You are currently viewing a new version of our website. To view the old version click .
Journal of Sensor and Actuator Networks
  • Article
  • Open Access

7 April 2023

Enhanced Traffic Sign Recognition with Ensemble Learning

,
,
and
Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Advances in Intelligent Transportation Systems (ITS)

Abstract

With the growing trend in autonomous vehicles, accurate recognition of traffic signs has become crucial. This research focuses on the use of convolutional neural networks for traffic sign classification, specifically utilizing pre-trained models of ResNet50, DenseNet121, and VGG16. To enhance the accuracy and robustness of the model, the authors implement an ensemble learning technique with majority voting, to combine the predictions of multiple CNNs. The proposed approach was evaluated on three different traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The results demonstrate the efficacy of the ensemble approach, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSD dataset, and 94.55% on the TSRD dataset.

1. Introduction

The technology market continues to grow, as consumers demand new and innovative products. Leading technology companies, such as Microsoft, Tesla, and Ford, are investing in the development of autonomous vehicles. However, the recent rise in the number of reported car crashes involving autonomous vehicles, highlights the need for advanced and accurate machine learning algorithms.
Traffic sign recognition plays a crucial role in the functioning of autonomous vehicles [1,2,3]. The ability to accurately identify and interpret traffic signs is necessary for autonomous vehicles to navigate roads safely and efficiently. Machine learning techniques are used to train and test models on traffic sign data, including prohibitory, danger, mandatory, and other signs. The goal of these models is to achieve a high level of accuracy in recognizing traffic signs, which will contribute to the development of “smarter autonomous cars” and improve driver safety through advanced driver alert systems.
This paper presents an investigation into using ensemble learning with convolutional neural networks (CNNs) for traffic sign recognition. Ensemble learning combines the predictions of multiple CNN models, to achieve improved accuracy and robustness. The authors perform hyperparameter tuning on the optimizer, batch size, epochs, and learning rate, to determine the best values for practical implementation. The proposed ensemble learning method is compared to existing approaches using three distinct traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The main contributions of this study are:
  • An exploration of the use of ensemble learning with pre-trained convolutional neural network (CNN) models for traffic sign recognition.
  • Practical hyperparameter tuning of the optimizer, batch size, epochs, and learning rate to find the best values for the models.
  • Comparison of the proposed ensemble learning method with existing methods, on three distinct traffic sign datasets: GTSRB, BTSD, and TSRD.
The paper is structured into several sections, to provide a clear description of the research. Section 2 presents a review of the existing literature on traffic sign recognition. Section 3 outlines the methods used in the experiment, including ensemble learning with CNNs. The datasets used for training and testing are described in Section 4. The hyperparameter tuning process, aimed at optimizing the models’ performance, is detailed in Section 5. The experimental results and their comparison with existing methods are presented in Section 6. Finally, the key findings are summarized and the conclusion of the study is provided in Section 7.

3. Traffic Sign Recognition with Ensemble Learning

The current state-of-the-art in traffic sign recognition relies heavily on the use of a single CNN. While individual CNNs have their own advantages and limitations, this paper proposes a solution that overcomes these limitations, by combining the strengths of multiple CNNs, through the use of an ensemble model. The ensemble model utilized in this study incorporates three different CNNs: ResNet50, DenseNet121, and VGG16.
The overall process of the proposed solution is outlined in Figure 1. To begin, data augmentation is applied to increase the size of the training set and address the issue of imbalanced datasets. Next, each of the three CNNs is trained on the augmented training set to learn representations and assess their ability to generalize. The trained models are then used to make predictions on the testing set. Finally, the predictions of all models are fused, using majority voting to determine the final class label.
Figure 1. General pipeline of the proposed traffic sign recognition.

3.1. Data Augmentation

Data augmentation is a widely-used technique in machine learning, that aims to increase the size of the training set by generating new samples based on existing ones. This helps to reduce the risk of overfitting, where the model becomes too specialized to the training data and fails to generalize to new examples. Another important aspect of data augmentation is its ability to balance imbalanced datasets, where one or more classes have a significantly lower number of samples compared to others.
In this work, data augmentation is applied using a set of techniques, including width shift, height shift, brightness adjustment, shear transformation, and zoom. These techniques produce variations of the original samples, thereby increasing the size of the training set and reducing the impact of imbalanced datasets. Figure 2 illustrates some examples of the augmented data.
Figure 2. Sample output images of data augmentation techniques on GTSRB (top row), BTRD (middle row), and TSRD (bottom row).
  • Width shift: The image undergoes a horizontal shift, and the range for the width shift is set to 0.2. This means the image will be randomly shifted by a value between +0.2 times the image width and −0.2 times the image width. Positive values will move the image to the right, and negative values will move the image to the left.
  • Height shift: The image undergoes a vertical shift, either upwards or downwards. The range of the height shift is set to 0.2, which means the shift will be from −0.2 times the image width to +0.2 times the image width. Positive values selected randomly will result in an upward movement of the image, whereas negative values will result in a downward movement.
  • Shear: Shear refers to the process of warping an image along one axis, to change or create perceived angles. The range for shear is set to 0.2, which means the shear angle will be 20 degrees when viewed counterclockwise.
  • Zoom: The zoom function allows for zooming in to or out of an image. A value less than 1 will result in enlarging the image, while a value greater than 1 will result in zooming out. The range for zoom is set to 0.2, meaning that the image will be zoomed in.
  • Fill mode: This defines the approach to be taken for filling the pixels that were shifted outside the input region. The default fill mode is “nearest”, which fills the empty pixels with values from the nearest non-empty pixel.

3.2. Ensemble Model

In the proposed method, several pre-trained CNN models, including ResNet50, VGG16, and DenseNet121, are utilized as the backbone. After each pre-trained model, a flatten layer is added, followed by two blocks that consist of a dense layer, a batch normalization layer, a leakyReLU activation layer, and a dropout layer. The model is concluded with a classification layer. Figure 3 displays the architecture of each model.
Figure 3. The architecture of the proposed CNN pre-trained model.

3.3. Pre-Trained Models

ResNet50 is a 50-layer deep CNN that is a variation of the ResNet architecture. It consists of 48 convolution layers, a max pool layer, and an average pool layer. ResNet50 is known for its ability to learn rich image features for a wide range of images. Additionally, the network has a unique characteristic of not requiring all neurons to fire in every epoch, making it computationally efficient.
VGG16 is a 16-layer deep CNN that has a large number of parameters, with a total of over 138 million. Despite its size, VGG-16 has a simple architecture and has proven to perform well on various applications and datasets outside of ImageNet.
DenseNet121 is a part of the DenseNet family and has 8 million parameters. Unlike other networks, it utilizes the concept of residual connections, where the output from preceding layers is concatenated instead of summed. Furthermore, DenseNet121 has a large number of dense connections, enabling the network to effectively utilize all of the preceding layer’s feature maps as input for the subsequent layers.

3.3.1. Flatten Layer

The generated 2-dimensional arrays from pooling feature maps are all flattened into a single, long continuous linear vector.

3.3.2. Dense Layer

A dense layer is one in which each neuron is connected to every other neuron in the preceding layer. In this type of layer, each neuron in the current layer receives input from every neuron in the preceding layer. This input is multiplied with weights, and a bias term is added, before passing through an activation function. In a model, the last dense layer typically has an activation function, such as softmax, which is used for multi-class classification tasks. The number of units in a dense layer can be set to any value, but in the proposed model, it is set to 512.

3.3.3. Batch Normalization

The batch normalization layer normalizes the inputs. The layer uses a transformation to maintain the mean and standard deviation of the output near 0 and 1, respectively. It is important to note that batch normalization exhibits different behavior during inference compared to training.

3.3.4. LeakyReLU

Leaky ReLU is a variant of the popular rectified linear unit (ReLU) activation function. It is used in deep learning models to introduce non-linearity into the activation of neurons. The function is defined as:
f ( x ) = max ( α x , x )
where α is a small positive value, typically 0.01. If the input x is positive, then the output is equal to x, just like in a traditional ReLU. If the input x is negative, then the output is α x , which is a small, non-zero value. This allows the network to still propagate some gradient during backpropagation, even when x is negative, which can help to mitigate the issue of “dead neurons” in a model. In this work, the α is set to 0.2.

3.3.5. Dropout Layer

The dropout layer randomly sets input units to 0, with a probability of ‘rate’ during training, to prevent overfitting. Non-zero inputs are scaled up by 1/(1 − rate), to maintain the total sum of inputs. In the proposed model, the dropout rate is set to 0.3.
The CNN architecture is presented in Table 2, including the name of each layer and the corresponding hyperparameter settings. The proposed model has a total of 11 layers.
Table 2. Layer name and hyperparameter settings of CNN.

3.4. Optimization for Model Training

In the model training process, class weight balancing is achieved through oversampling, which increases the instances of classes with fewer samples, to match the class with the most samples. To prevent overfitting and reduce training time, early stopping is used. This technique automatically terminates training when a selected performance metric reaches a plateau. Fine tuning is also performed, to optimize model performance.

3.5. Classification and Prediction Fusion

The trained CNN model is evaluated on a test dataset, to determine its accuracy in classifying images. During the classification process, the model learns from the training data for each category (prohibitory, danger, mandatory, etc.) and makes predictions on the test data. To improve prediction accuracy, the outputs of multiple models are combined through majority voting. This technique selects the class with the most votes, where a class must receive over 50% of the votes to be considered the prediction. Empirically, majority voting has been shown to be an effective method for combining classifier predictions.

4. Datasets

This project uses the GTSRB [22], BTSD [23], and TSRD datasets for performance evaluation. These datasets, sourced from online sources, are suitable for traffic sign recognition and contain multiple classes. These three datasets are used to train and test the proposed models. Before use, all datasets were converted to grayscale and histogram equalization was applied.

4.1. German Traffic Sign Recognition Benchmark (GTSRB)

The GTSRB dataset was collected by the Institut für Neuroinformatik and published by Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. It contains 51,839 images, belonging to 43 different traffic sign classes, including danger, prohibitory, mandatory, and others. The original images are in PPM format and the dataset is imbalanced, so oversampling is performed. After oversampling, the dataset consists of 96,659 images, with 80,108 images used for training, 3921 images used for validation, and 12,630 images used for testing. Figure 4 shows some sample images of the GTSRB dataset.
Figure 4. Sample images of the GTSRB dataset.

4.2. Belgium TS Dataset (BTSD)

The BTSD was publicly hosted and released by VISICS, ESAT, and KU Leuven. It consists of 7095 images, belonging to 62 different classes of traffic signs, which were originally in PPM format and were converted to JPG. Due to some classes having a limited number of images, data cleaning was performed to remove those classes. After cleaning and oversampling, to balance the dataset, the BTSD consists of 20,646 images with 53 classes. Some sample images of the BTSD are presented in Figure 5.
Figure 5. Sample images of the BTSD dataset.

4.3. Chinese Traffic Sign Database (TSRD)

The TSRD was acknowledged by the National Nature Science Foundation of China (NSFC) through a grant. It consists of 6,164 traffic sign images and has 58 classes. The images were collected using Baidu Street View or cameras in natural settings, and captured under a variety of conditions, including different weather, lighting, and partial occlusion. Data cleaning and oversampling were performed to address the imbalance in the dataset. Finally, the TSRD dataset has 24,989 images with 57 classes, with 22,550 images used for training, 439 images used for validation, and 200 images used for testing. Figure 6 provides some sample images of the TSRD dataset.
Figure 6. Sample images of the TSRD dataset.
Table 3 presents the number of samples in the datasets before and after data augmentation. The description of each dataset is summarized in Table 4.
Table 3. Number of samples before and after oversampling.
Table 4. Summary of datasets.

5. Hyperparameter Tuning

Hyperparameter tuning is an essential step in the development of deep learning models, as it involves selecting the most optimal set of hyperparameters to maximize the performance of the model. In this study, three key hyperparameters were chosen for tuning: batch size, learning rate, and optimizer.
The batch size was tested with three different values, namely 16, 32, and 64. The learning rate was tested with three values, 0.001, 0.0001, and 0.00001. Finally, three optimizers were used in the tuning process, namely Adam, stochastic gradient descent (SGD), and adaptive gradient algorithm (AdaGrad). The best hyperparameter values were determined based on the highest test accuracy on the GTSRB dataset.
Table 5 presents the results of the hyperparameter tuning experiment. As shown in the table, a batch size of 64 was found to produce the highest accuracy of 98.84%. The use of the Adam optimizer, and a learning rate of 0.001, also contributed to the optimal results.
Table 5. Summary of hyperparameter tuning.
It is noteworthy to mention, that the choice of batch size plays a crucial role in determining the accuracy of deep learning systems. This is due to the fact that batch size affects the estimation of the error gradient, which is a crucial component in the optimization of deep learning models. A larger batch size may speed up processing time, as GPUs can utilize more data, but it also increases the risk of poor generalization, as demonstrated in Table 6. Therefore, it is essential to strike a balance between batch size and accuracy, to ensure the optimal performance of deep learning systems.
Table 6. Traffic sign recognition accuracy (%) at different batch sizes (L = 0.001, O = Adam).
The learning rate is a critical hyperparameter, that plays a pivotal role in determining the performance of a deep learning model. It acts as a multiplier that controls the step size at each iteration of the optimization algorithm, thereby affecting the pace at which the model approaches the optimal weights.
The value of the learning rate has a direct impact on the optimization process and the ultimate performance of the deep learning model. If the learning rate is set too high, the model may overstep the optimal solution and result in unstable convergence. On the other hand, if the learning rate is too low, the optimization process may take an excessively long time to reach the optimal weights.
The results of the hyperparameter tuning experiment showed that the best accuracy was achieved with a learning rate of 0.001. This value strikes a delicate balance between the pace of convergence and stability, ensuring that the optimization process converges to the optimal weights in an efficient manner. The results of the hyperparameter tuning experiment shown in Table 7, suggest that a learning rate of 0.001 is an effective value, that provides a good balance between convergence speed and stability.
Table 7. Traffic sign recognition accuracy (%) at different learning rates (B = 64, O = Adam).
The Adam optimizer is a widely used optimization algorithm in deep learning, based on the stochastic gradient descent method. It is a unique optimization algorithm that updates the learning rate for each network weight individually, taking into account the historical gradient information.
The Adam optimizer combines the benefits of the RMS Prop and Adagrad algorithms, making it a versatile optimization algorithm with several advantages. Firstly, it requires minimal tuning, making it easy to implement and use. Secondly, it is computationally efficient and has a low memory requirement, making it ideal for large-scale deep learning models.
These advantages have contributed to the popularity of the Adam optimizer and its widespread use in deep learning publications. In the case of the proposed ensemble learning model, the use of the Adam optimizer resulted in the highest accuracy of 98.84%, as shown in Table 8.
Table 8. Traffic sign recognition accuracy (%) with different optimizers (B = 64, L = 0.001).

6. Experimental Results and Analysis

This section presents the experimental results of the proposed ensemble learning method, which was applied to the GTSRB, BTSD, and TSRD datasets, and compared with existing traffic sign classification algorithms. The performance of the individual models and the proposed ensemble learning method was evaluated based on various metrics such as accuracy, precision, recall, and F1 score.
The performances of the individual models, as well as the proposed ensemble learning method, in terms of accuracy, precision, recall, and F1 score, are shown in Table 9, Table 10 and Table 11. On the GTSRB dataset, the ensemble learning model achieved a higher F1 score of 98.84%, compared to the F1 score of the individual models, where ResNet50 achieved 97.37%, DenseNet121 achieved 97.38%, and VGG16 achieved 98.02%.
Table 9. Accuracy, precision, recall, and F1 score on GTSRB.
Table 10. Accuracy, precision, recall, and F1 score on BTSD.
Table 11. Accuracy, precision, recall, and F1 score on TSRD.
On the BTSD dataset, the F1 scores of ResNet50, DenseNet121, and VGG16 were 97.62%, 97.34%, and 96.98%, respectively. The ensemble learning method again outperformed the individual models, with an accuracy of 98.33%. The improvement in performance can be attributed to the fact that the ensemble learning method is more robust and less sensitive to noise in the data, which is an important characteristic of real-world datasets.
On the TSRD dataset, ResNet50, DenseNet121, and VGG16 recorded F1 scores of 91.05%, 90.25%, and 81.35%, respectively. By fusing the predictions of the models, the F1 score increased to 96.16%. The improvement demonstrates that the ensemble learning method is able to mitigate the wrong predictions of individual models and improve the overall performance. The ensemble learning method is also more robust to the high inter-class similarity in the TSRD, which is a major challenge in traffic sign classification.
One of the main reasons why the ensemble learning method outperformed the individual models, is that it combines the predictions of multiple models. The ensemble method is able to mitigate the weaknesses of individual models by taking into account their predictions and fusing them into a single prediction. This reduces the risk of making wrong predictions, that individual models may make due to their own biases or limitations.

6.1. Comparative Results with the Existing Works

The experimental results presented in Table 12 demonstrate that the proposed ensemble learning method outperforms existing deep learning techniques, in terms of accuracy, on the GTSRB dataset. CNN-based models, including CNN [6], ENet [8], CNN [11], CNN [12], MCNN [15], and CNN [17], achieved recognition rates ranging from 96.00% to 98.60%, while ViT [16] achieved an accuracy of 98.82%. The unsupervised LBP model [5] had an accuracy of 95.00%.
Table 12. Comparative results on GTSRB dataset.
The proposed ensemble learning method achieved an accuracy of 98.84%, which is higher than all the other individual models and ViT. This shows that by combining the predictions of multiple pre-trained CNN models, the ensemble learning method is able to achieve improved performance compared to the individual models. The optimized combination of models, batch sizes, learning rates, and other hyperparameters, contributes to the overall success of the ensemble, resulting in a superior accuracy rate.
Table 13 presents the comparison of current approaches with ensemble learning on the BTSD dataset. The accuracy of the deep learning algorithms NCC [7], CNN [9], CNN [6], and ELM [20] on the dataset were 93.10%, 97.06%, 98.10%, 98.30%, and 98.37%, respectively. The proposed ensemble learning method achieved a higher classification rate, of 98.33%, on the BTSD dataset, compared to existing approaches. The proposed method improved accuracy by combining three CNN models in the ensemble layer.
Table 13. Comparative results on BTSD dataset.
On the TSRD dataset, Table 14 compares the experimental results of the current methods and ensemble learning. It can be observed that, in terms of accuracy, the proposed method outperforms the machine learning approaches on the TSRD dataset. One of the main causes is that, TSRD consists of the most classes, as compared to the other datasets, therefore it will be more complicated to classify. The existing methods used are only using one model, thus, ensemble learning with the combination of three models will give a better performance. The proposed method achieved 96.16% accuracy, which is much improved compared to the existing methods.
Table 14. Comparative results on TSRD dataset.

6.2. Confusion Matrices

Figure 7 presents the confusion matrix for the proposed ensemble learning model, on the GTSRB dataset.The blue shade in the confusion matrix indicates the true positive values, with deeper shades representing higher values. According to the confusion matrix, classes 10 and 14 have the highest misclassification rates. The second highest misclassification rates are between classes 10 and 19. These high rates are likely due to the presence of background noise in the traffic sign images, which impacts the classification. Examples of misclassified classes can be seen in Figure 8.
Figure 7. Confusion matrix of ensemble learning on the GTSRB dataset.
Figure 8. Misclassified classes of 10 and 14 (left) and 10 and 19 (right).
The confusion matrix of the ensemble learning model on the BTSD is depicted in Figure 9. The highest misclassified classes, classes 30 and 35, and the second-highest misclassified classes, between classes 32 and 35, are possibly due to the similarities in the shapes (circles) and symbols of the traffic signs for classes 30 and 35. Samples of the misclassified classes can be viewed in Figure 10.
Figure 9. Confusion matrix of ensemble learning on the BTSD dataset.
Figure 10. Misclassified classes of 30 and 35 (left) and 32 and 35 (right).
According to the confusion matrix in Figure 11, it is evident that the highest misclassified classes in the TSRD dataset are classes 24 and 48. Similar to the GTSRB dataset, traffic signs that are circular or triangular in shape are frequently misclassified. The samples of these misclassified classes are depicted in Figure 12.
Figure 11. Confusion matrix of ensemble learning on the TSRD dataset.
Figure 12. Misclassified classes of 24 and 48.

7. Conclusions

This paper propose an ensemble learning deep learning model for traffic sign classification. Ensemble learning involves combining several models to produce a more accurate result, compared to relying on a single model. This approach not only improves the accuracy but also enhances the robustness of the model, by reducing its performance variability and prediction dispersion. To implement the ensemble model, the researchers utilized three pre-trained deep learning models: ResNet50, DenseNet121, and VGG16. The proposed ensemble model was evaluated on three different traffic sign datasets: the GTSRB dataset, the BTSR dataset, and the TSRD dataset. The results showed that the proposed ensemble learning model outperforms existing traffic sign classification techniques, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSR dataset, and 94.55% on the TSRD dataset. Attention-based models, especially the vision transformer, have shown significant advancements in image recognition tasks. Therefore, future research can investigate the effectiveness of attention-based models for traffic sign recognition, by exploring their potential advantages and addressing their challenges. This can contribute to advancing the state-of-the-art in traffic sign recognition and provide new insights into the application of attention-based models in computer vision tasks.

Author Contributions

Conceptualization, X.R.L., C.P.L., K.M.L. and T.S.O.; methodology, X.R.L., C.P.L., K.M.L. and T.S.O.; software, X.R.L. and C.P.L.; validation, X.R.L., C.P.L., K.M.L. and T.S.O.; formal analysis, X.R.L.; investigation, X.R.L.; resources, X.R.L.; data curation, X.R.L. and C.P.L.; writing—original draft preparation, X.R.L.; writing—review and editing, X.R.L., C.P.L., K.M.L. and T.S.O.; visualization, X.R.L. and C.P.L.; supervision, C.P.L. and T.S.O.; project administration, C.P.L.; funding acquisition, C.P.L. All authors have read and agreed to the published version of the manuscript.

Funding

The research in this work was supported by the Fundamental Research Grant Scheme of the Ministry of Higher Education, under award number FRGS/1/2021/ICT02/MMU/02/4, and Multimedia University Internal Research Grant, with award number MMUI/220021.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zhu, Y.; Yan, W.Q. Traffic sign recognition based on deep learning. Multimed. Tools Appl. 2022, 81, 17779–17791. [Google Scholar] [CrossRef]
  2. Abdel-Salam, R.; Mostafa, R.; Abdel-Gawad, A.H. RIECNN: Real-time image enhanced CNN for traffic sign recognition. Neural Comput. Appl. 2022, 34, 6085–6096. [Google Scholar] [CrossRef]
  3. Lu, E.H.C.; Gozdzikiewicz, M.; Chang, K.H.; Ciou, J.M. A hierarchical approach for traffic sign recognition based on shape detection and image classification. Sensors 2022, 22, 4768. [Google Scholar] [CrossRef] [PubMed]
  4. Siniosoglou, I.; Sarigiannidis, P.; Spyridis, Y.; Khadka, A.; Efstathopoulos, G.; Lagkas, T. Synthetic Traffic Signs Dataset for Traffic Sign Detection & Recognition in Distributed Smart Systems. In Proceedings of the 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS), Pafos, Cyprus, 14–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 302–308. [Google Scholar]
  5. Kerim, A.; Efe, M.Ö. Recognition of Traffic Signs with Artificial Neural Networks: A Novel Dataset and Algorithm. In Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 171–176. [Google Scholar]
  6. Li, W.; Li, D.; Zeng, S. Traffic sign recognition with a small convolutional neural network. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 044034. [Google Scholar] [CrossRef]
  7. Yazdan, R.; Varshosaz, M. Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation. ISPRS J. Photogramm. Remote Sens. 2021, 171, 18–35. [Google Scholar] [CrossRef]
  8. Bangquan, X.; Xiong, W.X. Real-time embedded traffic sign recognition using efficient convolutional neural network. IEEE Access 2019, 7, 53330–53346. [Google Scholar] [CrossRef]
  9. Mehta, S.; Paunwala, C.; Vaidya, B. CNN based traffic sign classification using Adam optimizer. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1293–1298. [Google Scholar]
  10. Zhang, J.; Wang, W.; Lu, C.; Wang, J.; Sangaiah, A.K. Lightweight deep network for traffic sign classification. Ann. Telecommun. 2020, 75, 369–379. [Google Scholar] [CrossRef]
  11. Sokipriala, J.; Orike, S. Traffic sign classification comparison between various convolution neural network models. Int. J. Sci. Eng. Res. 2021, 12, 165–171. [Google Scholar] [CrossRef]
  12. Vincent, M.A.; Vidya, K.; Mathew, S.P. Traffic sign classification using deep neural network. In Proceedings of the 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 3–5 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 13–17. [Google Scholar]
  13. Madan, R.; Agrawal, D.; Kowshik, S.; Maheshwari, H.; Agarwal, S.; Chakravarty, D. Traffic Sign Classification using Hybrid HOG-SURF Features and Convolutional Neural Networks. In Proceedings of the ICPRAM, Prague, Czech Republic, 19–21 February 2019; pp. 613–620. [Google Scholar]
  14. Serna, C.G.; Ruichek, Y. Classification of traffic signs: The european dataset. IEEE Access 2018, 6, 78136–78148. [Google Scholar] [CrossRef]
  15. Chen, L.; Zhao, G.; Zhou, J.; Kuang, L. Real-time traffic sign classification using combined convolutional neural networks. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 399–404. [Google Scholar]
  16. Zheng, Y.; Jiang, W. Evaluation of Vision Transformers for Traffic Sign Classification. Wirel. Commun. Mob. Comput. 2022, 2022, 3041117. [Google Scholar] [CrossRef]
  17. Usha, V. Traffic Sign Classification Using Deep Learning. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 250–253. [Google Scholar]
  18. Fang, H.F.; Cao, J.; Li, Z.Y. A small network MicronNet-BF of traffic sign classification. Comput. Intell. Neurosci. 2022, 2022, 3995209. [Google Scholar] [CrossRef] [PubMed]
  19. Fu, H.; Wang, H. Traffic Sign Classification Based on Prototypes. In Proceedings of the 2021 16th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Chengdu, China, 26–28 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7–10. [Google Scholar]
  20. Aziz, S.; Youssef, F. Traffic sign recognition based on multi-feature fusion and ELM classifier. Procedia Comput. Sci. 2018, 127, 146–153. [Google Scholar] [CrossRef]
  21. Soni, D.; Chaurasiya, R.K.; Agrawal, S. Improving the Classification Accuracy of Accurate Traffic Sign Detection and Recognition System Using HOG and LBP Features and PCA-Based Dimension Reduction. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, 26–28 Ferbruary 2019; Amity University Rajasthan: Jaipur, India, 2019. [Google Scholar]
  22. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In Proceedings of the IEEE International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460. [Google Scholar]
  23. Prisacariu, V.A.; Timofte, R.; Zimmermann, K.; Reid, I.; van Gool, L. Integrating object detection with 3D tracking towards a better driver assistance system. In Proceedings of the Twentieth International Conference on Pattern Recognition, Washington, DC, USA, 23–26 August 2010; pp. 1–4. [Google Scholar]
  24. Haque, W.A.; Arefin, S.; Shihavuddin, A.; Hasan, M.A. DeepThin: A novel lightweight CNN architecture for traffic sign recognition without GPU requirements. Expert Syst. Appl. 2021, 168, 114481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.