Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants
Abstract
:1. Introduction
2. Results
2.1. Xylem Sap Exudation Rates and Transpiration Rates with Various Treatments
2.2. Concentrations of Treated Elements in Xylem Sap and Their Absorption Rates from the Culture Solution
2.3. Concentration of Major N Compounds in Xylem Sap of Rice Plants Treated with Different Concentrations of Major Elements
2.4. Organic Acid Concentrations in Xylem Sap with Various Concentrations of Major Elements
2.5. Comparison of the Equivalent Concentrations of Anions and Cations in the Xylem Sap of Plants Cultivated with Various Concentrations of N, P, K, Mg, and Ca
3. Discussion
3.1. Effects of Major Nutrient Concentrations on Xylem Sap Exudation Rates and Transpiration
3.2. Effects of Major Nutrient Concentrations on Concentrations of Treated Elements in Xylem Sap and Absorption Rates
3.3. Effects of Major Nutrient Concentrations on Concentrations of N Compounds in Xylem Sap
3.4. Effects of Major Nutrient Concentrations on Cation-Anion Balance and Organic Acids Accumulation in Xylem Sap
3.5. The Applicability of Xylem Sap Analysis for the Diagnosis of Nutritional Status in Rice Plants
4. Materials and Methods
4.1. Plant Cultivation
4.2. N, P, K, Mg, and Ca Treatments
4.3. Analyses of Concentrations of Mineral Nutrients and N Compounds in Xylem Sap and Culture Solution
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.K.; Butt, M.S.; Anjum, F.M.; Khan, S.H. Rice bran: A novel functional ingredient. Crit. Rev. Food Sci. Nutr. 2014, 54, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; He, Q.; Wang, Y.; Wang, Y.; Wang, J.; Yuan, Z.; Wang, M.; Chen, W.; Luo, L.; Xu, W.; et al. Genome evolution and diversity of wild and cultivated rice species. Nat. Commun. 2024, 15, 9994. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, Z.; Wei, J.; Qu, H.Y.; Xie, Y.J.; Xu, G.H. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J. Genet. Genom. 2016, 43, 639–649. [Google Scholar] [CrossRef]
- Ferreira, L.M.; de Souza, V.M.; Tavares, O.C.H.; Zonta, E.; Santa-Catarina, C.; de Souza, S.R.; Fernandes, M.S.; Santos, L.A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol. Rep. 2015, 9, 221–229. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Arima, Y.; Kumazawa, K. A kinetic study of amide and amino acid synthesis in rice seedling roots fed with 15N-labeled ammonium: Physiological significance of glutamine on nitrogen absorption and assimilation in plants (part 2). J. Soil Sci. Manure Jpn. 1975, 46, 355–361. [Google Scholar]
- Yoneyama, T.; Kumazawa, K. A kinetic study of the assimilation of 15N-labeled ammonium in rice seedlings. Plant Cell Physiol. 1974, 15, 655–661. [Google Scholar] [CrossRef]
- Baslam, M.; Mitsui, T.; Sueyoshi, K.; Ohyama, T. Recent advances in carbon and nitrogen metabolism in C3 plants. Int. J. Mol. Sci. 2021, 22, 318. [Google Scholar] [CrossRef]
- Muhammad, S.; Kumazawa, K. The absorption, distribution, and accumulation of 15N-labelled ammonium and nitrate nitrogen administered at different growth stages of rice. Soil Sci. Plant Nutr. 1974, 20, 47–55. [Google Scholar] [CrossRef]
- Ohyama, T.; Ooomote, H. Absorption and assimilation of top dressed nitrate in rice plants cultivated in paddy soil. Bull. Facul. Agric. Niigata Univ. 1991, 43, 101–110. [Google Scholar]
- Kirk, G.J.; Kronzucker, H.J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modelling study. Ann. Bot. 2005, 96, 639–646. [Google Scholar] [CrossRef]
- Li, Y.L.; Fan, X.R.; Shen, Q.R. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ. 2008, 31, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Gao, J.; Zhang, W.; Zhao, C.; Wang, Y.; Zhen, X. Differential uptake and utilization of two forms of nitrogen in Japonica rice cultivars from North-Eastern China. Front. Plant Sci. 2019, 10, 1061. [Google Scholar] [CrossRef]
- Feng, H.; Yan, M.; Fan, X.; Li, B.; Shen, Q.; Miller, A.J.; Xu, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J. Exp. Bot. 2011, 62, 2319–2332. [Google Scholar] [CrossRef]
- Yan, M.; Fan, X.; Feng, H.; Miller, A.J.; Shen, Q.; Xu, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 2011, 34, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liang, Z.; Chen, S.; Sun, H.; Fan, X.; Wang, C.; Xu, G.; Zhang, Y. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol. 2019, 180, 882–895. [Google Scholar] [CrossRef]
- Islam, M.S. Sensing and uptake of nitrogen in rice plant: A molecular view. Rice Sci. 2019, 26, 343–355. [Google Scholar] [CrossRef]
- Jia, H.; Ren, H.; Gu, M.; Zhao, J.; Sun, S.; Zhang, X.; Chen, J.; Wu, P.; Xu, G. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol. 2011, 156, 1164–1175. [Google Scholar] [CrossRef]
- Feng, H.; Tang, Q.; Cai, J.; Xu, B.; Xu, G.; Yu, L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta 2019, 250, 549–561. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yamaji, N.; Motoyama, R.; Nagamura, Y.; Ma, J.F. Upregulation of a magnesium transpoter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol. 2012, 159, 1624–1633. [Google Scholar]
- Chen, Z.C.; Yamaji, N.; Horie, T.; Che, J.; Li, J.; Li, J.; An, G.; Ma, J.F. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 2017, 174, 1837–1849. [Google Scholar] [CrossRef] [PubMed]
- Kothari, S.; Sharma, V.K.; Singh, A.; Singh, S.K.; Kumari, S. Genome-wide identification, expression profiling, and network analysis of calcium and cadmium transporters in rice (Oryza sativa L.). Cereal Res. Commun. 2024, 52, 1689–1712. [Google Scholar] [CrossRef]
- Yoneyama, T. Nitrogen nutrition and growth of the rice plant. I. Nitrogen circulation and protein turnover in rice seedlings. Soil Sci. Plant Nutr. 1977, 23, 237–245. [Google Scholar]
- Yoneyama, T.; Sano, C. Nitrogen nutrition and growth of the rice plant. II. Considerations concerning the dynamics of nitrogen in rice seedlings. Soil Sci. Plant Nutr. 1978, 24, 191–198. [Google Scholar]
- Yoneyama, T. Nitrogen nutrition and growth of the rice plant. III. Origin of amino-acid nitrogen in the developing leaf. Soil Sci. Plant Nutr. 1978, 24, 199–205. [Google Scholar]
- Fukumorita, T.; Chino, M. Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol. 1982, 23, 273–283. [Google Scholar] [CrossRef]
- Hayashi, H.; Okada, Y.; Mano, H.; Kume, T.; Matsuhashi, S.; Ishioka, N.S.; Uchida, H.; Chino, M. Detection and characterization of nitrogen circulation through the sieve tubes and xylem vessels of rice plants. Plant Soil 1997, 196, 233–237. [Google Scholar]
- Kiyomiya, S.; Nakanishi, H.; Uchida, H.; Tsuji, A.; Nishiyama, S.; Futatsubashi, M.; Tsukada, H.; Ishioka, N.S.; Watanabe, S.; Ito, T.; et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol. 2001, 125, 1743–1754. [Google Scholar]
- Marschner, H. Ion uptake mechanisms of individual cells and roots: Short-distance transport. In Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1986; pp. 6–78. [Google Scholar]
- Bollard, E.G. Translocation of organic nitrogen in the xylem. Aust. J. Biol. Sci. 1957, 10, 292–301. [Google Scholar] [CrossRef]
- Schurr, U. Xylem sap sampling-new approaches to an old topic. Trends Plant Sci. 1998, 3, 293–298. [Google Scholar] [CrossRef]
- Takamatsu, T.; Watanabe, M.; Koshikawa, M.K. Convenient sampling of xylem sap from adult tree trunks and analysis of its components. Forests 2023, 14, 389. [Google Scholar] [CrossRef]
- Morita, S.; Abe, J. Grasping root system activity. Root Res. 2015, 24, 79–88. [Google Scholar] [CrossRef]
- Takahashi, Y.; Chinushi, T.; Nakano, T.; Ohyama, T. Evaluation of N2 fixation activity and N absorption activity by relative ureide methods in field-grown soybean plants with deep placement of coated urea. Soil Sci. Plant Nutr. 1992, 38, 699–708. [Google Scholar]
- Hirasawa, T.; Araki, T.; Matsuda, E.; Ishihara, K. On exudation rate from the base of the leaf blade in rice plants. Jpn. J. Crop Sci. 1983, 52, 574–581. [Google Scholar] [CrossRef]
- Morita, S.; Abe, J. Diurnal and phenological changes of bleeding rate in lowland rice plants. Jpn. J. Crop Sci. 2002, 71, 383–388. [Google Scholar] [CrossRef]
- Sakaigaichi, T.; Morita, S.; Abe, J.; Yamaguchi, T. Diurnal and phenological changes in the rate of nitrogen transportation monitored by bleeding in field-grown rice plants (Oryza sativa L.). Plant Prod. Sci. 2007, 10, 270–276. [Google Scholar]
- Songmuang, P.; Abe, J.; Morita, S. Application of rice straw compost to lowland rice and its effects on root morphology in Thai paddy field. Root Res. 1997, 6, 32–33. [Google Scholar]
- Ju, J.; Yamamoto, Y.; Miyazaki, A.; Yoshida, T.; Wang, Y. Effects of the amount and the kinds of fertilizer on the bleeding rate and nitrogen absorption in Chinese high-yielding cultivar, Yangdao 4. Jpn. J. Crop Sci. 2006, 75, 249–256. [Google Scholar] [CrossRef]
- Qi, Z.; Ling, F.; Jia, D.; Cui, J.; Zhang, Z.; Xu, C.; Yu, L.; Guan, C.; Wang, Y.; Zhang, M.; et al. Effects of low nitrogen on seedling growth, photosynthetic characteristics and antioxidant system of rice varieties with different nitrogen efficiencies. Sci. Rep. 2023, 13, 19780. [Google Scholar] [CrossRef]
- Yamamura, Y.; Higuchi, K.; Saito, A.; Ohyama, T. Phosphate turnover in various parts of nodulated soybean (Glycine max (L.) Merr.) plants and the relation to the xylem transport. Crops 2024, 4, 413–425. [Google Scholar] [CrossRef]
- Marschner, H. Functions of mineral nutrients: Macronutrients. In Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1986; pp. 229–312. [Google Scholar]
- Marshner, H.; Richter, C. Calcium-transport in Wurzeln von Mais- und Bohnenkeimphanzen. Plant Soil 1974, 40, 193–210. [Google Scholar] [CrossRef]
- Moritsugu, M. Comparative Plant Nutritional Studies on the Effect of Ammonium-N and Nitrate-N on Plant Growth, with Special Emphasis on the Nutrient Uptake Under Stabilized pH of the Culture Solution. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 1980. [Google Scholar]
- Ono, Y.; Fukasawa, M.; Sueyoshi, K.; Ohtake, N.; Sato, T.; Tanabata, S.; Toyota, R.; Higuchi, K.; Saito, A.; Ohyama, T. Application of nitrate, ammonium, or urea changes the concentrations of ureides, urea, amino acids and other metabolites in xylem sap and in the organs of soybean plants (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2021, 22, 4573. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, Y.; Higuchi, K.; Saito, A.; Ohyama, T. Absorption and transport of phosphaorus in nodulated soybean plants and diagnosis of phosphorus status using xylem sap analysis. Agriculture 2024, 14, 403. [Google Scholar] [CrossRef]
- Van Beusichem, M.L.; Kirkby, E.A.; Baas, R. Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiol. 1988, 86, 914–921. [Google Scholar] [CrossRef]
- Deshamps, P.; Zerrouk, N.; Nicolis, I.; Martens, T.; Curis, E.; Charlot, M.F.; Girerd, J.J.; Prange, T.; Bennazeth, S.; Chaumeil, J.C.; et al. Copper(II)-L-glutamine complexation study in solid state and in aqueous solution. Inorganica Chim. Acta 2003, 353, 22–34. [Google Scholar] [CrossRef]
- Prasetyo, E.; Muryanta, W.A.; Amin, M.; Sudibyo; Muttaqii, M.A.; Bahfie, F.; Handoko, A.S. Glutamate leaching of spent lithium-ion battery cathode in weak acidic-neutral condition: New insight on kinetics and dissolution mechanism. Miner. Process. Extr. Metall. Rev. 2024, 1–14. [Google Scholar] [CrossRef]
- Triplett, E.W.; Barnett, N.M.; Blevins, D.G. Organic acids and ionic balance in xylem exudate of wheat during nitrate or sulfate absorption. Plant Physiol. 1980, 65, 610–613. [Google Scholar] [CrossRef]
- Kan, M.; Fujiwara, T.; Kamiya, T. Golgi-localized OsFPN1 is involved in Co and Ni transport and their detoxification in rice. Rice 2022, 15, 36. [Google Scholar] [CrossRef]
- Ma, J.F.; Goto, S.; Tamai, K.; Ichii, M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 2001, 127, 1773–1780. [Google Scholar] [CrossRef]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef]
- Ohyama, T.; Isaka, M.; Saito, A.; Higuchi, K. Effects of nodulation on metabolite concentrations in xylem sap and in the organs of soybean plants supplied with different N forms. Metabolites 2023, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Mitani, N.; Ma, J.F.; Iwashita, T. Identification of silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol. 2005, 46, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Aryal, R.L.; Pokhrel, M.R.; Poudel, B.R.; Adhikari, B.R. Preparation of pectin based adsorbent for the removal of phosphate anion from water. Res. J. Chem. Sci. 2020, 10, 16–24. [Google Scholar]
- Mudunkotuwa, I.A.; Grassian, V. Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: Surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J. Am. Chem. Soc. 2010, 132, 14986–14994. [Google Scholar] [CrossRef] [PubMed]
- Lameloise, M.-L.; Martinier, H.; Fargues, C. Concentration and purification of malate ion from a beverage industry waste water using electrodialysis with homopolar membranes. J. Membr. Sci. 2009, 343, 73–81. [Google Scholar] [CrossRef]
- MEdical and PHArmaceutical Statistics (MEPHAS). Available online: www.gen-info.osaka-u.ac.jp/MEPHAS/mokuji1-e.html (accessed on 24 May 2002).
Nutrient Element | Chemical Formula | Concentration (μM) |
---|---|---|
N, Ca | Ca(NO3)2 | 370 |
N, K | KNO3 | 180 |
N, S | (NH4)2SO4 | 370 |
Mg, S | MgSO4 | 550 |
K, P | KH2PO4 | 210 |
Mn, Cl | MnCl2 | 7.3 |
B | H3BO3 | 9.3 |
Zn | ZnSO4 | 0.15 |
Cu | CuSO4 | 0.16 |
Mo | (NH4)6Mo7O24 | 0.015 |
Fe, Na | C10H12FeN2NaO8 3H2O | 90 |
(A) | |||||
×0 N | ×0.2 N | ×0.5 N | ×1 N | ×5 N | |
Ca(NO3)2 | 0 | 74 | 185 | 370 | 1850 |
KNO3 | 0 | 36 | 90 | 180 | 900 |
(NH4)2SO4 | 0 | 74 | 185 | 370 | 1850 |
CaCl2 | 370 | 296 | 185 | 0 | 0 |
KCl | 180 | 144 | 90 | 0 | 0 |
(B) | |||||
×0 P | ×0.2 P | ×0.5 P | ×1 P | ×5 P | |
KH2PO4 | 0 | 42 | 105 | 210 | 1050 |
KCl | 210 | 168 | 105 | 0 | 0 |
(C) | |||||
×0 K | ×0.2 K | ×0.5 K | ×1 K | ×5 K | |
KNO3 | 0 | 36 | 90 | 180 | 900 |
KH2PO4 | 0 | 42 | 105 | 210 | 1050 |
NH4NO3 | 180 | 144 | 90 | 0 | 0 |
NH4H2PO4 | 210 | 168 | 105 | 0 | 0 |
(NH4)2SO4 | 175 | 214 | 272.5 | 370 | 370 |
(D) | |||||
×0 Mg | ×0.2 Mg | ×0.5 Mg | ×1 Mg | ×5 Mg | |
MgSO4 | 0 | 110 | 275 | 550 | 2750 |
(E) | |||||
×0 Ca | ×0.2 Ca | ×0.5 Ca | ×1 Ca | ×5 Ca | |
Ca(NO3)2 | 0 | 74 | 185 | 370 | 1850 |
Mg(NO3)2 | 370 | 296 | 185 | 0 | 0 |
MgSO4 | 180 | 254 | 365 | 550 | 550 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watado, S.; Higuchi, K.; Saito, A.; Ohyama, T. Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants. Plants 2025, 14, 1154. https://doi.org/10.3390/plants14081154
Watado S, Higuchi K, Saito A, Ohyama T. Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants. Plants. 2025; 14(8):1154. https://doi.org/10.3390/plants14081154
Chicago/Turabian StyleWatado, Shohei, Kyoko Higuchi, Akihiro Saito, and Takuji Ohyama. 2025. "Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants" Plants 14, no. 8: 1154. https://doi.org/10.3390/plants14081154
APA StyleWatado, S., Higuchi, K., Saito, A., & Ohyama, T. (2025). Effects of Varying N, P, K, Mg, and Ca Concentrations on Nitrogen Transport in Xylem Sap of Rice Plants. Plants, 14(8), 1154. https://doi.org/10.3390/plants14081154