Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars
Abstract
:1. Introduction
2. Results
2.1. Physiological Responses of Cowpea Plants to Ozone and Drought Stresses
2.2. Galactolipid Content and Fatty Acid Composition
2.3. Expression of Genes Coding Enzymes Involved in Lipid Metabolism
3. Discussion
3.1. The Drought Treament Restricted Plant Biomass Production but Did Not Cause Cellular Damage
3.2. The Ozone Treatment Caused Leaf Injury and Decreased Plastidial Galactolipid Content but Had Limited Effect at the Whole-Plant Level
3.3. Inter-Varietal Differences in Ozone Sensitivity
3.4. Drought Alleviated the Effects of Ozone by Reducing Its Stomatal Uptake
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Stress Treatments
4.3. Shoot Biomass Production, Relative Water Content, Chlorophyll Fluorescence and Stomatal Conductance Measurements
4.4. Ozone Exposure and Dose Indices
4.5. DAB Staining
4.6. Leaf Lipid Extraction and Separation
4.7. GC-MS Analysis
4.8. RNA Extraction and cDNA Synthesis
4.9. Real-Time PCR Analysis
4.10. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AOT40 | ozone concentration accumulated over a threshold concentration of 40 ppb |
DGDG | digalactosyl-diacylglycerol |
gs | stomatal conductance |
LAH | lipid acyl hydrolase |
MGDG | monogalactosyl-diacylglycerol |
POD | phytotoxic ozone dose |
RWC | relative water content |
VuMGD | monogalactosyl-diacylglycerol synthase |
VuDGD | digalactosyl-diacylglycerol synthase |
VuFAD | ω-3 fatty acid desaturase |
VuPAT1 | patatin-like lipid acyl hydrolase |
ΦPSII | quantum yield of PSII |
Appendix A
(a) MGDG | |||||||
Cultivar | Time (d) | Treatment | %16:0 | %18:0 | %18:1 | %18:2 | %18:3 |
EPACE-1 | 7 | C | 1.5 | 0.8 | 0.1 | 1.2 | 96.3 |
D | 1.4 | 1.0 | 0.1 | 1.2 | 96.3 | ||
O | 1.9 | 1.6 | 0.2 | 1.2 | 95.2 | ||
OD | 1.5 | 1.2 | 0.2 | 1.2 | 95.8 | ||
14 | C | 1.6 | 0.8 | 0.2 | 1.0 | 96.4 | |
D | 1.3 | 1.2 | 0.2 | 1.4 | 95.9 | ||
O | 2.3 | 1.7 | 0.3 | 1.5 | 94.2 | ||
OD | 1.2 | 1.2 | 0.3 | 1.4 | 96.0 | ||
IT83-D | 7 | C | 1.6 | 1.3 | 0.2 | 1.6 | 95.3 |
D | 1.7 | 1.2 | 0.2 | 1.4 | 95.5 | ||
O | 1.2 | 0.6 | 0.1 | 1.4 | 96.7 | ||
OD | 0.9 | 0.6 | 0.1 | 1.3 | 97.0 | ||
14 | C | 1.9 | 1.2 | 0.3 | 1.2 | 95.5 | |
D | 1.7 | 2.0 | 0.3 | 1.6 | 94.5 | ||
O | 6.4 | 7.7 | 1.1 | 3.1 | 81.6 | ||
OD | 2.1 | 2.4 | 0.4 | 1.8 | 93.4 | ||
(b) DGDG | |||||||
Cultivar | Time (d) | Treatment | %16:0 | %18:0 | %18:1 | %18:2 | %18:3 |
EPACE-1 | 7 | C | 7.3 | 1.7 | 0.2 | 1.0 | 89.8 |
D | 8.1 | 2.4 | 0.3 | 1.1 | 88.1 | ||
O | 7.7 | 2.9 | 0.4 | 1.1 | 87.9 | ||
OD | 8.8 | 2.8 | 0.3 | 1.2 | 86.9 | ||
14 | C | 7.7 | 2.2 | 0.3 | 1.1 | 88.7 | |
D | 6.9 | 2.8 | 0.3 | 1.3 | 88.7 | ||
O | 8.1 | 2.7 | 0.5 | 1.2 | 87.6 | ||
OD | 10.5 | 4.1 | 0.4 | 1.4 | 83.7 | ||
IT83-D | 7 | C | 8.6 | 2.1 | 0.3 | 1.2 | 87.8 |
D | 3.7 | 1.9 | 0.7 | 2.1 | 91.7 | ||
O | 8.0 | 1.5 | 0.2 | 1.0 | 89.3 | ||
OD | 6.8 | 1.6 | 0.4 | 1.1 | 90.1 | ||
14 | C | 8.1 | 4.0 | 0.5 | 1.5 | 85.9 | |
D | 6.5 | 3.5 | 0.4 | 1.4 | 88.2 | ||
O | 7.2 | 6.3 | 1.0 | 2.0 | 83.5 | ||
OD | 7.8 | 4.7 | 0.6 | 1.6 | 85.2 |
Factor | SDW | gs | RWC | ΦPSII | Fv/Fm |
---|---|---|---|---|---|
Time (t) | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 |
Cultivar (cv) | 0.743 | 0.609 | 0.459 | 0.000 | 0.000 |
Drought (D) | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 |
Ozone (O) | 0.194 | 0.000 | 0.817 | 0.141 | 0.656 |
t × cv | 0.960 | 0.594 | 0.055 | 0.094 | 0.923 |
t × D | 0.000 | 0.477 | 0.000 | 0.103 | 0.096 |
cv × D | 0.809 | 0.341 | 0.012 | 0.091 | 0.813 |
t × cv × D | 0.415 | 0.468 | 0.420 | 0.091 | 0.713 |
t × O | 0.777 | 0.811 | 0.040 | 0.494 | 0.002 |
cv × O | 0.303 | 0.595 | 0.726 | 0.122 | 0.035 |
t × cv × O | 0.881 | 0.300 | 0.126 | 0.063 | 0.022 |
D × O | 0.084 | 0.000 | 0.844 | 0.242 | 0.736 |
t × D × O | 0.677 | 0.770 | 0.895 | 0.763 | 0.213 |
cv × D × O | 0.387 | 0.977 | 0.890 | 0.590 | 0.559 |
t × cv × D × O | 0.442 | 0.866 | 0.037 | 0.850 | 0.253 |
Factor | MGDG | DGDG |
---|---|---|
Time (t) | 0.000 | 0.003 |
Cultivar (cv) | 0.961 | 0.180 |
Drought (D) | 0.987 | 0.679 |
Ozone (O) | 0.002 | 0.000 |
t × cv | 0.131 | 0.466 |
t × D | 0.977 | 0.804 |
cv × D | 0.514 | 0.318 |
t × cv × D | 0.819 | 0.499 |
t × O | 0.094 | 0.396 |
cv × O | 0.150 | 0.026 |
t × cv × O | 0.269 | 0.875 |
D × O | 0.464 | 0.798 |
t × D × O | 0.696 | 0.660 |
cv × D × O | 0.279 | 0.264 |
t × cv × D × O | 0.734 | 0.899 |
Factor | VuMGD1 | VuMGD2 | VuDGD1 | VuDGD2 | VuFAD7 | VuFAD8 | VuPAT1 |
---|---|---|---|---|---|---|---|
Time (t) | 0.000 | 0.033 | 0.000 | 0.000 | 0.000 | 0.000 | 0.729 |
Cultivar (cv) | 0.000 | 0.348 | 0.066 | 0.000 | 0.789 | 0.000 | 0.414 |
Drought (D) | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 |
Ozone (O) | 0.110 | 0.102 | 0.986 | 0.000 | 0.525 | 0.000 | 0.026 |
t × cv | 0.000 | 0.310 | 0.131 | 0.000 | 0.592 | 0.000 | 0.559 |
t × D | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 |
cv × D | 0.000 | 0.271 | 0.058 | 0.000 | 0.948 | 0.000 | 0.208 |
t × cv × D | 0.000 | 0.251 | 0.110 | 0.000 | 0.994 | 0.000 | 0.578 |
t × O | 0.016 | 0.151 | 0.532 | 0.000 | 0.600 | 0.000 | 0.067 |
cv × O | 0.000 | 0.614 | 0.000 | 0.000 | 0.885 | 0.000 | 0.064 |
t × cv × O | 0.000 | 0.629 | 0.000 | 0.000 | 0.687 | 0.000 | 0.147 |
D × O | 0.037 | 0.106 | 0.840 | 0.000 | 0.380 | 0.000 | 0.028 |
t × D × O | 0.001 | 0.141 | 0.559 | 0.000 | 0.591 | 0.000 | 0.035 |
cv × D × O | 0.000 | 0.623 | 0.000 | 0.000 | 0.205 | 0.000 | 0.232 |
t × cv × D × O | 0.000 | 0.632 | 0.000 | 0.000 | 0.115 | 0.000 | 0.221 |
Gene Name | Gene Function | GenBank Accession Number |
---|---|---|
VuMGD1 | Type 1 monogalactosyl-diacylglycerol synthase | DQ205521 |
VuMGD2 | Type 2 monogalactosyl-diacylglycerol synthase | EF466098 |
VuDGD1 | Type 1 digalactosyl-diacylglycerol synthase | DQ205523 |
VuDGD2 | Type 2 digalactosyl-diacylglycerol synthase | EF466099 |
VuFAD7 | ω-3 fatty acid desaturase 7 | EU180596 |
VuFAD8 | ω-3 fatty acid desaturase 8 | EU180595 |
VuPAT1 | Patatin-like lipid acyl hydrolase | AF193067 |
VuEF-1α | Elongation factor 1 alpha | HO223992 |
Gene Name | Sense Primer | Antisense Primer |
VuMGD1 | 5′GTCCATCCACTGATGCAGCAC3′ | 5′TTGCGCAACATCTGTTGTAGG3′ |
VuMGD2 | 5′GTCCATCCACTGATGCAGCAC3′ | 5′ATTGACCCTTCACAAGAACC3′ |
VuDGD1 | 5′GTAATTTGCAATGTTCATGGTGT3′ | 5′TCTGAACTTCATTAGCATCCTCTC3′ |
VuDGD2 | 5′TGCACAGCCTACTAATGCTGAG3′ | 5′TGCAAGGTATGTGGAATAGCAC3′ |
VuFAD7 | 5′GCTTCAATCTTGAGTCCTATGG3′ | 5′CCAACCTTGGAGGAGCTGGAC3′ |
VuFAD8 | 5′ACCAGTTCTTGGTCAATATTACCG3′ | 5′CAGTGACTTCTCTCAGTCTTC3′ |
VuPAT1 | 5′TTTGCTTGCTTTCCTCGAAT3′ | 5′CGGGAAGATTTTTGGGGTAT3′ |
VuEF-1α | 5′GTAACAAGATGGATGCCACC3′ | 5′CCACTTTCTTCAAATACGAGGAG3′ |
References
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [PubMed]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Oltmans, S.J.; Lefohn, A.S.; Shadwick, D.; Harris, J.M.; Scheel, H.E.; Galbally, I.; Tarasick, D.W.; Johnson, B.J.; Brunke, E.G.; Claude, H.; et al. Recent tropospheric ozone changes—A pattern dominated by slow or no growth. Atmos. Environ. 2013, 67, 331–351. [Google Scholar] [CrossRef]
- Mills, G.; Pleijel, H.; Braun, S.; Buker, P.; Bermejo, V.; Calvo, E.; Danielsson, H.; Emberson, L.; Fernandez, I.G.; Grunhage, L.; et al. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos. Environ. 2011, 45, 5064–5068. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Matyssek, R.; Le Thiec, D.; Löw, M.; Dizengremel, P.; Nunn, A.J.; Häberle, K.-H. Interactions between drought and O3 stress in forest trees. Plant Biol. 2006, 1, 11–17. [Google Scholar]
- Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Glob. Chang. Biol. 2009, 15, 396–424. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos. Environ. 2009, 43, 1510–1519. [Google Scholar] [CrossRef]
- Iyer, N.J.; Tang, Y.; Mahalingam, R. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ. 2013, 36, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Maier-Maercker, U. Predisposition of trees to drought stress by ozone. Tree Physiol. 1998, 19, 71–78. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Remorini, D.; Pellegrini, E.; Landi, M.; Massai, R.; Nali, C.; Guidi, L.; Lorenzini, G. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol. Plant. 2016, 157, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Grulke, N.E. Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ. Pollut. 2010, 158, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.; Davies, W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant Cell Environ. 2010, 33, 510–525. [Google Scholar] [CrossRef] [PubMed]
- Møller, I.M.; Jensen, P.E.; Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Am. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Kangasjärvi, J.; Jaspers, P.; Kollist, H. Signalling and cell death in ozone-exposed plants. Plant Cell Environ. 2005, 28, 1021–1036. [Google Scholar] [CrossRef]
- Meijer, H.J.; Munnik, T. Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 2003, 54, 265–306. [Google Scholar] [CrossRef] [PubMed]
- Baier, M.; Kandlbinder, A.; Golldack, D.; Dietz, K.-J. Oxidative stress and ozone: Perception, signalling and response. Plant Cell Environ. 2005, 28, 1012–1020. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- De Paula, F.M.; Pham Thi, A.T.; da Silva, J.V.; Justin, A.M.; Demandre, C.; Mazliak, P. Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci. 1990, 66, 185–193. [Google Scholar] [CrossRef]
- Carlsson, A.S.; Hellgren, L.I.; Selldén, G.; Sandelius, S. Effects of moderately enhanced levels of ozone on the acyl lipid composition of the leaves of garden pea (Pisum sativum). Physiol. Plant. 1994, 91, 754–762. [Google Scholar] [CrossRef]
- Mudd, J.B.; McManus, T.T.; Ongun, A.; McCullogh, T.E. Inhibition of glycolipid biosynthesis in chloroplasts by ozone and sulfhydryl reagents. Plant Physiol. 1971, 48, 335–339. [Google Scholar] [CrossRef] [PubMed]
- De Paula, F.M.; Pham Thi, A.T.; Zuily-Fodil, Y.; Ferrari-Iliou, R.; da Silva, J.V.; Mazliak, P. Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata. Plant Physiol. Biochem. 1993, 31, 707–715. [Google Scholar]
- Hellgren, L.I.; Carlsson, A.S.; Sellden, G.; Sandelius, A.S. In situ leaf lipid-metabolism in garden pea (Pisum sativum L.) exposed to moderately enhanced levels of ozone. J. Exp. Bot. 1995, 46, 221–230. [Google Scholar] [CrossRef]
- Matos, A.R.; d’Arcy-Lameta, A.; Franca, M.; Petres, S.; Edelman, L.; Kader, J.; Zuily-Fodil, Y.; Pham-Thi, A.T. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett. 2001, 491, 188–192. [Google Scholar] [CrossRef]
- Dakhma, W.S.; Zarrouk, M.; Cherif, A. Effects of drought-stress on lipids in rape leaves. Phytochemistry 1995, 40, 1383–1386. [Google Scholar] [CrossRef]
- Carlsson, A.S.; Wallin, G.; Sandelius, S. Species- and age-dependent sensitivity to ozone in young plants of pea, wheat and spinach: Effects on acyl lipid and pigment content and metabolism. Physiol. Plant. 1996, 98, 271–280. [Google Scholar] [CrossRef]
- Campos, P.S.; Ramalho, J.C.; Lauriano, J.A.; Silva, M.J.; do Céu Matos, M. Effects of Drought on Photosynthetic Performance and Water Relations of Four Vigna Genotypes. Photosynthetica 1999, 36, 79–87. [Google Scholar] [CrossRef]
- De Carvalho, M.H.C.; Laffray, D.; Louguet, P. Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars when submitted to drought conditions. Environ. Exp. Bot. 1998, 40, 197–207. [Google Scholar] [CrossRef]
- Torres-Franklin, M.L.; Gigon, A.; de Melo, D.F.; Zuily-Fodil, Y.; Pham-Thi, A.T. Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol. Plant. 2007, 131, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, D.K.L.; Mills, G.; Hayes, F.; Norris, D.; Coyle, M.; Wilkinson, S.; Davies, W. N-fixation in legumes—An assessment of the potential threat posed by ozone pollution. Environ. Pollut. 2016, 208, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Malaiyandia, M.; Natarajana, M. Impact of Ozone on Morphological, Physiological, and Biochemical Changes in Cow Pea (Vigna unguiculata (L.) Walp.). Ozone Sci. Eng. 2014, 36, 36–42. [Google Scholar] [CrossRef]
- Tetteh, R.; Yamaguchi, M.; Wada, Y.; Funada, R.; Izuta, T. Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata. Environ. Pollut. 2015, 196, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Tetteh, R.; Yamaguchi, M.; Izuta, T. Effect of ambient levels of ozone on photosynthetic components and radical scavenging system in the leaves of African cowpea varieties. Afr. Crop Sci. J. 2016, 24, 127–142. [Google Scholar] [CrossRef]
- Umponstira, C.; Pimpa, W.; Nanegrungsun, S. Physiological and biochemical responses of cowpea (Vigna unguiculata (L.) Walp) to ozone. Songklanakarin J. Sci. Technol. 2006, 28, 861–869. [Google Scholar]
- Umponstira, C.; Kawayaskul, S.; Chuchaung, S.; Homhaul, W. Effect of Ozone on Nitrogen Fixation, Nitrogenase Activity and Rhizobium of Cowpea (Vigna unguiculata (L.) Walp.). Naresuan Univ. J. 2009, 17, 213–220. [Google Scholar]
- Vasquez-Tello, A.; Zuily-Fodil, Y.; Pham Thi, A.T.; da Silva, J.V. Electrolyte and Pi leakages and soluble sugar contents as physiological tests for screening resistance to water stress in Phaseolus and Vigna species. J. Exp. Bot. 1990, 228, 827–832. [Google Scholar] [CrossRef]
- Torres-Franklin, M.L.; Repellin, A.; Huynh, V.-B.; d’Arcy-Lameta, A.; Zuily-Fodil, Y.; Pham-Thi, A.-T. Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration. Environ. Exp. Bot. 2009, 65, 162–169. [Google Scholar] [CrossRef]
- Langebartels, C.; Wohlgemuth, H.; Kschieschan, S.; Grun, S.; Sandermann, H. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol. Biochem. 2002, 40, 567–575. [Google Scholar] [CrossRef]
- Sakaki, T.; Saito, K.; Kawaguchi, A.; Kondo, N.; Yamada, M. Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol. 1990, 94, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, B.D.; Lee, E.H.; Rowland, R.A. EDU and ozone protection: Foliar glycerolipids and steryl lipids in snapbean exposed to O3. Physiol. Plant. 1990, 80, 286–293. [Google Scholar] [CrossRef]
- Sandelius, A.S.; Näslund, K.; Carlsson, A.S.; Pleijel, H.; Selldén, G. Exposure of spring wheat (Triticum aestivum) to ozone in open–top chambers. Effects on acyl lipid composition and chlorophyll content of flag leaves. New Phytol. 1995, 131, 231–239. [Google Scholar] [CrossRef]
- Fong, F.; Heath, R.L. Lipid-content in the primary leaf of bean (Phaseolus vulgaris) after ozone fumigation. Z. Pflanzenphysiol. 1981, 104, 109–115. [Google Scholar] [CrossRef]
- Nouchi, I.; Toyama, S. Effects of ozone and peroxyacetyl nitrate on polar lipids and fatty acids in leaves of morning glory and kidney bean. Plant Physiol. 1988, 87, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.R.; Pham-Thi, A.T. Lipid deacylating enzymes in plants: Old activities, new genes. Plant Physiol. Biochem. 2009, 47, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Gigon, A.; Matos, A.-R.; Laffray, D.; Zuily-Fodil, Y.; Pham-Thi, A.-T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann. Bot. 2004, 94, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sahsah, Y.; Pham Thi, A.T.; Roy-Macauley, H.; d’Arcy-Lameta, A.; Repellin, A.; Zuily-Fodil, Y. Purification and characterization of a soluble lipolytic acylhydrolase from cowpea (Vigna unguiculata L.) leaves. Biochim. Biophys. Acta 1994, 1215, 66–73. [Google Scholar] [CrossRef]
- Sahsah, Y.; Campos, P.; Gareil, M.; Zuily-Fodil, Y.; Pham-Thi, A.T. Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress. Physiol. Plant. 1998, 104, 577–586. [Google Scholar] [CrossRef]
- Nishiuchi, T.; Iba, K. Roles of plastid omega-3 fatty acid desaturases in defense response of higher plants. J. Plant Res. 1998, 111, 481–486. [Google Scholar] [CrossRef]
- Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Yaeno, T.; Matsuda, O.; Iba, K. Role of chloroplast trienoic fatty acids in plant disease defense responses. Plant J. 2004, 40, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Le Guédard, M.; Faure, O.; Bessoule, J.J. Early changes in the fatty acid composition of photosynthetic membrane lipids from Populus nigra grown on a metallurgical landfill. Chemosphere 2012, 88, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo. Environ. Pollut. 2005, 134, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Dumont, J.; Spicher, F.; Montpied, P.; Dizengremel, P.; Jolivet, Y.; Le Thiec, D. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes. Environ. Pollut. 2013, 173, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Wittig, V.E.; Ainsworth, E.A.; Long, S.P. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ. 2007, 30, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Weatherley, P. Studies in the water relations of the cotton plant: I—The field measurement of water deficit in leaves. New Phytol. 1950, 49, 81–97. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Convention on Long-Range Transboundary Air Pollution 2004 Modelling and Mapping Manual of the LRTAP Convention; United Nations Economic Commission for Europe: Geneva, Switzerland, 2004. [Google Scholar]
- Bagard, M.; Le Thiec, D.; Delacote, E.; Hasenfratz-Sauder, M.-P.; Banvoy, J.; Gérard, J.; Dizengremel, P.; Jolivet, Y. Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Physiol. Plant. 2008, 134, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 235, 8–17. [Google Scholar]
- Lepage, M. Identification and composition of turnip root lipids. Lipids 1967, 2, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, L.D.; Schmitz, A.A. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 1961, 33, 363–364. [Google Scholar] [CrossRef]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
Cultivar | Treatment | 12-h Mean (O3) (ppb) | AOT40 (ppm·h) | POD0 (mmol·m−2) |
---|---|---|---|---|
EPACE-1 | C | nd | nd | nd |
D | nd | |||
O | 130.4 ± 5.2 | 16.7 ± 1.0 | 3.8 ± 0.7 | |
OD | 2.9 ± 0.5 | |||
IT83-D | C | nd | nd | nd |
D | nd | |||
O | 130.4 ± 5.2 | 16.7 ± 1.0 | 4.6 ± 1.2 | |
OD | 3.1 ± 1.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebouças, D.M.; De Sousa, Y.M.; Bagard, M.; Costa, J.H.; Jolivet, Y.; De Melo, D.F.; Repellin, A. Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars. Plants 2017, 6, 14. https://doi.org/10.3390/plants6010014
Rebouças DM, De Sousa YM, Bagard M, Costa JH, Jolivet Y, De Melo DF, Repellin A. Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars. Plants. 2017; 6(1):14. https://doi.org/10.3390/plants6010014
Chicago/Turabian StyleRebouças, Deborah Moura, Yuri Maia De Sousa, Matthieu Bagard, Jose Helio Costa, Yves Jolivet, Dirce Fernandes De Melo, and Anne Repellin. 2017. "Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars" Plants 6, no. 1: 14. https://doi.org/10.3390/plants6010014
APA StyleRebouças, D. M., De Sousa, Y. M., Bagard, M., Costa, J. H., Jolivet, Y., De Melo, D. F., & Repellin, A. (2017). Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars. Plants, 6(1), 14. https://doi.org/10.3390/plants6010014