-Loss Model | Mathematical Expression (Parameter Description) |
|---|---|
| Floor Attenuation Factor (FAF) Model [44] | (1) nsamefloor: path loss exponent for same floor measurements; d: distance [m]; FAF: additional loss per floor [dB] (e.g., 12.9 dB for 1 floor, 18.7 dB for 2, 24.4 dB for 3 floors); |
| Multi-Wall Model (MWM) [45] | L: total path loss [dB]; LFS: free space loss between transmitter and receiver [dB]; Lc: constant loss [dB]; Lwi: loss of wall type i [dB]; kwi: number of penetrated walls of type i; Lf: loss between adjacent floors [dB]; kf: number of penetrated floors; l: number of wall types; b: empirical parameter. |
| Indoor Dominant Path (IDP) Model [46] | (3) PL: total path loss [dB]; PL0: path loss at reference distance d0; n: path loss exponent (typically 2 for free-space); d: distance along the path between access point and receiver [m]; d0: reference distance [m]; LWi: wall loss for wall i [dB], dependent on wall material (e.g., drywall 2 dB, concrete 10 dB, thick concrete 15 dB, glass 2 dB); LBj: bending loss for direction change j [dB]. |
| Optimized Indoor Propagation Model [47] | (4) L: predicted total path loss [dB]; Ga: antenna gain; f: operating frequency [GHz]; R: transmitter–receiver distance [m]; nw: number of walls between Tx and Rx; mf: number of floors; P1, P2: are associate with the angle of incidence to a wall; k1–k6: coefficients optimized using measurement data via minimum least square error fitting. |
| Empirical Indoor Path Loss Model with Padé Approximant [48] | (5) PL(d): total path loss [dB]; PL0: free-space path loss at reference distance d0 = 1 m; γ: path-loss exponent which depends on floor index (np—number of floors), obtained from γ = 1.51 + 0.853·np − 0.109·np2; d: distance between transmitter and receiver [m]; random variable representing short-term fading, expressed as where x is Rayleigh distribution and σ is the standard deviation of measured data; Padé approximant term modeling inter-floor attenuation, where parameters a and b were empirically determined. |
| Meaningful Indoor Path-Loss Formula [49] | (6) PL(d): total path loss [dB]; PL0: path loss at reference distance d0 = 1 m; α: path-loss exponent representing wave divergence and guiding effects; β: specific attenuation coefficient [dB/m] due to obstructions such as walls, ceilings, furniture, and people. β can be estimated using β ≅ , where Lw is the average wall-penetration attenuation; d: distance between transmitter and receiver [m]. |
| Test Network Component | Versions/Type |
|---|---|
| HTTP protocol | HTTP protocol version 1.1 |
| MQTT protocol | MQTT version 3.1.1 |
| LoRaWAN protool | LoRaWAN version 1.0.x (1.0.1–1.0.4) |
| Node-RED (Node.js) | Node-RED version 1.3 |
| InfluxDB (Flux) | InfluxDB version 1.8.5 |
| Grafana | Grafana version 7.5 |
| TTN stack/region | The Things Stack v2, EU handler (ttn-handler-eu) |
| Docker/Compose | Docker version 3.8 |
| End DV transceiver module/ antenna models | HOPERF Microelectronics RFM95W/96W/98W [50]/omnidirectional anntena |
| GW1 transceiver module/antenna type | IMST GmbH iC880A [51]/omnidirectional antenna |
| GW2 transceiver module/antenna type | Larid Sentrius RG1xx [52]/omnidirectional antenna |
| GW3 transceiver module/antenna type | RAKwireless RAK831 [53]/omnidirectional antenna |
| GW4 transceiver module/antenna type | IMST GmbH iC880A [51]/omnidirectional antenna |
| LoRa DV Name | LoRa DV Location | LoRa GW Name | LoRa GW Room Location |
|---|---|---|---|
| DV1 | Lab. A507 | GW1 | Amphitheater A100 |
| DV2 | Lab. A509 | GW2 | Lab. A501 |
| GW3 | Lab. A507 | ||
| GW4 | Building roof |
| LoRa Communication Link (Location of LoRa Nodes) | Signal Propagation Environment | Number/Material Composition of Walls on Communication Links Among Communicating Nodes | Approximate Direct Distance Length (m) | Density of Obstacles Degrading the Signal Propagation |
|---|---|---|---|---|
| DV1 (Lab. A507)–GW1 (Amphitheater A100) | Indoor and outdoor | 2/Reinforced concrete/ | 62.00 | Large |
| DV2 (Lab. A509)–GW1 (Amphitheater A100) | Indoor and outdoor | 2/Plasterboard and3/Reinforced concrete | 80.00 | Large |
| DV1 (Lab. A507)–GW2 (Lab. A501) | Indoor | 3/Plasterboard | 24.20 | Medium |
| DV2 (Lab. A509)–GW2 (Lab. A501) | Indoor | 2/Plasterboard | 6.70 | Medium |
| DV1(Lab. A507)–GW3 (Lab. A507) | Indoor | 0/LOS | 1.00 | Small |
| DV2 (Lab. A509)–GW3 (Lab. A507) | Indoor | 2/Plasterboard | 20.80 | Medium |
| DV1 (Lab. A507)–GW4 (Building roof) | Indoor and outdoor | 5/Reinforced concrete | 61.40 | Very large |
| DV2 (Lab. A509)–GW4 (Building roof) | Indoor and outdoor | 5/Reinforced concrete | 80.00 | Very large |
| Parameter | Name/Velue |
|---|---|
| LoRa end devices | DV1, DV2 |
| LoRa gateways | GW1, GW2, GW3, GW4 |
| Transmit (Tx) power (dB) | 2, 10, 20 |
| Spreading factor | 7, 8, 9, 12 |
| Number of payload length (Bytes) | 1, 25, 50, 100, 200 |
| Transmit period/duty cycle (min) | 2, 3, 4, 5, 6, 8, 10, 13, 17, 18, 30 |
| Bandwidth (kHz) | 125 |
| Carrier frequency (MHz) | 867–869 |
| Coding rate (CR) | 4/5 |
| Day | MS/DV1 | DV1 Configuration (SF, Tx Power, PS, DC) | ToA (ms) | MS/DV2 | DV2 Configuration (SF, Tx Power, PS, DC) | ToA (ms) |
|---|---|---|---|---|---|---|
| 1 July | MS10/DV1 | SF7, 2 dBm, 25 B, 4 min | 61.7 | MS12/DV2 | SF12, 2 dBm, 25 B, 30 min | 1482.75 |
| 30 June–1 July | MS10/DV1 | SF7, 2 dBm, 25 B, 4 min | 61.7 | MS9/DV2 | SF12, 20 dBm, 1 B, 30 min | 827.39 |
| 1–2 July | MS11/DV1 | SF9, 2 dBm, 25 B, 13 min | 205.82 | MS12/DV2 | SF12, 2 dBm, 25 B, 30 min | 1482.75 |
| 2–3 July | MS14/DV1 | SF9, 10 dBm, 25 B, 13 min | 205.82 | MS13/DV2 | SF7, 10 dBm, 25 B, 4 min | 61.7 |
| 5–6 July | MS15/DV1 | SF12, 10 dBm, 25 B, 30 min | 1482.75 | MS16/DV2 | SF7, 20 dBm, 25 B, 5 min | 61.7 |
| 6–7 July | MS17/DV1 | SF9, 20 dBm, 25 B, 13 min | 205.82 | MS18/DV2 | SF12, 20 dBm, 25 B, 30 min | 1482.75 |
| 7–8 July | MS19/DV1 | SF7, 2 dBm, 50 B, 6 min | 97.54 | MS20/DV2 | SF9, 2 dB m, 50 B, 18 min | 328.7 |
| 8–9 July | MS21/DV1 | SF12, 2 dBm, 50 B, 30 min | 2301.95 | MS22/DV2 | SF7, 10 dBm, 50 B, 6 min | 97.54 |
| 9–12 July | MS23/DV1 | SF9, 10 dBm, 50 B, 18 min | 328.7 | MS24/DV2 | SF12, 10 dBm, 50 B, 30 min | 2301.95 |
| 12–13 July | MS25/DV1 | SF7, 20 dBm, 50 B, 6 min | 97.54 | MS26/DV2 | SF9, 20 dBm, 50 B, 18 min | 328.7 |
| 13–14 July | MS28/DV1 | SF7, 2 dBm, 100 B, 10 min | 174.34 | MS27/DV2 | SF12, 20 dBm, 50 B, 30 min | 2301.95 |
| 27–28 June | MS3/DV1 | SF12, 2 dBm, 1 B, 30 min | 827.39 | MS4/DV2 | SF7, 10 dBm, 1 B, 2 min | 25.86 |
| 14–15 July | MS30/DV1 | SF7, 20 dBm, 100 B, 10 min | 174.34 | MS29/DV2 | SF7, 10 dBm, 100 B, 10 min | 174.34 |
| 15–16 July | MS32/DV1 | SF7, 10 dBm, 200 B, 17 min | 317.7 | MS31/DV2 | SF7, 2 dBm, 200 B, 17 min | 317.7 |
| 16–19 July | MS33/DV1 | SF7, 20 dBm, 200 B, 17 min | 317.7 | MS34/DV2 | SF9, 2 dBm, 100 B, 30 min | 553.98 |
| 19–20 July | MS35/DV1 | SF9, 10 dBm, 100 B, 30 min | 553.98 | MS36/DV2 | SF9, 20 dBm, 100 B, 30 min | 553.98 |
| 20–21 July | MS38/DV1 | SF9, 2 dBm, 1 B, 8 min | 103.42 | MS37/DV2 | SF7, 2 dBm, 1 B, 4 min | 25.86 |
| 21–22 July | MS39/DV1 | SF12, 20 dBm, 1 B, 30 min | 827.39 | MS40/DV2 | SF8, 20 dBm, 200 B, 30 min | 563.71 |
| 22–23 July | MS41/DV1 | SF8, 20 dBm, 200 B, 30 min | 563.71 | MS42/DV2 | SF8, 2 dBm, 200 B, 30 min | 563.71 |
| 23–26 July | MS44/DV1 | SF8, 20 dBm, 200 B, 30 min | 563.71 | MS43/DV2 | SF8, 20 dBm, 200 B, 30 min | 563.71 |
| 28–29 June | MS5/DV1 | SF9, 10 dBm, 1 B, 8 min | 103.42 | MS6/DV2 | SF12, 10 dBm, 1 B, 30 min | 827.39 |
| 29 June | MS5/DV1 | SF9, 10 dBm, 1 B, 8 min | 103.42 | MS7/DV2 | SF7, 20 dBm, 1 B, 3 min | 25.86 |
| 29–30 June | MS8/DV1 | SF9, 20 dBm, 1 B, 8 min | 103.42 | MS7/DV2 | SF7, 20 dBm, 1 B, 3 min | 25.86 |
| Dataset/ Device | DV Configur. (SF/Tx/Power (dBm)/PS (B)/ DC (min)) | No. of Transm. LoRa Message. | No. of Receiv. LoRa Message. | PDR (%)/ Average GWPDR (%) | Dataset/ Device | DV Configur. (SF/Tx Power (dBm)/PS (B)/ DC (min)) | No. of Transm. LoRa Message. | No. of Receiv. LoRa Message. | PDR (%)/ Average GWPDR (%) |
|---|---|---|---|---|---|---|---|---|---|
| MS3/DV1 | SF12/2/1/30 | 48 | 48 | 100.00/77.08 | MS24/DV2 | SF12/10/50/30 | 147 | 147 | 100.00/100.00 |
| MS4/DV2 | SF7/10/1/2 | 622 | 306 | 49.20/48.6 | MS25/DV1 | SF7/20/50/6 | 313 | 312 | 99.68/97.26 |
| MS5/DV1 | SF9/10/1/8 | 193 | 193 | 100.00/99.87 | MS26/DV2 | SF9/20/50/18 | 105 | 105 | 100.00/98.80 |
| MS6/DV2 | SF12/10/1/30 | 51 | 51 | 100.00/99.51 | MS27/DV2 | SF12/20/50/30 | 47 | 47 | 100.00/100.00 |
| MS7/DV2 | SF7/20/1/3 | 307 | 306 | 99.67/99.43 | MS28/DV1 | SF7/2/100/10 | 145 | 145 | 100.00/94.79 |
| MS8/DV1 | SF9/20/1/8 | 178 | 178 | 100.00/99.44 | MS29/DV2 | SF7/10/100/10 | 144 | 144 | 100.00/99.13 |
| MS9/DV2 | SF12/20/1/30 | 45 | 45 | 100.00/100.00 | MS30/DV1 | SF7/20/100/10 | 143 | 142 | 99.3/96.69 |
| MS10/DV1 | SF7/2/25/4 | 364 | 363 | 99.73/89.98 | MS31/DV2 | SF7/2/200/17 | 87 | 87 | 100.00/99.14 |
| MS11/DV1 | SF9/2/25/13 | 123 | 123 | 100.00/99.38 | MS32/DV1 | SF7/10/200/17 | 87 | 87 | 100.00/95.6 |
| MS12/DV2 | SF12/2/25/30 | 53 | 53 | 100.00/99.53 | MS33/DV1 | SF7/20/200/17 | 255 | 255 | 100.00/98.53 |
| MS13/DV2 | SF7/10/25/4 | 306 | 306 | 100.00/99.59 | MS34/DV2 | SF9/2/100/30 | 145 | 145 | 100.00/99.65 |
| MS14/DV1 | SF9/10/25/13 | 290 | 289 | 99.65/98,96 | MS35/DV1 | SF9/10/100/30 | 46 | 46 | 100.00/97.83 |
| MS15/DV1 | SF12/10/25/30 | 50 | 50 | 100.00/97.5 | MS36/DV2 | SF9/20/100/30 | 46 | 46 | 100.00/98.37 |
| MS16/DV2 | SF7/20/25/5 | 297 | 297 | 100.00/99.24 | MS37/DV2 | SF7/2/1/4 | 359 | 359 | 100.00/99.09 |
| MS17/DV1 | SF9/20/25/13 | 121 | 121 | 100.00/98.75 | MS38/DV1 | SF9/2/1/8 | 180 | 180 | 100.00/99.16 |
| MS18/DV2 | SF12/20/25/30 | 53 | 53 | 100.00/99.53 | MS39/DV1 | SF12/20/1/30 | 48 | 48 | 100.00/100.00 |
| MS19/DV1 | SF7/2/50/6 | 234 | 233 | 99.57/99.54 | MS40/DV2 | SF8/20/200/30 | 48 | 48 | 100.00/96.88 |
| MS20/DV2 | SF9/2/50/18 | 78 | 78 | 100.00/99.04 | MS41/DV1 | SF8/20/200/30 | 49 | 49 | 100.00/97.92 |
| MS21/DV1 | SF12/2/50/30 | 48 | 48 | 100.00/100.00 | MS42/DV2 | SF8/2/200/30 | 49 | 49 | 100.00/96.36 |
| MS22/DV2 | SF7/10/50/6 | 237 | 237 | 100.00/99.16 | MS43/DV2 | SF8/20/200/30 | 136 | 136 | 100.00/98.71 |
| MS23/DV1 | SF9/10/50/18 | 245 | 244 | 99.59/98.67 | MS44/DV1 | SF8/20/200/30 | 137 | 133 | 97.08/92.65 |
| User Device | Location | Measurement Set | Number of Collected Metadata | SF | Tx Power (dB) | Packet Size (B) | DC -Total Tx Period (min) |
|---|---|---|---|---|---|---|---|
| DV2 | LAB A509 | MS12 | 211 | 12 | 2 | 25 | 30 |
| DV1 | LAB A507 | MS15 | 195 | 12 | 10 | 25 | 30 |
| DV2 | LAB A509 | MS18 | 211 | 12 | 20 | 25 | 30 |
| DV1 | LAB A507 | MS21 | 192 | 12 | 2 | 50 | 30 |
| DV2 | LAB A509 | MS24 | 587 | 12 | 10 | 50 | 30 |
| DV2 | LAB A509 | MS27 | 188 | 12 | 20 | 50 | 30 |
| User Device | Location | Measurement Set (MS) | Number of Collected Metadata | SF | Tx Power (dB) | Payload Size (B) | DC – Tx Period (min) |
|---|---|---|---|---|---|---|---|
| DV2 | LAB A509 | MS9 | 180 | 12 | 20 | 1 | 30 |
| DV2 | LAB A509 | MS18 | 211 | 12 | 20 | 25 | 30 |
| DV2 | LAB A509 | MS27 | 188 | 12 | 20 | 50 | 30 |
| DV1 | LAB A507 | MS5 | 766 | 9 | 10 | 1 | 8 |
| DV1 | LAB A507 | MS14 | 1140 | 9 | 10 | 25 | 13 |
| DV1 | LAB A507 | MS23 | 959 | 9 | 10 | 50 | 18 |
| DV1 | LAB A507 | MS35 | 180 | 9 | 10 | 100 | 30 |
| User Dev. | Location | Measurement Set | Number of Collected Metadata | SF | TX Power (dB) | Packet Size (B) | TX Period (min) |
|---|---|---|---|---|---|---|---|
| DV2 | LAB A509 | MS7 | 1217 | 7 | 20 | 1 | 3 |
| DV2 | LAB A509 | MS26 | 411 | 9 | 20 | 50 | 18 |
| DV2 | LAB A509 | MS9 | 180 | 12 | 20 | 1 | 30 |
| DV2 | LAB A509 | MS16 | 1175 | 7 | 20 | 25 | 5 |
| DV2 | LAB A509 | MS36 | 181 | 9 | 20 | 100 | 30 |
| DV2 | LAB A509 | MS18 | 211 | 12 | 20 | 25 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorincz, J.; Levarda, K.; Čagalj, M.; Kukuruzović, A. A Comprehensive Analysis of LoRa Network Wireless Signal Quality in Indoor Propagation Environments. J. Sens. Actuator Netw. 2025, 14, 111. https://doi.org/10.3390/jsan14060111
Lorincz J, Levarda K, Čagalj M, Kukuruzović A. A Comprehensive Analysis of LoRa Network Wireless Signal Quality in Indoor Propagation Environments. Journal of Sensor and Actuator Networks. 2025; 14(6):111. https://doi.org/10.3390/jsan14060111
Chicago/Turabian StyleLorincz, Josip, Krešimir Levarda, Mario Čagalj, and Amar Kukuruzović. 2025. "A Comprehensive Analysis of LoRa Network Wireless Signal Quality in Indoor Propagation Environments" Journal of Sensor and Actuator Networks 14, no. 6: 111. https://doi.org/10.3390/jsan14060111
APA StyleLorincz, J., Levarda, K., Čagalj, M., & Kukuruzović, A. (2025). A Comprehensive Analysis of LoRa Network Wireless Signal Quality in Indoor Propagation Environments. Journal of Sensor and Actuator Networks, 14(6), 111. https://doi.org/10.3390/jsan14060111

