

 jsan-12-00033

jsan-12-00033

J. Sens. Actuator Netw. 2023, 12(2), 33; doi:10.3390/jsan12020033

Article

Enhanced Traffic Sign Recognition with Ensemble Learning

Xin Roy Lim[image: Orcid], Chin Poo Lee *[image: Orcid], Kian Ming Lim[image: Orcid] and Thian Song Ong[image: Orcid]

Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia

*

Correspondence: cplee@mmu.edu.my

Academic Editors: Hovannes Kulhandjian and Michel Kulhandjian

Received: 3 March 2023 / Revised: 21 March 2023 / Accepted: 21 March 2023 / Published: 7 April 2023

Abstract

:

With the growing trend in autonomous vehicles, accurate recognition of traffic signs has become crucial. This research focuses on the use of convolutional neural networks for traffic sign classification, specifically utilizing pre-trained models of ResNet50, DenseNet121, and VGG16. To enhance the accuracy and robustness of the model, the authors implement an ensemble learning technique with majority voting, to combine the predictions of multiple CNNs. The proposed approach was evaluated on three different traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The results demonstrate the efficacy of the ensemble approach, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSD dataset, and 94.55% on the TSRD dataset.

Keywords:

traffic sign recognition; convolutional neural network; ensemble learning

1. Introduction

The technology market continues to grow, as consumers demand new and innovative products. Leading technology companies, such as Microsoft, Tesla, and Ford, are investing in the development of autonomous vehicles. However, the recent rise in the number of reported car crashes involving autonomous vehicles, highlights the need for advanced and accurate machine learning algorithms.

Traffic sign recognition plays a crucial role in the functioning of autonomous vehicles [1,2,3]. The ability to accurately identify and interpret traffic signs is necessary for autonomous vehicles to navigate roads safely and efficiently. Machine learning techniques are used to train and test models on traffic sign data, including prohibitory, danger, mandatory, and other signs. The goal of these models is to achieve a high level of accuracy in recognizing traffic signs, which will contribute to the development of “smarter autonomous cars” and improve driver safety through advanced driver alert systems.

This paper presents an investigation into using ensemble learning with convolutional neural networks (CNNs) for traffic sign recognition. Ensemble learning combines the predictions of multiple CNN models, to achieve improved accuracy and robustness. The authors perform hyperparameter tuning on the optimizer, batch size, epochs, and learning rate, to determine the best values for practical implementation. The proposed ensemble learning method is compared to existing approaches using three distinct traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The main contributions of this study are:

	
An exploration of the use of ensemble learning with pre-trained convolutional neural network (CNN) models for traffic sign recognition.

	
Practical hyperparameter tuning of the optimizer, batch size, epochs, and learning rate to find the best values for the models.

	
Comparison of the proposed ensemble learning method with existing methods, on three distinct traffic sign datasets: GTSRB, BTSD, and TSRD.

The paper is structured into several sections, to provide a clear description of the research. Section 2 presents a review of the existing literature on traffic sign recognition. Section 3 outlines the methods used in the experiment, including ensemble learning with CNNs. The datasets used for training and testing are described in Section 4. The hyperparameter tuning process, aimed at optimizing the models’ performance, is detailed in Section 5. The experimental results and their comparison with existing methods are presented in Section 6. Finally, the key findings are summarized and the conclusion of the study is provided in Section 7.

2. Related Works

In Siniosoglou et al. (2021) [4], a deep autoencoder algorithm was proposed, to detect and recognize traffic signs. The authors used the Carla Traffic Signs Recognition Dataset (CATERED), with 43 classes, for recognition. The dataset contains 94478 traffic signs images. The testing phase was split into two scenarios, which were a centralized detection system and a decentralized system. In both scenarios, the proposed method achieved over 90.00% accuracy. The highest accuracy obtained from the centralized detection system was 99.19%, while the highest accuracy obtained from the decentralized system was 94.19%.

Kerim and Efe (2021) [5] introduced an artificial neural network (ANN), combining various models. The authors rearranged and combined the GTSRB and TSRD datasets due to imbalance in traffic signs classes. The new dataset contained 10 classes, arbitrarily. Data augmentation such as translation, rotation, noising, blurring, etc., were used in the proposed method. The authors constructed two experiments, one with the HOG feature and the other one with the combination of color, HOG, and LBP features. In the first experiment, the method achieved a lower accuracy, at 80%, while the second experiment achieved 95% accuracy. The proposed method showed that using color, HOG, and LBP features, significantly enhanced the accuracy of classification.

In Li et al. (2019) [6], traffic sign recognition using CNN was proposed. There were two datasets used in this paper, which were GTSRB and BTSD, with more than 50,000 and 7000 images, respectively. The hyperparameter settings used in the experiment were gamma set to 0.1, learning rate of 0.001, with step values of 24,000 and 48,000, for 60,000 iterations. The results obtained from the proposed method were 97.4% accuracy for GTSRB and 98.1% accuracy for BTSD. From the experiment, it showed that the proposed method improved the existing results.

Yazdan and Varshosaz (2021) [7] introduced a different method to recognize traffic signs. The proposed method utilized a minimal amount of common images to recognize signs. The suggested solution created a new orthogonal picture of the traffic sign, eliminated the need for numerous images in the training database, and identified the traffic sign. The created image was put through a template matching procedure and compared to an image database that holds a single photograph, that was shot in front of each sign. The orthoimage was created from stereo pictures for this purpose. Therefore, the orthoimage was employed, rather than comparing the image obtained from the urban roadways to the database. The performance achieved from this method was 93.1% accuracy.

Bangquan et al. (2019) [8] presented a traffic sign recognition method using an efficient convolutional neural network (ENet). The dataset used in the experiment was GTSRB, with 43 classes of traffic sign, and split into 39,209 images for the training set and 12,630 for the test set. The training process of ENet, applied the Adam optimizer with the soft max cross-entropy loss function. Two pre-trained models of CNN, i.e., VGG16 and LeNet, were used in the network. ENet with the LeNet algorithm achieved an accuracy of 98.6%, whereas VGG16 achieved 96.7% accuracy using GTSRB.

Mehta et al. (2019) [9] came up with a deep CNN method for traffic sign classification. Several activation functions, optimizers, and dropout rate were tuned in the experiment. The dataset used was BTSD, which was retrieved from the video clips. Convolutional neural networks with the Adam optimizer, a dropout rate of 0.3, and softmax activation functions, achieved the highest accuracy, of 97.06%.

A lightweight CNN was proposed in Zhang et al. (2020) [10], for traffic sign classification. Two models were tested in this paper, namely teacher network and student network. The datasets used for training and testing were GTSRB and BTSC. The main purpose of the teacher network was to train the network before passing it to the student network, with fewer layers, and to enhance the network’s capacity to identify traffic signs. The result, after pruning, obtained from GTSRB was 99.38% accuracy, while from BTSC was 98.89% accuracy.

In Jonah and Orike (2021) [11], there were several CNNs trained and tested for traffic sign recognition. The models used were VGG16, ResNet50, and the proposed CNN. The dataset used in the paper was GTSRB, with 43 traffic signs classes, of 34,799 training images, 4410 validation images, and 12,630 testing images. The results showed that VGG16 achieved 95.5% accuracy, ResNet50 achieved 95.4% accuracy, and the proposed CNN model achieved 96.0% accuracy, which was the best performance among the others.

Vincent et al. (2020) [12] presented a traffic sign recognition with CNN on the GTSRB dataset. The dataset contained 34,799 training images, 4410 validation images, and 12,630 testing images. The proposed CNN model consisted of four fully connected layers, four convolutional layers, two pooling layers, and one flattening layer. The proposed method achieved 98.44% accuracy for the GTSRB dataset.

In Madan et al. (2019) [13], a method using a hybrid combination of histogram of gradients (HOG) features and speed up robust features (SURF), with a CNN classifier, was proposed to classify traffic signs. The only dataset used in the paper was the GTSRB dataset, which contains 39,029 training images. The HOG features with SURF added, were directly supplied to the CNN classifier. The accuracy of the suggested pipeline, employing the fundamental design, was 98.07%. By employing a branching CNN architecture, the method’s performance was improved, with a higher accuracy, of 98.48%.

Serna and Ruichek (2018) [14] used several CNN models to perform traffic sign recognition. The traffic sign datasets used were the European Traffic Sign Dataset (ETSD), which was self-collected by the authors, and also GTSRB. Traffic data from six European nations, namely Belgium, Croatia, France, Germany, the Netherlands, and Sweden made up the dataset. The models used in this paper were LeNet-5, IDSIA, URV, CNN asymmetricK, and CNN 8-layers. The results demonstrated that the CNN asymmetricK and CNN 8-layers achieved almost the same accuracy for both datasets, but CNN 8-layers achieved a slightly higher accuracy, of 99.37% accuracy for GTSRB and 98.99% accuracy for ETSD.

A combined CNN (CCNN) was used in Chen et al. (2017) [15], to solve traffic sign recognition, where two CNNs with a basic network were used to determine the probability of the superclass and subclass of the traffic signs. Based on the color, form, and function of the sign, the 43 subclasses of traffic signs were classified into five superclasses, namely red circular prohibitory signs, red triangular danger signs, blue circular mandatory signs, black circular derestriction signs, and other signs. The results retrieved from both models were 97.96% accuracy and 98.26% accuracy. The experiments also proved that CCNN with data augmentation performed better.

Zheng and Jiang (2022) [16] proposed traffic sign recognition with several CNN models and vision transformer (ViT) models. Three datasets were used in the paper: GTSRB, Indian Cautionary Traffic Sign, and TSRD (Chinese Traffic Sign Detection Benchmark), which contain 43, 15, and 103 traffic sign classes, respectively. The CNN models used in the experiment were VGG16, ResNet, DenseNet, MobileNet, SqueezeNet, ShuffleNet, and MnasNet. Whereas, the ViT used Real-Former, Sinkhorn Transformer, Nyströmformer, and Transformer in Transformer (TNT). The result obtained by the CNN for GTSRB was 98.82% accuracy with the DenseNet model, 99.11% accuracy with ShuffleNet, for the Indian dataset, and 99.42% accuracy with DenseNet, for the Chinese dataset. On the other hand, ViT achieved 86.03% accuracy for GTSRB with RealFormer, 97.10% accuracy for the Indian dataset without any ViT models, and 95.05% accuracy for the Chinese dataset with TNT. The experimental results suggested that transformers are less competitive than CNNs in the task of classifying traffic signs.

Another CNN model was presented in Usha et al. (2021) [17] for traffic sign recognition. The dataset used was the GTSRB dataset, which consists of 43 classes, with a total of 39,209 images. Convolution, pooling, and drop out layers made up the proposed CNN architecture. The characteristics from the data were retrieved at each layer, to aid in categorizing the image. The training of the model was executed for only 15 epochs and achieved an accuracy of 97.8%.

Fang et al. (2022) [18] introduced a method for traffic sign recognition with MicronNet-BN-Factorization (MicronNet-BF). The dataset used was the GTSRB dataset, with 43 classes, which contains 39,209 training images and 12,630 testing images. Several datasets, such as BTSC, MNIST, SVHN, Cifar10, and Cifar100, were used to compare the results of the proposed methods. A small deep neural network called MicronNet, was suggested for embedded devices to classify traffic signs. The enhanced MicronNet-BF, that fused batch normalization, factorization, and MicronNet, obtained the best result on the GTSRB, which was 99.38% accuracy, using only 1.41 s.

Fu and Wang (2021) [19] introduced a method using prototypes of traffic signs, with the pairing of a multi-scale convolutional network (MSCN) and a multi-column deep neural network (MCDNN). There were two datasets used in the experiment, where TSRD was applied for the prototype and GTSRB was used as the testing dataset. MSCNs were trained using pre-training datasets that had undergone different pre-processing. The proposed method achieved an accuracy of 90.13%.

Aziz and Youssef (2018) [20] proposed traffic sign recognition using feature extraction and an extreme learning machine (ELM), for classification. The two datasets used in the experiment were the GTSRB and BTSC datasets. There were three feature extraction techniques used, which were HOG, compound local binary patterns (CLBP), and Gabor features. The features were subsequently passed into ELM for classification. The accuracies obtained from the proposed methods were 99.10% for GTSRB and 98.30% for BTSC. It was proved that the proposed method performed better than SVM and KNN.

Soni et al. (2019) [21] proposed a method using HOG and LBP features, together with PCA and SVM. TSRD, which consists of 6164 images, with 58 classes, where 4170 are training images and 1994 are testing images, was utilized. There were three main categories of traffic sign identified, which were forbidden sign with red circular shape, mandatory sign with blue circular shape, and warning sign with black triangular shape. For the traffic sign recognition, HOG and LBP were applied to extract the features of each traffic sign. The experiments were conducted with four methods, namely, HOG with SVM, HOG with PCA and SVM, LBP with SVM, and LBP with PCA and SVM. The best performing method was LBP with PCA and SVM classifier, where it achieved 84.44% accuracy. Table 1 provides a summary of the existing works in traffic sign recognition.

3. Traffic Sign Recognition with Ensemble Learning

The current state-of-the-art in traffic sign recognition relies heavily on the use of a single CNN. While individual CNNs have their own advantages and limitations, this paper proposes a solution that overcomes these limitations, by combining the strengths of multiple CNNs, through the use of an ensemble model. The ensemble model utilized in this study incorporates three different CNNs: ResNet50, DenseNet121, and VGG16.

The overall process of the proposed solution is outlined in Figure 1. To begin, data augmentation is applied to increase the size of the training set and address the issue of imbalanced datasets. Next, each of the three CNNs is trained on the augmented training set to learn representations and assess their ability to generalize. The trained models are then used to make predictions on the testing set. Finally, the predictions of all models are fused, using majority voting to determine the final class label.

3.1. Data Augmentation

Data augmentation is a widely-used technique in machine learning, that aims to increase the size of the training set by generating new samples based on existing ones. This helps to reduce the risk of overfitting, where the model becomes too specialized to the training data and fails to generalize to new examples. Another important aspect of data augmentation is its ability to balance imbalanced datasets, where one or more classes have a significantly lower number of samples compared to others.

In this work, data augmentation is applied using a set of techniques, including width shift, height shift, brightness adjustment, shear transformation, and zoom. These techniques produce variations of the original samples, thereby increasing the size of the training set and reducing the impact of imbalanced datasets. Figure 2 illustrates some examples of the augmented data.

	
Width shift: The image undergoes a horizontal shift, and the range for the width shift is set to 0.2. This means the image will be randomly shifted by a value between +0.2 times the image width and −0.2 times the image width. Positive values will move the image to the right, and negative values will move the image to the left.

	
Height shift: The image undergoes a vertical shift, either upwards or downwards. The range of the height shift is set to 0.2, which means the shift will be from −0.2 times the image width to +0.2 times the image width. Positive values selected randomly will result in an upward movement of the image, whereas negative values will result in a downward movement.

	
Shear: Shear refers to the process of warping an image along one axis, to change or create perceived angles. The range for shear is set to 0.2, which means the shear angle will be 20 degrees when viewed counterclockwise.

	
Zoom: The zoom function allows for zooming in to or out of an image. A value less than 1 will result in enlarging the image, while a value greater than 1 will result in zooming out. The range for zoom is set to 0.2, meaning that the image will be zoomed in.

	
Fill mode: This defines the approach to be taken for filling the pixels that were shifted outside the input region. The default fill mode is “nearest”, which fills the empty pixels with values from the nearest non-empty pixel.

3.2. Ensemble Model

In the proposed method, several pre-trained CNN models, including ResNet50, VGG16, and DenseNet121, are utilized as the backbone. After each pre-trained model, a flatten layer is added, followed by two blocks that consist of a dense layer, a batch normalization layer, a leakyReLU activation layer, and a dropout layer. The model is concluded with a classification layer. Figure 3 displays the architecture of each model.

3.3. Pre-Trained Models

ResNet50 is a 50-layer deep CNN that is a variation of the ResNet architecture. It consists of 48 convolution layers, a max pool layer, and an average pool layer. ResNet50 is known for its ability to learn rich image features for a wide range of images. Additionally, the network has a unique characteristic of not requiring all neurons to fire in every epoch, making it computationally efficient.

VGG16 is a 16-layer deep CNN that has a large number of parameters, with a total of over 138 million. Despite its size, VGG-16 has a simple architecture and has proven to perform well on various applications and datasets outside of ImageNet.

DenseNet121 is a part of the DenseNet family and has 8 million parameters. Unlike other networks, it utilizes the concept of residual connections, where the output from preceding layers is concatenated instead of summed. Furthermore, DenseNet121 has a large number of dense connections, enabling the network to effectively utilize all of the preceding layer’s feature maps as input for the subsequent layers.

3.3.1. Flatten Layer

The generated 2-dimensional arrays from pooling feature maps are all flattened into a single, long continuous linear vector.

3.3.2. Dense Layer

A dense layer is one in which each neuron is connected to every other neuron in the preceding layer. In this type of layer, each neuron in the current layer receives input from every neuron in the preceding layer. This input is multiplied with weights, and a bias term is added, before passing through an activation function. In a model, the last dense layer typically has an activation function, such as softmax, which is used for multi-class classification tasks. The number of units in a dense layer can be set to any value, but in the proposed model, it is set to 512.

3.3.3. Batch Normalization

The batch normalization layer normalizes the inputs. The layer uses a transformation to maintain the mean and standard deviation of the output near 0 and 1, respectively. It is important to note that batch normalization exhibits different behavior during inference compared to training.

3.3.4. LeakyReLU

Leaky ReLU is a variant of the popular rectified linear unit (ReLU) activation function. It is used in deep learning models to introduce non-linearity into the activation of neurons. The function is defined as:

 f (x) = max (α x , x)

(1)

where α is a small positive value, typically 0.01. If the input x is positive, then the output is equal to x, just like in a traditional ReLU. If the input x is negative, then the output is α x , which is a small, non-zero value. This allows the network to still propagate some gradient during backpropagation, even when x is negative, which can help to mitigate the issue of “dead neurons” in a model. In this work, the α is set to 0.2.

3.3.5. Dropout Layer

The dropout layer randomly sets input units to 0, with a probability of ‘rate’ during training, to prevent overfitting. Non-zero inputs are scaled up by 1/(1 − rate), to maintain the total sum of inputs. In the proposed model, the dropout rate is set to 0.3.

The CNN architecture is presented in Table 2, including the name of each layer and the corresponding hyperparameter settings. The proposed model has a total of 11 layers.

3.4. Optimization for Model Training

In the model training process, class weight balancing is achieved through oversampling, which increases the instances of classes with fewer samples, to match the class with the most samples. To prevent overfitting and reduce training time, early stopping is used. This technique automatically terminates training when a selected performance metric reaches a plateau. Fine tuning is also performed, to optimize model performance.

3.5. Classification and Prediction Fusion

The trained CNN model is evaluated on a test dataset, to determine its accuracy in classifying images. During the classification process, the model learns from the training data for each category (prohibitory, danger, mandatory, etc.) and makes predictions on the test data. To improve prediction accuracy, the outputs of multiple models are combined through majority voting. This technique selects the class with the most votes, where a class must receive over 50% of the votes to be considered the prediction. Empirically, majority voting has been shown to be an effective method for combining classifier predictions.

4. Datasets

This project uses the GTSRB [22], BTSD [23], and TSRD datasets for performance evaluation. These datasets, sourced from online sources, are suitable for traffic sign recognition and contain multiple classes. These three datasets are used to train and test the proposed models. Before use, all datasets were converted to grayscale and histogram equalization was applied.

4.1. German Traffic Sign Recognition Benchmark (GTSRB)

The GTSRB dataset was collected by the Institut für Neuroinformatik and published by Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. It contains 51,839 images, belonging to 43 different traffic sign classes, including danger, prohibitory, mandatory, and others. The original images are in PPM format and the dataset is imbalanced, so oversampling is performed. After oversampling, the dataset consists of 96,659 images, with 80,108 images used for training, 3921 images used for validation, and 12,630 images used for testing. Figure 4 shows some sample images of the GTSRB dataset.

4.2. Belgium TS Dataset (BTSD)

The BTSD was publicly hosted and released by VISICS, ESAT, and KU Leuven. It consists of 7095 images, belonging to 62 different classes of traffic signs, which were originally in PPM format and were converted to JPG. Due to some classes having a limited number of images, data cleaning was performed to remove those classes. After cleaning and oversampling, to balance the dataset, the BTSD consists of 20,646 images with 53 classes. Some sample images of the BTSD are presented in Figure 5.

4.3. Chinese Traffic Sign Database (TSRD)

The TSRD was acknowledged by the National Nature Science Foundation of China (NSFC) through a grant. It consists of 6,164 traffic sign images and has 58 classes. The images were collected using Baidu Street View or cameras in natural settings, and captured under a variety of conditions, including different weather, lighting, and partial occlusion. Data cleaning and oversampling were performed to address the imbalance in the dataset. Finally, the TSRD dataset has 24,989 images with 57 classes, with 22,550 images used for training, 439 images used for validation, and 200 images used for testing. Figure 6 provides some sample images of the TSRD dataset.

Table 3 presents the number of samples in the datasets before and after data augmentation. The description of each dataset is summarized in Table 4.

5. Hyperparameter Tuning

Hyperparameter tuning is an essential step in the development of deep learning models, as it involves selecting the most optimal set of hyperparameters to maximize the performance of the model. In this study, three key hyperparameters were chosen for tuning: batch size, learning rate, and optimizer.

The batch size was tested with three different values, namely 16, 32, and 64. The learning rate was tested with three values, 0.001, 0.0001, and 0.00001. Finally, three optimizers were used in the tuning process, namely Adam, stochastic gradient descent (SGD), and adaptive gradient algorithm (AdaGrad). The best hyperparameter values were determined based on the highest test accuracy on the GTSRB dataset.

Table 5 presents the results of the hyperparameter tuning experiment. As shown in the table, a batch size of 64 was found to produce the highest accuracy of 98.84%. The use of the Adam optimizer, and a learning rate of 0.001, also contributed to the optimal results.

It is noteworthy to mention, that the choice of batch size plays a crucial role in determining the accuracy of deep learning systems. This is due to the fact that batch size affects the estimation of the error gradient, which is a crucial component in the optimization of deep learning models. A larger batch size may speed up processing time, as GPUs can utilize more data, but it also increases the risk of poor generalization, as demonstrated in Table 6. Therefore, it is essential to strike a balance between batch size and accuracy, to ensure the optimal performance of deep learning systems.

The learning rate is a critical hyperparameter, that plays a pivotal role in determining the performance of a deep learning model. It acts as a multiplier that controls the step size at each iteration of the optimization algorithm, thereby affecting the pace at which the model approaches the optimal weights.

The value of the learning rate has a direct impact on the optimization process and the ultimate performance of the deep learning model. If the learning rate is set too high, the model may overstep the optimal solution and result in unstable convergence. On the other hand, if the learning rate is too low, the optimization process may take an excessively long time to reach the optimal weights.

The results of the hyperparameter tuning experiment showed that the best accuracy was achieved with a learning rate of 0.001. This value strikes a delicate balance between the pace of convergence and stability, ensuring that the optimization process converges to the optimal weights in an efficient manner. The results of the hyperparameter tuning experiment shown in Table 7, suggest that a learning rate of 0.001 is an effective value, that provides a good balance between convergence speed and stability.

The Adam optimizer is a widely used optimization algorithm in deep learning, based on the stochastic gradient descent method. It is a unique optimization algorithm that updates the learning rate for each network weight individually, taking into account the historical gradient information.

The Adam optimizer combines the benefits of the RMS Prop and Adagrad algorithms, making it a versatile optimization algorithm with several advantages. Firstly, it requires minimal tuning, making it easy to implement and use. Secondly, it is computationally efficient and has a low memory requirement, making it ideal for large-scale deep learning models.

These advantages have contributed to the popularity of the Adam optimizer and its widespread use in deep learning publications. In the case of the proposed ensemble learning model, the use of the Adam optimizer resulted in the highest accuracy of 98.84%, as shown in Table 8.

6. Experimental Results and Analysis

This section presents the experimental results of the proposed ensemble learning method, which was applied to the GTSRB, BTSD, and TSRD datasets, and compared with existing traffic sign classification algorithms. The performance of the individual models and the proposed ensemble learning method was evaluated based on various metrics such as accuracy, precision, recall, and F1 score.

The performances of the individual models, as well as the proposed ensemble learning method, in terms of accuracy, precision, recall, and F1 score, are shown in Table 9, Table 10 and Table 11. On the GTSRB dataset, the ensemble learning model achieved a higher F1 score of 98.84%, compared to the F1 score of the individual models, where ResNet50 achieved 97.37%, DenseNet121 achieved 97.38%, and VGG16 achieved 98.02%.

On the BTSD dataset, the F1 scores of ResNet50, DenseNet121, and VGG16 were 97.62%, 97.34%, and 96.98%, respectively. The ensemble learning method again outperformed the individual models, with an accuracy of 98.33%. The improvement in performance can be attributed to the fact that the ensemble learning method is more robust and less sensitive to noise in the data, which is an important characteristic of real-world datasets.

On the TSRD dataset, ResNet50, DenseNet121, and VGG16 recorded F1 scores of 91.05%, 90.25%, and 81.35%, respectively. By fusing the predictions of the models, the F1 score increased to 96.16%. The improvement demonstrates that the ensemble learning method is able to mitigate the wrong predictions of individual models and improve the overall performance. The ensemble learning method is also more robust to the high inter-class similarity in the TSRD, which is a major challenge in traffic sign classification.

One of the main reasons why the ensemble learning method outperformed the individual models, is that it combines the predictions of multiple models. The ensemble method is able to mitigate the weaknesses of individual models by taking into account their predictions and fusing them into a single prediction. This reduces the risk of making wrong predictions, that individual models may make due to their own biases or limitations.

6.1. Comparative Results with the Existing Works

The experimental results presented in Table 12 demonstrate that the proposed ensemble learning method outperforms existing deep learning techniques, in terms of accuracy, on the GTSRB dataset. CNN-based models, including CNN [6], ENet [8], CNN [11], CNN [12], MCNN [15], and CNN [17], achieved recognition rates ranging from 96.00% to 98.60%, while ViT [16] achieved an accuracy of 98.82%. The unsupervised LBP model [5] had an accuracy of 95.00%.

The proposed ensemble learning method achieved an accuracy of 98.84%, which is higher than all the other individual models and ViT. This shows that by combining the predictions of multiple pre-trained CNN models, the ensemble learning method is able to achieve improved performance compared to the individual models. The optimized combination of models, batch sizes, learning rates, and other hyperparameters, contributes to the overall success of the ensemble, resulting in a superior accuracy rate.

Table 13 presents the comparison of current approaches with ensemble learning on the BTSD dataset. The accuracy of the deep learning algorithms NCC [7], CNN [9], CNN [6], and ELM [20] on the dataset were 93.10%, 97.06%, 98.10%, 98.30%, and 98.37%, respectively. The proposed ensemble learning method achieved a higher classification rate, of 98.33%, on the BTSD dataset, compared to existing approaches. The proposed method improved accuracy by combining three CNN models in the ensemble layer.

On the TSRD dataset, Table 14 compares the experimental results of the current methods and ensemble learning. It can be observed that, in terms of accuracy, the proposed method outperforms the machine learning approaches on the TSRD dataset. One of the main causes is that, TSRD consists of the most classes, as compared to the other datasets, therefore it will be more complicated to classify. The existing methods used are only using one model, thus, ensemble learning with the combination of three models will give a better performance. The proposed method achieved 96.16% accuracy, which is much improved compared to the existing methods.

6.2. Confusion Matrices

Figure 7 presents the confusion matrix for the proposed ensemble learning model, on the GTSRB dataset.The blue shade in the confusion matrix indicates the true positive values, with deeper shades representing higher values. According to the confusion matrix, classes 10 and 14 have the highest misclassification rates. The second highest misclassification rates are between classes 10 and 19. These high rates are likely due to the presence of background noise in the traffic sign images, which impacts the classification. Examples of misclassified classes can be seen in Figure 8.

The confusion matrix of the ensemble learning model on the BTSD is depicted in Figure 9. The highest misclassified classes, classes 30 and 35, and the second-highest misclassified classes, between classes 32 and 35, are possibly due to the similarities in the shapes (circles) and symbols of the traffic signs for classes 30 and 35. Samples of the misclassified classes can be viewed in Figure 10.

According to the confusion matrix in Figure 11, it is evident that the highest misclassified classes in the TSRD dataset are classes 24 and 48. Similar to the GTSRB dataset, traffic signs that are circular or triangular in shape are frequently misclassified. The samples of these misclassified classes are depicted in Figure 12.

7. Conclusions

This paper propose an ensemble learning deep learning model for traffic sign classification. Ensemble learning involves combining several models to produce a more accurate result, compared to relying on a single model. This approach not only improves the accuracy but also enhances the robustness of the model, by reducing its performance variability and prediction dispersion. To implement the ensemble model, the researchers utilized three pre-trained deep learning models: ResNet50, DenseNet121, and VGG16. The proposed ensemble model was evaluated on three different traffic sign datasets: the GTSRB dataset, the BTSR dataset, and the TSRD dataset. The results showed that the proposed ensemble learning model outperforms existing traffic sign classification techniques, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSR dataset, and 94.55% on the TSRD dataset. Attention-based models, especially the vision transformer, have shown significant advancements in image recognition tasks. Therefore, future research can investigate the effectiveness of attention-based models for traffic sign recognition, by exploring their potential advantages and addressing their challenges. This can contribute to advancing the state-of-the-art in traffic sign recognition and provide new insights into the application of attention-based models in computer vision tasks.

Author Contributions

Conceptualization, X.R.L., C.P.L., K.M.L. and T.S.O.; methodology, X.R.L., C.P.L., K.M.L. and T.S.O.; software, X.R.L. and C.P.L.; validation, X.R.L., C.P.L., K.M.L. and T.S.O.; formal analysis, X.R.L.; investigation, X.R.L.; resources, X.R.L.; data curation, X.R.L. and C.P.L.; writing—original draft preparation, X.R.L.; writing—review and editing, X.R.L., C.P.L., K.M.L. and T.S.O.; visualization, X.R.L. and C.P.L.; supervision, C.P.L. and T.S.O.; project administration, C.P.L.; funding acquisition, C.P.L. All authors have read and agreed to the published version of the manuscript.

Funding

The research in this work was supported by the Fundamental Research Grant Scheme of the Ministry of Higher Education, under award number FRGS/1/2021/ICT02/MMU/02/4, and Multimedia University Internal Research Grant, with award number MMUI/220021.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Zhu, Y.; Yan, W.Q. Traffic sign recognition based on deep learning. Multimed. Tools Appl. 2022, 81, 17779–17791. [Google Scholar] [CrossRef]

	

Abdel-Salam, R.; Mostafa, R.; Abdel-Gawad, A.H. RIECNN: Real-time image enhanced CNN for traffic sign recognition. Neural Comput. Appl. 2022, 34, 6085–6096. [Google Scholar] [CrossRef]

	

Lu, E.H.C.; Gozdzikiewicz, M.; Chang, K.H.; Ciou, J.M. A hierarchical approach for traffic sign recognition based on shape detection and image classification. Sensors 2022, 22, 4768. [Google Scholar] [CrossRef] [PubMed]

	

Siniosoglou, I.; Sarigiannidis, P.; Spyridis, Y.; Khadka, A.; Efstathopoulos, G.; Lagkas, T. Synthetic Traffic Signs Dataset for Traffic Sign Detection & Recognition in Distributed Smart Systems. In Proceedings of the 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS), Pafos, Cyprus, 14–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 302–308. [Google Scholar]

	

Kerim, A.; Efe, M.Ö. Recognition of Traffic Signs with Artificial Neural Networks: A Novel Dataset and Algorithm. In Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 171–176. [Google Scholar]

	

Li, W.; Li, D.; Zeng, S. Traffic sign recognition with a small convolutional neural network. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 044034. [Google Scholar] [CrossRef]

	

Yazdan, R.; Varshosaz, M. Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation. ISPRS J. Photogramm. Remote Sens. 2021, 171, 18–35. [Google Scholar] [CrossRef]

	

Bangquan, X.; Xiong, W.X. Real-time embedded traffic sign recognition using efficient convolutional neural network. IEEE Access 2019, 7, 53330–53346. [Google Scholar] [CrossRef]

	

Mehta, S.; Paunwala, C.; Vaidya, B. CNN based traffic sign classification using Adam optimizer. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1293–1298. [Google Scholar]

	

Zhang, J.; Wang, W.; Lu, C.; Wang, J.; Sangaiah, A.K. Lightweight deep network for traffic sign classification. Ann. Telecommun. 2020, 75, 369–379. [Google Scholar] [CrossRef]

	

Sokipriala, J.; Orike, S. Traffic sign classification comparison between various convolution neural network models. Int. J. Sci. Eng. Res. 2021, 12, 165–171. [Google Scholar] [CrossRef]

	

Vincent, M.A.; Vidya, K.; Mathew, S.P. Traffic sign classification using deep neural network. In Proceedings of the 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 3–5 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 13–17. [Google Scholar]

	

Madan, R.; Agrawal, D.; Kowshik, S.; Maheshwari, H.; Agarwal, S.; Chakravarty, D. Traffic Sign Classification using Hybrid HOG-SURF Features and Convolutional Neural Networks. In Proceedings of the ICPRAM, Prague, Czech Republic, 19–21 February 2019; pp. 613–620. [Google Scholar]

	

Serna, C.G.; Ruichek, Y. Classification of traffic signs: The european dataset. IEEE Access 2018, 6, 78136–78148. [Google Scholar] [CrossRef]

	

Chen, L.; Zhao, G.; Zhou, J.; Kuang, L. Real-time traffic sign classification using combined convolutional neural networks. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 399–404. [Google Scholar]

	

Zheng, Y.; Jiang, W. Evaluation of Vision Transformers for Traffic Sign Classification. Wirel. Commun. Mob. Comput. 2022, 2022, 3041117. [Google Scholar] [CrossRef]

	

Usha, V. Traffic Sign Classification Using Deep Learning. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 250–253. [Google Scholar]

	

Fang, H.F.; Cao, J.; Li, Z.Y. A small network MicronNet-BF of traffic sign classification. Comput. Intell. Neurosci. 2022, 2022, 3995209. [Google Scholar] [CrossRef] [PubMed]

	

Fu, H.; Wang, H. Traffic Sign Classification Based on Prototypes. In Proceedings of the 2021 16th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Chengdu, China, 26–28 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7–10. [Google Scholar]

	

Aziz, S.; Youssef, F. Traffic sign recognition based on multi-feature fusion and ELM classifier. Procedia Comput. Sci. 2018, 127, 146–153. [Google Scholar] [CrossRef]

	

Soni, D.; Chaurasiya, R.K.; Agrawal, S. Improving the Classification Accuracy of Accurate Traffic Sign Detection and Recognition System Using HOG and LBP Features and PCA-Based Dimension Reduction. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, 26–28 Ferbruary 2019; Amity University Rajasthan: Jaipur, India, 2019. [Google Scholar]

	

Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In Proceedings of the IEEE International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 1453–1460. [Google Scholar]

	

Prisacariu, V.A.; Timofte, R.; Zimmermann, K.; Reid, I.; van Gool, L. Integrating object detection with 3D tracking towards a better driver assistance system. In Proceedings of the Twentieth International Conference on Pattern Recognition, Washington, DC, USA, 23–26 August 2010; pp. 1–4. [Google Scholar]

	

Haque, W.A.; Arefin, S.; Shihavuddin, A.; Hasan, M.A. DeepThin: A novel lightweight CNN architecture for traffic sign recognition without GPU requirements. Expert Syst. Appl. 2021, 168, 114481. [Google Scholar] [CrossRef]

[image: Jsan 12 00033 g001 550]

Figure 1. General pipeline of the proposed traffic sign recognition.

Figure 1. General pipeline of the proposed traffic sign recognition.

[image: Jsan 12 00033 g001]

[image: Jsan 12 00033 g002 550]

Figure 2. Sample output images of data augmentation techniques on GTSRB (top row), BTRD (middle row), and TSRD (bottom row).

Figure 2. Sample output images of data augmentation techniques on GTSRB (top row), BTRD (middle row), and TSRD (bottom row).

[image: Jsan 12 00033 g002]

[image: Jsan 12 00033 g003 550]

Figure 3. The architecture of the proposed CNN pre-trained model.

Figure 3. The architecture of the proposed CNN pre-trained model.

[image: Jsan 12 00033 g003]

[image: Jsan 12 00033 g004 550]

Figure 4. Sample images of the GTSRB dataset.

Figure 4. Sample images of the GTSRB dataset.

[image: Jsan 12 00033 g004]

[image: Jsan 12 00033 g005 550]

Figure 5. Sample images of the BTSD dataset.

Figure 5. Sample images of the BTSD dataset.

[image: Jsan 12 00033 g005]

[image: Jsan 12 00033 g006 550]

Figure 6. Sample images of the TSRD dataset.

Figure 6. Sample images of the TSRD dataset.

[image: Jsan 12 00033 g006]

[image: Jsan 12 00033 g007 550]

Figure 7. Confusion matrix of ensemble learning on the GTSRB dataset.

Figure 7. Confusion matrix of ensemble learning on the GTSRB dataset.

[image: Jsan 12 00033 g007]

[image: Jsan 12 00033 g008 550]

Figure 8. Misclassified classes of 10 and 14 (left) and 10 and 19 (right).

Figure 8. Misclassified classes of 10 and 14 (left) and 10 and 19 (right).

[image: Jsan 12 00033 g008]

[image: Jsan 12 00033 g009 550]

Figure 9. Confusion matrix of ensemble learning on the BTSD dataset.

Figure 9. Confusion matrix of ensemble learning on the BTSD dataset.

[image: Jsan 12 00033 g009]

[image: Jsan 12 00033 g010 550]

Figure 10. Misclassified classes of 30 and 35 (left) and 32 and 35 (right).

Figure 10. Misclassified classes of 30 and 35 (left) and 32 and 35 (right).

[image: Jsan 12 00033 g010]

[image: Jsan 12 00033 g011 550]

Figure 11. Confusion matrix of ensemble learning on the TSRD dataset.

Figure 11. Confusion matrix of ensemble learning on the TSRD dataset.

[image: Jsan 12 00033 g011]

[image: Jsan 12 00033 g012 550]

Figure 12. Misclassified classes of 24 and 48.

Figure 12. Misclassified classes of 24 and 48.

[image: Jsan 12 00033 g012]

[image: Table]

Table 1. Summary of the existing literature on traffic sign recognition.

Table 1. Summary of the existing literature on traffic sign recognition.

	Author
	Algorithm
	Dataset
	Accuracy (%)

	Siniosoglou et al. (2021) [4]
	Deep autoencoder
	CATERED
	99.19

	Kerim and Efe (2021) [5]
	ANN
	GTSRB
	95

	Li et al. (2019) [6]
	CNN
	GTSRB
	97.4

	
	
	BTSD
	98.1

	Yazdan and Varshosaz (2021) [7]
	Normalized cross-correlation (NCC)
	BTSD
	93.10

	Bangquan et al. (2019) [8]
	LeNet
	GTSRB
	98.6

	
	VGG16
	
	96.7

	Mehta et al. (2019) [9]
	CNN
	BTSD
	97.06

	Zhang et al. (2020) [10]
	CNN
	GTSRB
	99.38

	
	
	BTSC
	98.89

	Jonah and Orike (2021) [11]
	VGG16
	GTSRB
	95.5

	
	ResNet50
	
	95.4

	
	CNN
	
	96.0

	Vincent et al. (2020) [12]
	CNN
	GTSRB
	98.44

	Madan et al. (2019) [13]
	Basic CNN
	GTSRB
	98.07

	
	Branching CNN
	
	98.48

	Serna and Ruichek (2018) [14]
	CNN
	GTSRB
	99.37

	
	
	ETSD
	98.99

	Chen et al. (2017) [15]
	MCNN
	GTSRB
	97.96

	
	MCNN
	
	98.26

	Zheng and Jiang (2022) [16]
	DenseNet
	GTSRB
	98.82

	
	
	CCTSDB
	99.42

	
	ShuffleNet
	ICTS
	99.11

	
	RealFormer
	GTSRB
	86.03

	
	TNT
	CCTSDB
	95.05

	Usha et al. (2021) [17]
	CNN
	GTSRB
	97.80

	Fang et al. (2022) [18]
	MicronNet-BF
	GTSRB
	99.38

	Fu and Wang (2021) [19]
	MSCN + MCDNN
	TSRD (train), GTSRB (test)
	90.13

	Aziz and Youssef (2018) [20]
	HOG, CLBP, Gabor, ELM
	GTSRB
	99.10

	
	
	BTSC
	98.30

	Soni et al. (2019) [21]
	LBP, HOG, PCA, SVM
	TSRD (Chinese)
	84.44

[image: Table]

Table 2. Layer name and hyperparameter settings of CNN.

Table 2. Layer name and hyperparameter settings of CNN.

	Layer Name
	Hyperparameter Settings

	Pre-trained Model
	weights = “imagenet”, input_shape = (64,64,3), include_top = false

	Flatten
	-

	Dense
	Units = 512

	Batch normalization
	-

	LeakyReLU
	Alpha = 0.2

	Dropout
	Rate = 0.3

	Dense
	Units = 512

	Batch normalization
	-

	LeakyReLU
	Alpha = 0.2

	Dropout
	Rate = 0.3

	Dense
	Units = number of classes, activation = softmax

[image: Table]

Table 3. Number of samples before and after oversampling.

Table 3. Number of samples before and after oversampling.

	
Dataset

	
Number of Samples

	
Before Oversampling

	
After Oversampling

	
GTSRB

	
51,839

	
96,659

	
BTSD

	
7095

	
20,646

	
TSRD

	
6164

	
24,989

[image: Table]

Table 4. Summary of datasets.

Table 4. Summary of datasets.

	Dataset
	Samples
	Classes
	Training Samples
	Validation Samples
	Testing Samples

	GTSRB
	96,659
	43
	80,108
	3921
	12,630

	BTSD
	20,646
	53
	17,657
	469
	2520

	TSRD
	24,989
	57
	22,550
	439
	2000

[image: Table]

Table 5. Summary of hyperparameter tuning.

Table 5. Summary of hyperparameter tuning.

	Hyperparameters
	Tested Values
	Optimal Value

	Batch size
	32, 64, 128
	64

	Learning rate
	0.001, 0.0001, 0.00001
	0.001

	Optimizer
	Adam, SGD, Adagrad
	Adam

[image: Table]

Table 6. Traffic sign recognition accuracy (%) at different batch sizes (L = 0.001, O = Adam).

Table 6. Traffic sign recognition accuracy (%) at different batch sizes (L = 0.001, O = Adam).

	Batch Size (B)
	Accuracy (%)

	32
	98.78

	64
	98.84

	128
	98.45

[image: Table]

Table 7. Traffic sign recognition accuracy (%) at different learning rates (B = 64, O = Adam).

Table 7. Traffic sign recognition accuracy (%) at different learning rates (B = 64, O = Adam).

	Learning Rate (L)
	Accuracy (%)

	0.001
	98.84

	0.0001
	98.59

	0.00001
	97.81

[image: Table]

Table 8. Traffic sign recognition accuracy (%) with different optimizers (B = 64, L = 0.001).

Table 8. Traffic sign recognition accuracy (%) with different optimizers (B = 64, L = 0.001).

	Optimizer (O)
	Accuracy (%)

	Adam
	98.84

	SGD
	97.22

	AdaGrad
	97.08

[image: Table]

Table 9. Accuracy, precision, recall, and F1 score on GTSRB.

Table 9. Accuracy, precision, recall, and F1 score on GTSRB.

	

	
GTSRB

	

	
Accuracy (%)

	
Precision (%)

	
Recall (%)

	
F1 Score (%)

	
ResNet50

	
96.59

	
97.37

	
97.37

	
97.37

	
DenseNet121

	
97.54

	
97.38

	
97.38

	
97.38

	
VGG16

	
96.59

	
98.02

	
98.02

	
98.02

	
Ensemble learning

	
98.84

	
98.84

	
98.84

	
98.84

[image: Table]

Table 10. Accuracy, precision, recall, and F1 score on BTSD.

Table 10. Accuracy, precision, recall, and F1 score on BTSD.

	

	
BTSD

	

	
Accuracy (%)

	
Precision (%)

	
Recall (%)

	
F1 Score (%)

	
ResNet50

	
97.37

	
97.62

	
97.62

	
97.62

	
DenseNet121

	
97.37

	
97.34

	
97.34

	
97.34

	
VGG16

	
99.25

	
96.98

	
96.98

	
96.98

	
Ensemble learning

	
98.33

	
98.33

	
98.33

	
98.33

[image: Table]

Table 11. Accuracy, precision, recall, and F1 score on TSRD.

Table 11. Accuracy, precision, recall, and F1 score on TSRD.

	

	
TSRD

	

	
Accuracy (%)

	
Precision (%)

	
Recall (%)

	
F1 Score (%)

	
ResNet50

	
88.45

	
88.45

	
88.45

	
91.05

	
DenseNet121

	
95.45

	
95.45

	
95.45

	
90.25

	
VGG16

	
89.65

	
89.65

	
89.65

	
81.35

	
Ensemble learning

	
96.16

	
96.16

	
96.16

	
96.16

[image: Table]

Table 12. Comparative results on GTSRB dataset.

Table 12. Comparative results on GTSRB dataset.

	Method
	Accuracy (%)

	LBP [5]
	95.00

	CNN [6]
	97.40

	ENet [8]
	98.60

	CNN [11]
	96.00

	CNN [12]
	98.44

	MCNN [15]
	98.26

	ViT [16]
	98.82

	CNN [17]
	97.80

	Ensemble Learning
	98.84

[image: Table]

Table 13. Comparative results on BTSD dataset.

Table 13. Comparative results on BTSD dataset.

	Method
	Accuracy (%)

	CNN [6]
	98.10

	NCC [7]
	93.10

	CNN [9]
	97.06

	ELM [20]
	98.30

	Ensemble Learning
	98.33

[image: Table]

Table 14. Comparative results on TSRD dataset.

Table 14. Comparative results on TSRD dataset.

	Method
	Accuracy (%)

	SVM [21]
	84.44

	CNN [6]
	60.30

	CNN [12]
	70.70

	CNN [24]
	36.87

	Ensemble Learning
	96.16

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
20

llwu

E
i
%
B
-
%
EH
%

:

&

iR,

as

=iz
o

o
=
B
<2
i

iz
3

o

3080001 om0 0 001000000000000000000080000000000

Fd
o
i

GG 00000000000000000000006660066660600606060000 0

©00000000000020021000200M200000000000000010
6600000000100001000000000800000000000000000
51000000000000000000000000000000FH0080000000

5600000000000 0600000000000060000600060000000
60000000000000000%05000000000000000000000000
600000010011000000f440000000000000000000000
5000000000006000000WO0000000000000000000000
5000000600000000060000000000010108000000000
56200310100000100000100010000000000f10000120
690030000000000600600000000000110000850000000
5500000000000000000000000000000000006000000

630600000000 0f0000000000100000000000600010000

i
i

14000 00000000000803000000600000000000000800000

|
|
|

|
|

/000000000000 000000000000001MM00a000000000000
24(00
52000 00000005000000000000000000[00050000000000

3/0000000000000000000000000000001200000060000300

|
|
|

31050000000000800000000001200000000001000M0000

/00000000150 00006000000000000060000000050000000
15000 020000000060007000102001002000012020000000
1690 00000000000000HOE0000100000000000000000000
3/00600010200000000000600001003000000100011130
4/000000040006000000000000400000000000000000

19000000000

u
2]
-
=
2
=
»

E

media/file4.png
Original Width Shift Height Shift Shear Zoom

._-u

Original Width Shift Height Shift Shear Zoom
K : !

media/file18.png
=R N E-E-N-E-
coocoocoooO
coocoocoooO
cooo0oocoooO
coocoocoo0O
cooco0oocoooO
coooocoooO
coocococooo
cooo0oocoooO
cooococooo
coocoocooo0O
coocooo0O
coocococooo
coocoocoo
cocooo00O
coocoocoo
coocoooo
cocococooo
coocoocoo
coocoooo0
cocoocoocoo
cocoocoocoo
cocoooocoo
cocoocoocoo
coocoocoo
cocooocoo0
coocoocoo
cocoocoocoo0
cococococoo
coocoocoo
cococoocoo
cocoocococoo
coocoocoo
coocoooo0
coocococoo
coocoooo
cococococoo
cocoocoocoo
coocoooo
cococoocoo
cocoocoocoo
cocooocoo
coocococom
coococo o
coococoofoo
coofgooco
cowoocoo
omooocoo
Noooooo
cococoocoo
coocococoo
coocoooo
E-N-E-X-N-X-

coococoo
NN NN
- -
coococoo
oco0o0O0O0
coococoo
coococoo
cococoo
oococoo
coocoocoo
N -N-N-N-]
coooo
cocoocoo
N -N-N-X-]
cocoooo
cocoocoo
N -N-E-X=]
NN NN
coooHdO
N -N-N-X=)
coo0oo
coococoo
coococoo
N -N-W-N.
cocofe
coWoo
oFocoo
Xoooo
oo HOO
N -N-E-N-]
coococoo
cocoocoo
N -N-E-X=]
cocoooo
cococoo
N -N-E-X=]
coo0ooo

coooo
coooo
coooo
cocooo
coood
coo Qo
coWoo
ocfoco00o
Joocoo
cococoo
coococoo
cocooo
ocococoo
cocooo
cococoo
ocococoo
cocooo
coooo
coooo
cocooo
coooo
coooo
coooo
cocooo
coooo
cococoo
ocococoo
cocooo
cococoo
cococoo
ocoococoo
ocococoo
cocooo
cocooo
ocococoo
cocooo
cococoo
cocooo
cocooo
cocooo
coooo
coooo0
coooo
ocoooo
cococoo
cocooo
coococoo
cococoo
ocococoo
cococoo
ocococoo
cococoo
cocoo0o

DUUOUGDDDOODDODDUDUSDGDOODGDOOEOODISDOOOGODODGDOODDOO

coooo0o0OOOCGOOOODOOOOODOODOOIS500000O00O0O0OODOODOOOCOOOODOODOOOODOODOOOODO
coo0o0O0OOO0OCQ0QO0OCOCOOODOOCOOOODOOO1300000000000000000COO000D0O0DO0CO0OO0OO0ODODO0O0DO0
c0000000000000000O0O0D00CO0C00000000003100000000000000000000020
co0o000000O00O0O0O0O0O0COO0O0OO0DO0D0CO0OO00O0D0D0D000000D00O0D471 0000000000000 0000DO0
co000000O00CO0OO0OO0O0COO0OO0OODO0DO0CO0O000D000000000000950000000000000000O0
coo0O0OOOO0OOO0QCOOOOOOCOOODOOOOOOODOOOOODODOOOOOl1020000000CO0O0QCO0QCDODO0ODODQO

p. 6 00O0O0BO0CO0COCOCOCOOOOOCOODODOOOCOOOODOODOOOOOODOOOODODOOOOOODOOOOOOOOODO
i1i0270000000000000O0O0CODO0COODOODOOOOODOOODOOOCODODOODOODOOODOODOODODOODOODODO
3jooo0o60000O0CO0CC0COO0OCOO0COOCOODODOOCOOOODODODOOOOODOOOOOODOODOOOODODOOOOOODOO

12{/00000000000015000O0
1300 000000000O00120000000000000000000000000000D00D00D0D0D00O0DO0DO0
14OODDOUDIDDOUOG.OUODOODDDUDODOGUOOOOUODOGDOUDODDOODOUD
15{0 0000000000000 311% 00C0DO0O0C0DO0D00DO000D0DO0D0O00ODOOODOOODODOODODOODODODOOODODO
1&ODDDDDDODUODDOOO.DDGDUDDDDDDDOGOOGOOUDODDDDUDDGOODOOU
17{0 00000000000000002000000000000000000000000000000000000O0
180 00000010000000000421000010000000000000000000000000000
l9{000CO0CO0CO0OO0OO0OCO0CO0COCQCQOOOCOOOOBKLOOCOOOODOOOOOODODOODOODOODOOOOOODODOOOOOOO
22{000O0O0OO0OCOOOOOODOOOODOOOOO300000O0OODOODOOOODOOOCOOOODODOODOODOOODODO
2310 0000000000O00O00OCOODOODOODOODODS900000000000D0C0O0O00O00ODOODODOOODOODODOO0ODODO
@L20000000000000DC0COO0COODOOOODOOBO00O0D0O00O0OOOODODOOCOOODOOOODOOODOOODODODO
32UODUUUUGUDGUDUGDOGUUGUUDlDDUlOUDnDGOGUUGUGUUDDUDOUDOD
33{0 0 000000000000D00D0ODODOOODOOO0C10000OOOOOSBO0O0O0D00D0C0D0D00O0CODOODOODODO
3%000000000000000000000000000000000001100000000000000O000O0
37{¢0 0000000000000 0000O00CO00D000000OD00O0O0O0DO0DO0OO0O0B000000000D00O0O0ODO0ODO0
33.0000O0O0O0CO0CCQCQOOCOOCOOCOODOOOOO0OODOOOOOODOODOODOODODOO0D®1 250000000000
400 000O0CO0CC0COOO0CO0COO0CO0COODOO0OCOO0COODO0O0CO00O0ODOODO0OO0OODCODODOO0DO0OO0DOB000000D00O0OOO0ODO
41{f00000CC0CO00CO0CO0CO0COO0OCOOCOOODOODOOOOOODODOOOOODOOODOOOODOO31000000000O0DO0
42/0 00 0000C0O0O0DO0COOCOOCOODOODOOODOODOOODOOOOODOODOOODOODOODOD=20000000000
43i{0 000O0CO0O0OO0O0CO0CO0CCOODODOCOOODOODOOCOOOODOOOOOODODOOOOOODOOOOD3200000O0O0OO0ODO0

11{00000000200370000000000000000000000O0Q0QODO0ODOO0QO

SN OU~0MO
—

20
21
34
36

Fe8s2

38

012345678 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
Predicted label

4900000000000 0O0O0COO0COODOCODODOO0DOODOOODOODODOODOODODOODOODOODODOODOODODOO®S9O0O00O0
52{0 00 00 010%

media/file21.jpg
B e
s
e

ST

TOVUVTTIGITOOGOD

B e

SaRfiiiioiiiiiiiiiiiosiisisiissiiici:
S e e
D O S L
o e e
e et e e e
e e

R I R e
S

TS 19203 3 s TS T

Titeesmmnnn

vadiceed label

media/file3.jpg
Original Width Shift Height Shift Shear Zoom
v ‘ﬂ m
Original Width shift Height Shift Shear Zoom
m » ﬂ- \ m‘ / ﬂ‘ 7
Original ‘Width shift Height Shift Shear

i

l
|

Ry,

media/file22.png
oOC0O0O0
==l
===l

o000
Q0000

CO0C0C00 000000 0COOMNQOOOOOO0OO0O0OO00CO000000Q0O00
CO0C0CO0O0Q0CO0O00000CO0000O00C000000000000Q00O0O0O
CO00 000000000000 0000000000000 0000O0
CO00000CO00000 0000 0000000000000 000C0OO0
CO0C0CO0OO0OCOO00000CO0000O0000000O0C0C0O00O0O0O0O00O0
CO0O0O000C0O0000O0O0O0000000000O0O0000000000Ow
CO00000C00000QCOTOOUOOOCO0O0QCO00O00000QC0OO0O
CO0C0CO0O00C0OO00000C0O00000C0000000000000Q00O0O0
CO0O0 000000000000 0000 000000000000 0O0
CO00 0000000000000 0000000000000000O0O0
CO0C0CO0O0O0CO0OO0OO0O00O0CC0O0OC0O0COCO0OOCYTOOOO0OOOOOOO0O
CO0CO0O0OO0O0CO0O00000O000000O0O0C0O00O00C00O0000OOO0O
CO00CO0O00CO0O00000COCO0O0 0000000000000 000C0OO0
CO00000CQCO0O0000C0O000O000000000000000QC0O0
CO0O0 000000000000 0000000000000 0000O0
CO00 000000000000 0000000000000 0000O0
CO0C0CO0O0OQCOO0O00O0OC0CO000O0O000C0000C0C0O0000O00OO0

COC0O000QCOO0O000O0
=Jejejejeejelelejelelele]
OCO00 000000000
CO0O0 000000000

cooco
coo§o
coReoo
otooo

0000000000000“0000
000000000000&00000

coococooococococoflo
CODOODOOOOONOO
coococooocoofjooo
CODOOOOCOYTOO0OO
cocooocofgocooo
coococooRooocooo
coocoocoQococoococoo
CODOWOOOOOOOO
cooSocoocoocoococoo
codoocooococoocoo0o0
ONOOOOOCOOOOCO

000000QOOOQOOOOOOOOOOO000000000002“000020000000
000000000000000000000000000000000@0000000000000

00000000000000000000000400000000m4
OCO00O0000 0000000000000 0O000000D000WOO
CO0O0 000000000000 0000 0000000000 WO OO0
00000010000000000000000000000“_0000
0000000000000000000000000000%00000
000000000000000000000000000”000000
00000000000000000000000000%0000000
000000000000000OOOOOOOOOODOOOOZOGO
000000000000000000000000“000000000
CO00000000 0000000000000 0000000000O0
CO0C0CO0O0O0C0OO00000CO000000000HNO0C0CO0O000O0O0O0OO0
CO00O0C0OO0COCOO0O0CO0O0O0000C0O00COMNOCOOOOO0OCOOOO0O
40000000000000200000m0000000000000
0000000000240000400“00000000000000
000000000000000000.000000000000000
00000000000000000%0000000000000000
0000000000000000.00000000000000000
20000_000OOOOOOOR000000000000000000
000000ODOOODOOEO000000000000000000
COO0OQOOQCOOO0OOONOOCOOOCOCOOOO OO0 00000O0
400000000000%000000000000000000000
OCO00 000000 0OWOoOOoOO000000 000000000000 0O0
CO0C0CO0OO0O0COO0O0OVWOOCOO00O0O0C0O0O000O0O00000000QCO0OO0
CO0C0CO0OO0O0COO0OWOO0CO00000C00000O0O00000000C0O0O0
CO00 000 OMNOOOOCOO00 0000 000000000000 0O0
0000000’00000000000000000000020000
OO0 O00HO0CO0O000O0O00000O0O0C00O000000DO000OOO0O
CO0CO0OOMOOO0OO000O00000000000O0000000000O0
0000.00000000000000000000000000000
nunvnu-nvnu0000000000000000000000000000
00%0000000000020000000000000000000
OHOOOO0004000000000000000000000000

OOOO0.000000000000000000000000000000000

cococof
o o ofg]o
co@oo
oNooo
Noocoo

CO0CO0CO000O0 0000000000000 0O0000C0O00000COC0OO0
CO0C0CO0O0O0COO0O000C0CO0O0 0000000000000 00CQCO0OO0
CO0C0CO0O0O0COO0O000O0C0O00 0000000000000 000CO0OO0
OCO000000 000000000000 0000000000000 O0
CO00 000000000000 0000000000000 0000OO0

COC0O0000C0O0000O0
OO0 00O000000O00O0
OCO0O0O0O00CO00000O0
CO00000C00000O0
(=jejejejeeeleleelelele]
OO0 O0O0O0COO0O0CO0OO0
CO00 000000000
COCO0O0O0O0QCOO0OO0O00O0
OCO00O000CO000000
CO00 000000000
=jlejejejeleele]lelelele]e]
=N=jsl=jejslelalelslelels
CO00 000000000
COC0O0O000C0OO0OWMOO0
OO0 00O000000CO0O0
OCO00 000000 OMNO
CCO0O0CO0O0OQCOO0OO000O0
(=Rejsjeeleleleleelellee]
CO0O0O00COO0O000O0
CO0O0CO0O0O0COO0O0C0O00O0
OO0 O0O00CO0OO0OO0CO0O00

OCO0CO0O0O00CO0O0O0O00O0
00000000000
=jlejejejejejeleleelelele]
OCO00O000CO0O00000
OCO00O000000000
=Rejeieelelelelleelellele]
OO0 O0O00CO000CO00O0
CO0O0CO0O0O0COO0O000O0

CO00 000000000

o000

01234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556

OCHMNMTNOFRONOANMT OO ANMNTNNO~RONOANMTNO~RODO ANM
HrerrAA AR AAANANNNANNNNNNM MM MM MM MMM s S

|2qe| andL

3485%

D OoOAMNM W
= NN n W n

Predicted label

media/file19.jpg
Class 30 Class 35 Class 32 Class 35

media/file7.jpg

media/file10.png

media/file14.png
00 0 0

o)<

co0o100O001010100100000100000000010000000
P00 0O OO OOO0COOCO0OOO0CO0OOO0OODOCOODOOOOCOOOOOODOOOOODOODO

coo0ooO0OO0OCOOQ0COOCOOOO0OODOOCO0ODO0OO0CO0DO0ODCO0ODODII50 00 O0CO0CO0OCO0CO0CO0CO0DO0DOO0DO0DOO0DOO0ODOO0ODO

coococooo0oo0OO0OCOQCQCOOOOOOOODOTOODOOODOOOOCOCODOOCODOOOOODOOODOO

012 3 456 7 8 91011121314151617 1819 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42

coo0O0O0ODO0O0DODOODODOODOOOOODOOSBOO OOO0OODOOOOOODOODOOODOODODOODO O
0O0O0O0O0ODOODODODOOODODOODOOOOOISOO OO ODODOOODODODODOODOODOODOOODWO
0Oo0oo0OO0ODO0ODODOOOOOOODODOOOOOOOODSWOO0O0DO0DO0DODODODODODOODOODOOOOOO

o0 O O OO OOO0OOOOOOOOOOOOOOODOOOOOOCOOOCOOCOOOCOOOODOODOODOO

1{0p0C O O0COCOO0OOOCODOOOCOOOOCOODODOOCODCOTOODOCOCOCOCODOOCOOODOOODLI OOQODOD O

7{0 0 0O 0O O1 0208000010000 O0O0O0DO0O0DO0OO0DDO0DO0DO0OO0OOOODODOODOOOODOOCODODO
sfco oooooo0oo0l100 0 00CO0COO0OCO0ODCO0ODOO0ODOO0OOODODODODOODOODOOODOOOOOOOOOOOD O
/0 0O O O0OO0CODO {]-O 0000000 O0O0O0CO0CO0CO0CO0CO0CO0CO0CO0COO0COCOOCOCOOCOOCOOCODQO
IDQDDOODOODO-DO130000141300003000OUDGOODOGOOOOOG

EUUDDOOIODGOOUOGODGOODDODUDDDDDDUODDIUOUDUOG

3{0 0 0 Zu
50 00 00

210 0 S
24i{0 OO OOCOOOCOOCOOOOOD?2O0O02100020O01402 00 O0OO0CO0CO0CDCO0DCO0OO0DOO0CO0ODO0ODCO0ODO0DO0ODTI1I O

13{0 0 O 0O O 0O0OOODO0DODO0OO0OS000DO0O0DO0O0OODODOOOODODODODODOOOODOOOODOOODWO
140 0 O OO O0OO0OO0DO0DODODODOSB0 3 0000O0O0DO0DO0OO0O0OO0ODODOODOODOODOOOOOODODO
1s{0 0 0O 0O 2 0000O00O0DO0CO0COWO0OO0OO0I1O02001002000012020000000
160 0 OO 0O0O0O0CO0DO0ODOOO0OOOOI4990 00O 0O 01 00O0O0O0O0ODO0CO0DO0CODOODOOCODOOOODQO
170 0o 0O OO 0OO0OO0O0DO0COODOCODOOODSWOOODODODODO0ODO0ODOODOODOODOODODODOOODODOODODO
1810 0 0O 0O 0O O0O1 001100O0O0O00T0 4 40000000 O0CO0DO0CODO0CODOOOCODOODOOD O
—190 00O OOCODO0CO0OO0DO0COODOODOOOOOIBO0O D OODODOODOODOODOODOOODOODOOOODO
25{0 00O O0OCO0CO0CO0DO0O10O0O0O10O0OO0OO0OOTOOTODOQ O . 0O0O0CODOOOOOOOOOODODOODO O
2Z6ej10 OO OOOCODOOOOCODOOOOODOOODOOODOOOSBOOOCODOOCODOOOODODODOOD O
27{0o o oooooo0oo0O0COCOO0COOOOOOOOODOOOOI1l290 00 00CO0O0DO0COCOO0CO0DCCO0CDCO0ODO0ODDO
280 O O OOOOOODO0CO0OODO0ODOODOOOOOOOOOOOOOOO12000 000 DOOCOODODO0ODO0ODTD O
290 0 0 O OOCOCO0CODOOCO0ODODOODOOOODOOOOOOOOOOOO O ﬁ 0O0O0CO0ODOOOOOOOOO@ O
3pjo o oooocooooo0o0ODOCOOOOOOOOOOOOOOOO12000 OO OOOCODODO0ODO0ODDO
331 o 0o 00O0O0CO0OO0COO0O0OO0CO0ODO0OO0OCOODO0ODOOCODOTODODOOODOOOOODODBOOODOOCOOCODOOODO
3201 00000O0O0O0CCOO0O0COOO0DOCDO0O0O0CDOO0OO0COOODOOODOOOQWO ﬁ 0O 08 00O0CO0CO0O0OO0
330 000 0O0C0CO0CO0O0OO0CO0DO0OO0ODOO0OOODO0OOO0DOOCODOOOODOOOO11OD1O088800O0O0COO0O0DO0CO0TQO0
33,70 2 003101000001 00000O0100010000O0O0O0DO0O0O0DgkZk]1 00001 220
3o o003 00O0O0O00O0O0CO0ODOODO0DOCDO0O0O0OOO0ODO0O0OODO0DOODOD1I1O0OO0COTODSBSOCO0OO0DCO0ODCO0ODO0ODDO0
330 O OOOO0COOOO0COOO0OCOOODODO0OO0O0DOODO0OO0CODODOODODODODODOOODOBOOODODODODD O
370 oo coooooooooooooo0oooo0o0O0OO0OO0OODOO0OOODODOOODOOA4EBOO0OO0CO0O0
{0 0 OOCO01020000O00O0O0CDCO0OO0ODO0CODODOODO11O0O2200000O0O1O0O0ODO0O17112301 O
40{0 OOO0CO0CO0COOO0OCO0COOCOCOODO0ODO0CO0CO0OO0ODO0OODO0OCO0OODO0ODO0OODODOOODOO0OCODODOODODODOQO
421i{0 0 O OOCO0O0D400O0O0CO0DO0O0O0CD00000O0040000O00O000O0O0CO0ODOOQOOQODQO0ODQO0O;
42{0 0 2 0O 0OOCOO0OO0COO0OO0CO0ODO0OO0OOC00O0C0O0O0O0OODO0O0D000O0CO0OO0DCCOCOODOODOCOCO0OCODOODODOQ0

11{0 0 O 0O 0O 0O00CO0DO0CO0OCGBKO O OOO0ODO0OO0DO0COODODODOOODOODOODOODOODOOODODOOODO
1203UDGODODOODEOUODUODDDDlDDDOOGOGGODDUUlDDGO

330 500000 O0O0O0O0CO0COSBBO0O0O0CDCO0O0OO0CDDOCOOOO0D0DI120000O0D0O0DO0CDO0O0DI1O0CO0O0QO0

3 22
=
'-2300000001'DOGD10ODDDODDDOEDDOOGGDGUOODGO]DDGOO

w
0 20

1]
— 21

v

Predicted label

media/file11.jpg

media/file6.png
Traffic Sign
Classification

[«H]
v
e
1]
(]

f
Inodoiq

UOI}EeZI|BWION
yoeg
1

asuag

1

inodouq

uonezijewJiopN
yoreg

1

asuaq

e
[opoIN
pauieu}-aid

I
mage

Dataset

media/file15.jpg
Class 14 Class 10 Class 19

nav.xhtml

 jsan-12-00033

 		
 jsan-12-00033

media/file16.png
Class 10 Class 10 Class 19

media/file2.png
Training

QL@
®aAa0O

X 2

Train Images

Testing -

QL@

3! -om-mm- =

Test Images

media/file20.png
Class 30 " Class 35 Class 32 Class 35

media/file23.jpg

media/file5.jpg
e _I. n _I. Ji.s ,I,;.é.'mcs.,
ey H iva cmtenon

Normalization
i

media/file24.png
- e ——

Class 24

Class 48

media/file1.jpg
- -

QL@ ¥

$39 it - [- [0
Train Images T

Testing o

L@

888 . m

Test Images

media/file12.png

media/file9.jpg

media/file0.png

media/file8.png

media/file17.jpg
Bessss2s5220220020cc0cc0000000000005005005000000000508
Bas252252222202000c025830co000000a0000000000000000500l
S5228850ossaassoaoisossooaasoacsoiaiioisicaiaiy
B e s e e bl
55555525222225525555555555559959500500000000850000000%
e R e e s e
Bescssasaasacsosaceacetctccsacascsoassndascaaseices
e L e e
Bacsacaassiisasicssoccioacctosaccoacossososossosossnsl
L
Secocncscconsccooanteobsssanaassobiscsssossesoasssnl
Bosssssssscsasassassssassscsssscmiacsosasssosasscsasy
s e B s e
e e
L
2282sgsiiosasaziiioczaogicziiscaissziiasciisice
55805525005222005550252083255552052250055552055520055)
ottt bt bl et Pl et bt i e bl
553353333555222552222852555255522335333353855500225500
B e
|ttt et e e b st
R e
Wnu”w”wnuuu“uunm”w“u”u”“nu”uun“u“u“”w”””u”uuunu“uuu“u
R L
b

TIB192001 222524252627 2029301 325534353637 8 142

‘Predicted tabel

S32ss5siiisaiozsssigssisessssiiacosiasssisssasacis
Secccososconssoseosnteossesanssssooascsssasscsosesonsl

Sioiisddhcesiieteciessifaneciiieacacioccisifiilaice
BrczsSoRiccdssiassitecioeciiasticideeiaistonsitacore
Sttt it

SR NmeReNeegINN3RAnARRANARNANRARARAARARARSIIIITISELRAT
1oqe1 ana.

CRSEE]

