Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Leaf Gas Exchange Measurements
2.3. Agronomical Traits
2.4. Calculation
2.5. Statistical Analysis
3. Results
3.1. Effect of N Supplies on Leaf Photosynthesis and Plant Growth
3.2. Response of Leaf Gas Exchange Parameters to Low and High Temperatures
3.3. Effects of N Supplies on Leaf PNUE Under Low and High Temperatures
4. Discussion
4.1. Low Temperature Exerts a Greater Negative Impact on Leaf Photosynthesis Through Distinct Mechanistic Pathways
4.2. Nitrogen Supply Alleviates Temperature-Stress-Induced PNUE Depression
4.3. Combined Effects of Nitrogen Supply and Temperature on Leaf Intrinsic Water Use Efficency (iWUE)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S. Weather and Climate Extreme Events in a Changing Climate; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Khush, G.S. Strategies for increasing the yield potential of cereals: Case of rice as an example. Plant Breed. 2013, 132, 433–436. [Google Scholar] [CrossRef]
- Cruz, R.P.d.; Sperotto, R.A.; Cargnelutti, D.; Adamski, J.M.; de FreitasTerra, T.; Fett, J.P. Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur. 2013, 2, 96–119. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.F.; Kan, Y.; Shan, J.X.; Ye, W.W.; Dong, N.Q.; Guo, T.; Xiang, Y.H.; Yang, Y.B.; Li, Y.C.; et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 2022, 376, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jiang, L.; Zou, Y.; Zhang, W. On-farm assessment of effect of low temperature at seedling stage on early-season rice quality. Field Crop. Res. 2013, 141, 63–68. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. Heat stress in cereals: Mechanisms and modelling. Eur. J. Agron. 2015, 64, 98–113. [Google Scholar] [CrossRef]
- Wu, A.; Brider, J.; Busch, F.A.; Chen, M.; Chenu, K.; Clarke, V.C.; Collins, B.; Ermakova, M.; Evans, J.R.; Farquhar, G.D.; et al. A cross-scale analysis to understand and quantify the effects of photosynthetic enhancement on crop growth and yield across environments. Plant Cell Environ. 2022, 46, 23–44. [Google Scholar] [CrossRef]
- Slot, M.; Rifai, S.W.; Eze, C.E.; Winter, K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. New Phytol. 2024, 244, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Yamori, W.; Masumoto, C.; Fukayama, H.; Makino, A. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J. 2012, 71, 871–880. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Yang, Y.; Shu, Y.; Ren, X.; Peng, S.; Li, Y. Interspecific variation in the temperature response of mesophyll conductance is related to leaf anatomy. Plant J. 2022, 112, 221–234. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, J.; Zhou, G.; Li, J.; Qian, C.; Lin, G.; Li, Y.; Zuo, Q. Moderate nitrogen application improved salt tolerance by enhancing photosynthesis, antioxidants, and osmotic adjustment in rapeseed (Brassica napus L.). Front. Plant Sci. 2023, 14, 1196319. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Clarke, V.C. The nitrogen cost of photosynthesis. J. Exp. Bot. 2018, 70, 7–15. [Google Scholar] [CrossRef]
- Huang, Z.A.; Jiang, D.A.; Yang, Y.; Sun, J.W.; Jin, S.H. Effects of Nitrogen Deficiency on Gas Exchange, Chlorophyll Fluorescence, and Antioxidant Enzymes in Leaves of Rice Plants. Photosynthetica 2004, 42, 357–364. [Google Scholar] [CrossRef]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Hikosaka, K.; Hirose, T. Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest. Tree Physiol. 2000, 20, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Cipriotti, P.A. Biological limits on nitrogen use for plant photosynthesis: A quantitative revision comparing cultivated and wild species. New Phytol. 2016, 214, 120–131. [Google Scholar] [CrossRef]
- Lei, Z.Y.; Wang, H.; Wright, I.J.; Zhu, X.G.; Niinemets, Ü.; Li, Z.L.; Sun, D.S.; Dong, N.; Zhang, W.F.; Zhou, Z.L.; et al. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynth. Res. 2021, 150, 239–250. [Google Scholar] [CrossRef]
- Qiang, B.; Zhou, W.; Zhong, X.; Fu, C.; Cao, L.; Zhang, Y.; Jin, X. Effect of nitrogen application levels on photosynthetic nitrogen distribution and use efficiency in soybean seedling leaves. J. Plant Physiol. 2023, 287, 154051. [Google Scholar] [CrossRef]
- Cui, E.; Xia, J.; Luo, Y. Nitrogen use strategy drives interspecific differences in plant photosynthetic CO2 acclimation. Glob. Change Biol. 2023, 29, 3667–3677. [Google Scholar] [CrossRef]
- Flexas, J. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Plant Sci. 2016, 251, 155–161. [Google Scholar] [CrossRef] [PubMed]
- McAusland, L.; Vialet-Chabrand, S.; Davey, P.; Baker, N.R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 2016, 211, 1209–1220. [Google Scholar] [CrossRef]
- Xiong, Z.; Xiong, D.; Yang, D.; Cui, K.; Peng, S.; Huang, J. Effects of contrasting N supplies on leaf photosynthetic induction under fluctuating light in rice (Oryza sativa L.). Physiol. Plant. 2022, 174, e13636. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, J.I.; Prieto, I.; Armas, C.; Casanoves, F.; Diémé, J.S.; Diouf, M.; Yossi, H.; Kaya, B.; Pugnaire, F.I.; Rusch, G.M. Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol. 2022, 235, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Middleby, K.B.; Cheesman, A.W.; Cernusak, L.A. Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. New Phytol. 2024, 243, 648–661. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Wittemann, M.; Andersson, M.X.; Ntirugulirwa, B.; Tarvainen, L.; Wallin, G.; Uddling, J. Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species. Tree physiol. 2022, 42, 1188–1202. [Google Scholar] [CrossRef]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; De Kauwe, M.G.; Tjoelker, M.G.; Aspinwall, M.J.; Barton, C.V.M.; Campany, C.E.; Crous, K.Y.; Yang, J.; et al. Photosynthetic temperature responses in leaves and canopies: Why temperature optima may disagree at different scales. Tree Physiol. 2024, 44, tpae135. [Google Scholar] [CrossRef]
- Novriyanti, E.; Watanabe, M.; Makoto, K.; Takeda, T.; Hashidoko, Y.; Koike, T. Photosynthetic nitrogen and water use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica 2012, 50, 273–281. [Google Scholar] [CrossRef]
- Yamori, W.; Nagai, T.; Makino, A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ. 2011, 34, 764–777. [Google Scholar] [CrossRef]
- Xiong, D.; Yu, T.; Zhang, T.; Li, Y.; Peng, S.; Huang, J. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J. Exp. Bot. 2014, 66, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Magnani, F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 2005, 28, 834–849. [Google Scholar] [CrossRef]
- Ye, C.; Fukai, S.; Godwin, I.; Reinke, R.; Snell, P.; Schiller, J.; Basnayake, J. Cold tolerance in rice varieties at different growth stages. Crop Pasture Sci. 2009, 60, 328–338. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Evans, J.R.; Von Caemmerer, S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. 2013, 36, 745–756. [Google Scholar] [CrossRef]
- Saneoka, H.; Moghaieb, R.E.A.; Premachandra, G.S.; Fujita, K. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ. Exp. Bot. 2004, 52, 131–138. [Google Scholar] [CrossRef]
- Torres-Olivar, V.; Villegas-Torres, O.G.; Domínguez-Patiño, M.L.; Sotelo-Nava, H.; Rodríguez-Martínez, A.; Melgoza-Alemán, R.M.; Valdez-Aguilar, L.A.; Alia-Tejacal, I. Role of nitrogen and nutrients in crop nutrition. J. Agric. Sci. Technol. B 2014, 4, 29. [Google Scholar]
- Huang, G.; Zhang, Q.; Wei, X.; Peng, S.; Li, Y. Nitrogen Can Alleviate the Inhibition of Photosynthesis Caused by High Temperature Stress under Both Steady-State and Flecked Irradiance. Front. Plant Sci. 2017, 8, 945. [Google Scholar] [CrossRef]
- Ru, C.; Hu, X.; Wang, W.; Yan, H. Impact of nitrogen on photosynthesis, remobilization, yield, and efficiency in winter wheat under heat and drought stress. Agric. Water Manag. 2024, 302, 109013. [Google Scholar] [CrossRef]
- Xu, Y.; Shang, B.; Feng, Z.; Tarvainen, L. Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. Tree Physiol. 2020, 40, 484–497. [Google Scholar] [CrossRef]
- Obour, A.K.; Mikha, M.M.; Holman, J.D.; Stahlman, P.W. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization. Geoderma 2017, 308, 46–53. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.; Fahad, S. Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Front. Plant Sci. 2022, 13, 854195. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; Van Grinsven, H.J.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhao, M.; Zhang, S.; Li, Y.; Dai, J.; Gu, C.; Li, X.; Yang, L.; Qin, L.; Liao, X. Optimized leaf storage and photosynthetic nitrogen trade-off promote synergistic increases in photosynthetic rate and photosynthetic nitrogen use efficiency. Physiol. Plant. 2023, 175, e14013. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Palta, J.A.; Chen, W.; Chen, Y.; Deng, X. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Zhang, Q.; Ficklin, D.L.; Manzoni, S.; Wang, L.; Way, D.; Phillips, R.P.; Novick, K.A. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 2019, 14, 074023. [Google Scholar] [CrossRef]
- Al-Salman, Y.; Cano, F.J.; Pan, L.; Koller, F.; Piñeiro, J.; Jordan, D.; Ghannoum, O. Anatomical drivers of stomatal conductance in sorghum lines with different leaf widths grown under different temperatures. Plant Cell Environ. 2023, 46, 2142–2158. [Google Scholar] [CrossRef]
- Gregory, L.M.; Roze, L.V.; Walker, B.J. Increased activity of core photorespiratory enzymes and CO2 transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile Rhazya stricta. Plant Cell Environ. 2023, 46, 3704–3720. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Sanhueza, C.; Hernández, C.E.; Cifuentes, L.; Pinto, K.; Álvarez, R.; González-Teuber, M.; Bravo, L.A. Nitrogen Supply Affects Photosynthesis and Photoprotective Attributes During Drought-Induced Senescence in Quinoa. Front. Plant Sci. 2018, 9, 994. [Google Scholar] [CrossRef]
- Lawson, T.; Blatt, M.R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 2014, 164, 1556–1570. [Google Scholar] [CrossRef]
- Elliott-Kingston, C.; Haworth, M.; Yearsley, J.M.; Batke, S.P.; Lawson, T.; McElwain, J.C. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 2016, 7, 1253. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B Biol. 2014, 137, 116–126. [Google Scholar] [CrossRef] [PubMed]
Treatment | A (μmol m−2 s−1) | gs (mol m−2 s−1) | iWUE (μmol mol−1) | E (10−3 mol m−2 s−1) | Ci (μmol mol−1) | gm (mol m−2 s−1) | Cc (μmol mol−1) | ETR (μmol m−2 s−1) | |
---|---|---|---|---|---|---|---|---|---|
HN | 16.5 ± 0.7 de | 0.46 ± 0.04 bcd | 33.7 ± 4.5 ab | 4.64 ± 0.4 d | 319 ± 9 abc | 0.09 ± 0.01 cd | 142 ± 5 ab | 152 ± 8 c | |
15 °C | MN | 11.8 ± 1.5 fg | 0.33 ± 0.03 cd | 36.5 ± 7.8 ab | 3.62 ± 0.3 d | 324 ± 14 ab | 0.06 ± 0.01 de | 118 ± 8 cd | 130 ± 9 cd |
LN | 7.80 ± 1.2 g | 0.28 ± 0.05 d | 29.2 ± 9.2 ab | 3.28 ± 0.5 d | 339 ± 16 a | 0.03 ± 0.01 e | 92 ± 7 e | 116 ± 9 d | |
HN | 30.8 ± 0.91 a | 0.76 ± 0.21 a | 42.7 ± 11 ab | 11.6 ± 1.2 c | 289 ± 18 bc | 0.23 ± 0.02 a | 155 ± 9 a | 261 ± 7 a | |
30 °C | MN | 24.0 ± 0.6 bc | 0.45 ± 0.04 bcd | 53.3 ± 5.5 a | 9.06 ± 0.4 c | 281 ± 8 c | 0.16 ± 0.01 b | 130 ± 3 bc | 233 ± 6 ab |
LN | 22.1 ± 2.6 bc | 0.43 ± 0.03 bcd | 51.5 ± 6.2 a | 9.24 ± 0.8 c | 287 ± 12 bc | 0.14 ± 0.03 bc | 123 ± 12 bcd | 227 ± 12 b | |
HN | 25.8 ± 1.6 b | 0.63 ± 0.14 ab | 42.5 ± 7.4 ab | 24.6 ± 0.7 a | 278 ± 15 c | 0.17 ± 0.00 b | 124 ± 5 bcd | 260 ± 7 a | |
45 °C | MN | 20.4 ± 3.6 cd | 0.49 ± 0.16 bcd | 45.6 ± 18 ab | 20.6 ± 3.9 b | 280 ± 36 c | 0.13 ± 0.05 bc | 110 ± 10 de | 233 ± 22 ab |
LN | 15.3 ± 1.6 ef | 0.57 ± 0.11 abc | 27.5 ± 7.2 b | 24.0 ± 1.8 ab | 315 ± 15 abc | 0.07 ± 0.01 de | 94 ± 12 e | 212 ± 25 b | |
T/N/T × N | ***/***/ns | **/***/ns | */ns/ns | ***/**/ns | ***/*/ns | ***/***/ns | ***/***/ns | ***/***/ns |
Treatment | Nmass (mg/g) | Narea (g/m2) | LMA (g/m2) | Total Leaf Area (103 cm2 Plant−1) | Tillers (No. Plant −1) | Plant Height (cm) | Biomass (g plant−1) |
---|---|---|---|---|---|---|---|
HN | 37.8 ± 1.3 a | 2.13 ± 0.14 a | 56.3 ± 4.7 a | 1.79 ± 0.45 a | 11.5 ± 1.7 a | 114 ± 7 a | 22.5 ± 6.9 a |
MN | 23.3 ± 0.8 b | 1.27 ± 0.13 b | 54.3 ± 4.1 a | 0.77 ± 0.12 b | 7.5 ± 0.6 b | 96 ± 2 b | 12.5 ± 0.5 b |
LN | 17.6 ± 0.43 c | 1.02 ± 0.08 c | 57.7 ± 3.3 a | 0.28 ± 0.02 b | 3.5 ± 0.6 c | 84 ± 2 c | 5.6 ± 0.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Zheng, F.; Wu, C.; Tang, H.; Xiong, D.; Cui, K.; Peng, S.; Huang, J. Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations. Plants 2025, 14, 961. https://doi.org/10.3390/plants14060961
Xiong Z, Zheng F, Wu C, Tang H, Xiong D, Cui K, Peng S, Huang J. Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations. Plants. 2025; 14(6):961. https://doi.org/10.3390/plants14060961
Chicago/Turabian StyleXiong, Zhuang, Fangzhou Zheng, Chao Wu, Hui Tang, Dongliang Xiong, Kehui Cui, Shaobing Peng, and Jianliang Huang. 2025. "Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations" Plants 14, no. 6: 961. https://doi.org/10.3390/plants14060961
APA StyleXiong, Z., Zheng, F., Wu, C., Tang, H., Xiong, D., Cui, K., Peng, S., & Huang, J. (2025). Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations. Plants, 14(6), 961. https://doi.org/10.3390/plants14060961