Chemical Profiling of Gmelina philippensis Cham. Leaf Extract and Its Antioxidant and Anti-Cholinesterase Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Untargeted Metabolome Analysis
2.1.1. Flavonoids
2.1.2. Iridoid Glycosides
2.1.3. Phenolic Acids
2.1.4. Lipids
2.1.5. Miscellaneous
2.2. LC–MS/MS Analysis and Molecular Networking
2.3. Assessment of the Antioxidant Activity Using DPPH and ABTS Assays
2.4. Assessment of the In Vitro Inhibition of Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Enzyme Activities
3. Materials and Methods
3.1. Plant Material Collection and Authentication
3.2. Extraction Procedure
3.3. HPLC-MS Analysis
3.4. GNPS-Based Molecular Networking
3.5. Evaluation of Antioxidant Activity by DPPH Radical Scavenging Method
3.6. Ferric Reducing Antioxidant Power (FRAP) Assay
3.7. In Vitro Assay for Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) inhibition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elebeedy, D.; Ghanem, A.; Aly, S.H.; Ali, M.A.; Faraag, A.H.I.; El-Ashrey, M.K.; Salem, A.M.; El Hassab, M.A.; El Maksoud, A.I.A. Synergistic Antiviral Activity of Lactobacillus acidophilus and Glycyrrhiza glabra against Herpes Simplex-1 Virus (HSV-1) and Vesicular Stomatitis Virus (VSV): Experimental and In Silico Insights. BMC Microbiol. 2023, 23, 173. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.H.; Uba, A.I.; Nilofar, N.; Majrashi, T.A.; El Hassab, M.A.; Eldehna, W.M.; Zengin, G.; Eldahshan, O.A. Chemical Composition and Biological Activity of Lemongrass Volatile Oil and N-Hexane Extract: GC/MS Analysis, in Vitro and Molecular Modelling Studies. PLoS ONE 2025, 20, e0319147. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.H.; Elissawy, A.M.; Mahmoud, A.M.A.; El-Tokhy, F.S.; Mageed, S.S.A.; Almahli, H.; Al-Rashood, S.T.; Binjubair, F.A.; El Hassab, M.A.; Eldehna, W.M. Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules 2023, 28, 2994. [Google Scholar] [CrossRef]
- Anwar, M.A.; Sayed, G.A.; Hal, D.M.; Hafeez, M.S.; Shatat, A.-A.S.; Salman, A.; Eisa, N.M.; Ramadan, A.; El-Shiekh, R.A.; Hatem, S. Herbal Remedies for Oral and Dental Health: A Comprehensive Review of Their Multifaceted Mechanisms Including Antimicrobial, Anti-Inflammatory, and Antioxidant Pathways. Inflammopharmacology 2025, 33, 1085–1160. [Google Scholar] [CrossRef]
- de Kok, R. A Revision of the Genus Gmelina (Lamiaceae). Kew Bull. 2012, 67, 293–329. [Google Scholar] [CrossRef]
- Eldahshan, O.A.; El Hassab, M.A.; Zengin, G.; Aly, S.H. GC/MS Analysis, In Vitro Antioxidant and Enzyme Inhibitory Activities of the n-Hexane Extract of Gmelina philippensis Cham. and in Silico Molecular Docking of Its Major Bioactive Compounds. Proc. Indian Natl. Sci. Acad. 2025, 1–10. [Google Scholar] [CrossRef]
- Sayed, H.M.; Ahmed, A.S.; Khallaf, I.S.; Qayed, W.S.; Mohammed, A.F.; Farghaly, H.S.M.; Asem, A. Phytochemical Investigation, Molecular Docking Studies and DFT Calculations on the Antidiabetic and Cytotoxic Activities of Gmelina Philippensis CHAM. J. Ethnopharmacol. 2023, 303, 115938. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Islam, F.; Quadery, T.M.; Shihan, M.H.; Rashid, M.A. In Vitro Antioxidant, Total Phenolic Content and Preliminary Toxicity Studies of Gmelina philippensis Chem. Afr. J. Pharm. Pharmacol. 2012, 6, 855–859. [Google Scholar] [CrossRef]
- Gangwal, A.; Ansari, A.; Ansari, I.; Sawale, J.A.; Wong, L.S.; Subramaniyan, V.; Kumarasamy, V. Network Pharmacology-Guided Identification and Molecular Validation of Multi-Target Phytoconstituents from Gmelina Arborea Against Alzheimer’s Disease. 2025. Available online: https://www.researchsquare.com/article/rs-7399280/v1 (accessed on 14 October 2025).
- Andarghiske, K.R.; Bhanukiran, K.; Ksirri, R.; Hemalatha, S. In Silico Exploration of Gmelina asiatica for Multitarget Neuroprotection in Alzheimer’s Disease. Pharmacogn. Res. 2025, 17, 115–125. [Google Scholar] [CrossRef]
- Aly, S.H.; Mahmoud, A.M.A.; Abdel Mageed, S.S.; Khaleel, E.F.; Badi, R.M.; Elkaeed, E.B.; Rasheed, R.A.; El Hassab, M.A.; Eldehna, W.M. Exploring the Phytochemicals, Antioxidant Properties, and Hepatoprotective Potential of Moricandia sinaica Leaves against Paracetamol-Induced Toxicity: Biological Evaluations and in Silico Insights. PLoS ONE 2024, 19, e0307901. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Yagi, S.; Eldahshan, O.A.; Singab, A.N.; Selvi, S.; Rodrigues, M.J.; Custodio, L.; Dall’Acqua, S.; Ponnaiya, S.K.M.; Aly, S.H. Decoding Chemical Profiles and Biological Activities of Aerial Parts and Roots of Eryngium thorifolium Boiss by HPLC-MS/MS, GC-MS and in Vitro Chemical Assays. Food Biosci. 2024, 61, 104556. [Google Scholar] [CrossRef]
- Aly, S.; Elissawy, A.; El Hassab, M.; Majrashi, T.; Hassan, F.; Elkaeed, E.; Eldehna, W.; Singab, A. Comparative Metabolic Study of the Chloroform Fraction of Three Cystoseira species Based on UPLC/ESI/MS Analysis and Biological Activities. J. Enzyme Inhib. Med. Chem. 2023, 39, 2292482. [Google Scholar] [CrossRef]
- Farag, M.A.; Otify, A.; Porzel, A.; Michel, C.G.; Elsayed, A.; Wessjohann, L.A. Comparative Metabolite Profiling and Fingerprinting of Genus Passiflora Leaves Using a Multiplex Approach of UPLC-MS and NMR Analyzed by Chemometric Tools. Anal. Bioanal. Chem. 2016, 408, 3125–3143. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Aziz, N.M.; Hifnawy, M.S.; Lotfy, R.A.; Younis, I.Y. LC/MS/MS and GC/MS/MS Metabolic Profiling of Leontodon hispidulus, in Vitro and in Silico Anticancer Activity Evaluation Targeting Hexokinase 2 Enzyme. Sci. Rep. 2024, 14, 6872. [Google Scholar] [CrossRef]
- Aquino, A.J.; Alves, T.D.C.; Oliveira, R.V.; Ferreira, A.G.; Cass, Q.B. Chemical Secondary Metabolite Profiling of Bauhinia longifolia Ethanolic Leaves Extracts. Ind. Crops Prod. 2019, 132, 59–68. [Google Scholar] [CrossRef]
- El Sayed, A.M.; El Hawary, S.; Elimam, H.; Saleh, A.M.; Zokalih, A.H.; Mohyeldin, M.M.; Bassam, S.M. ESI-LC-MS/MS Based Comparative Multivariate Metabolomic and Biological Profiling with Dynamic Molecular Docking of Gmelina arborea Roxb Different Organs. Fitoterapia 2023, 168, 105540. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, N.; Yadav, A.K.; Srivastava, P.; Shanker, K.; Verma, R.K.; Gupta, M.M. Iridoid Glycosides from Gmelina arborea. Phytochemistry 2008, 69, 2387–2390. [Google Scholar] [CrossRef]
- Gu, W.; Hao, X.-J.; Liu, H.-X.; Wang, Y.-H.; Long, C.-L. Acylated Iridoid Glycosides and Acylated Rhamnopyranoses from Gmelina arborea Flowers. Phytochem. Lett. 2013, 6, 681–685. [Google Scholar] [CrossRef]
- Fogliano, V.; Corollaro, M.L.; Vitaglione, P.; Napolitano, A.; Ferracane, R.; Travaglia, F.; Arlorio, M.; Costabile, A.; Klinder, A.; Gibson, G. In Vitro Bioaccessibility and Gut Biotransformation of Polyphenols Present in the Water-insoluble Cocoa Fraction. Mol. Nutr. Food Res. 2011, 55, S44–S55. [Google Scholar] [CrossRef]
- Shankar, S.R.; Girish, R.; Karthik, N.; Rajendran, R.; Mahendran, V.S. Allelopathic Effects of Phenolics and Terpenoids Extracted from Gmelina arborea on Germination of Black Gram (Vigna mungo) and Green Gram (Vigna radiata). Allelopath. J. 2009, 23, 323–332. [Google Scholar]
- Shreeda Adhyapak, S.A.; Vidya Dighe, V.D.; Dhanashri Mestry, D.M.; Neeta Shambhu, N.S. High Performance Liquid Chromatographic Method for Quantization of Apigenin from Dried Root Powder of Gmelina arborea Linn. Int. J. Pharma Bio Sci. 2011, 2, 742–749. [Google Scholar]
- Hosny, M.; Rosazza, J.P.N. Gmelinosides A–L, Twelve Acylated Iridoid Glycosides from Gmelina arborea. J. Nat. Prod. 1998, 61, 734–742. [Google Scholar] [CrossRef]
- Florence, A.R.; Jeeva, S. Chemical Composition of Essential Oil from the Leaves of Gmelina asiatica L. J. Med. Plants Stud. 2016, 4, 8–10. [Google Scholar]
- Basumatary, S.; Deka, D.C.; Deka, D.C. Composition of Biodiesel from Gmelina arborea Seed Oil. Adv. Appl. Sci. Res. 2012, 3, 2745–2753. [Google Scholar]
- Deepak Kumar, D.K.; Ashwani Sanghi, A.S.; Raju Chandra, R.C.; Shefali Arora, S.A.; Sharma, A.K. Membrane Stability and Antioxidant Activity of Gmelina arborea Seed Extracts and Their Fatty Acid Composition. Br. J. Pharm. Res. 2015, 6, 261–268. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, S.; Ma, X.; Song, Q.; Song, Y.; Tu, P.; Jiang, Y. A Quantitative Chemomics Strategy for the Comprehensive Comparison of Murraya paniculata and M. exotica Using Liquid Chromatography Coupled with Mass Spectrometry. J. Chromatogr. A 2024, 1718, 464736. [Google Scholar] [CrossRef] [PubMed]
- Falah, S.; Katayama, T.; Suzuki, T. Chemical Constituents from Gmelina arborea Bark and Their Antioxidant Activity. J. Wood Sci. 2008, 54, 483–489. [Google Scholar] [CrossRef]
- Dinda, B. Pharmacology and Applications of Naturally Occurring Iridoids; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 3030055752. [Google Scholar]
- Pasdaran, A.; Hamedi, A. The Genus Scrophularia: A Source of Iridoids and Terpenoids with a Diverse Biological Activity. Pharm. Biol. 2017, 55, 2211–2233. [Google Scholar] [CrossRef]
- Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020, 25, 287. [Google Scholar] [CrossRef]
- Lee , D.E.; Park , K.H.; Hong, J.H.; Kim, S.H.; Park, K.M.; Kim, K.H. Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2. Archives of Pharmacal Research 2023, 46, 771–781. [Google Scholar]
- Lee , S.; Jang, M.; Ryoo, R.; Roh, J.; Ko, S.K.; Kim , K.H. New autophagy-modulating lanostane-type triterpenoids from a hallucinogenic poisonous mushroom Gymnopilus orientispectabilis. Archives of pharmacal research 2024, 47, 272–287. [Google Scholar]
- Thapa, B.B.; Huo, C.; Budhathoki, R.; Chaudhary, P.; Joshi, S.; Poudel, P.B.; Magar, R.T.; Parajuli, N.; Kim, K.H.; Sohng, J.K. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int. J. Mol. Sci. 2024, 25, 4193. [Google Scholar] [CrossRef]
- González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages. Front. Microbiol. 2016, 7, 1099. [Google Scholar] [CrossRef] [PubMed]
- Athamena, S.; Laroui, S.; Bouzid, W.; Meziti, A. The Antioxidant, Anti-Inflammatory, Analgesic and Antipyretic Activities of Juniperu thurifera. J. Herbs Spices Med. Plants 2019, 25, 271–286. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kivrak, İ.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, Anticholinesterase and Antimicrobial Constituents from the Essential Oil and Ethanol Extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Mintjens, N.; Brummans, R.; Soetens, F.; Claes, K.B.M.; Vanlinthout, L.E. Timing of Blood Sampling for Butyrylcholinesterase Phenotyping in Patients with Prolonged Neuromuscular Block after Mivacurium or Suxamethonium. Acta Anaesthesiol. Scand. 2021, 65, 182–187. [Google Scholar] [CrossRef]




| Peak No. | tR a (min) | Annotated Compound | Calculated Mass (m/z) | Observed Mass (m/z) | Adduction | MS/MS b | Δ ppm | Chemical Formula | Class | Confidence Level C |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.89 | Stachyose | 665.2146 | 665.2151 | [M−H]− | 59.0142, 71.0139, 89.0245, 101.0243, 113.0246, 119.0353, 165.0406, 179.0562, 383.1192 | 0.75 | C24H42O21 | Sugar | Level 2 |
| 2 | 0.91 | Sucrose | 365.1054 | 365.1051 | [M+Na]+ | 157.0078, 185.0408, 203.0515 | −0.82 | C12H22O11 | Sugar | Level 2 |
| 3 | 0.93 | Nicotinic acid | 124.0393 | 124.0388 | [M+H]+ | 53.0383, 78.0332, 80.0489 | −4.03 | C6H5NO2 | Pyridinecarboxylic acid | Level 2 |
| 4 | 0.94 | L-Pipecolic acid | 130.0863 | 130.0856 | [M+H]+ | 56.0492, 77.0378, 84.0798, 103.0531, 117.0560 | −5.38 | C6H11NO2 | Amino acid | Level 2 |
| 5 | 1.90 | p-Coumaric acid glucoside | 325.0929 | 325.0925 | [M−H]− | 59.0135, 71.0132, 117.0336, 119.0491, 145.0284, 161.0595, 163.0382 | −1.23 | C15H18O8 | Phenolic acid | Level 2 |
| 6 | 2.29 | trans-β-d-Glucosyl-2-hydroxycinnamate | 309.0969 | 309.0967 | [M−H2O+H]+ | 84.9588, 91.0535 119.0481, 147.0428, 194.8577 | −0.65 | C15H18O8 | Phenolic acid | Level 2 |
| 7 | 2.34 | 3″-O-Caffeoyl-6-O-rhamnopyranosylcatalpol | 669.2036 | 669.2027 | [M−H]− | 85.0302, 116.9275, 133.0282, 135.0436, 145.0288, 161.0232, 179.0334, 337.4182, 426.9881 | −1.34 | C30H38O17 | Iridoid glycoside | Level 2 |
| 8 | 2.39 | Apigenin 6-C-arabinoside 8-C-glucoside (Isoschaftoside) | 563.1406 | 563.1408 | [M−H]− | 297.0784, 325.0715, 353.0678, 365.0669, 383.0779, 395.0783, 413.0891, 425.0896, 443.1005, 473.1100 | 0.36 | C26H28O14 | Flavone glycoside | Level 2 |
| 9 | 3.42 | Saccatoside | 653.2087 | 653.2088 | [M−H]− | 119.0503, 145.0299, 163.0404, 291.0879, 377.1249 | 0.15 | C30H38O16 | Iridoid glycoside | Level 2 |
| 10 | 3.89 | Apigenin-6-C-glucoside (Isovitexin) | 433.1129 | 433.1127 | [M+H]+ | 147.0442, 283.0589, 313.0706, 323.0905, 337.0710 | −0.46 | C21H20O10 | Flavone glycoside | Level 2 |
| 11 | 4.32 | Quercetin 3-O-galactoside | 463.0882 | 463.0871 | [M−H]− | 59.0135, 77.0397, 121.0274, 135.0432, 145.0284, 151.0022, 178.9971, 243.0401, 255.0291, 271.0230, 300.0264 | −2.38 | C21H20O12 | Flavonol glycoside | Level 2 |
| 12 | 4.64 | Quercetin 3-O-xyloside | 433.0776 | 433.0776 | [M−H]− | 151.0030, 163.0031, 178.9974, 243.0278, 255.0293, 271.0239, 283.0243, 300.0262 | 0.00 | C20H18O11 | Flavonol glycoside | Level 2 |
| 13 | 5.00 | Kaempferol 3-O-glucoside (Astragalin) | 447.0933 | 447.0931 | [M−H]− | 59.0131, 107.0128, 151.0012, 175.0368, 227.0331, 255.0282, 284.0310 | −0.45 | C21H20O11 | Flavonol glycoside | Level 2 |
| 14 | 5.03 | Apigenin 7-O-neohesperidoside (Rhoifolin) | 577.1563 | 577.1559 | [M−H]− | 163.0396, 205.0495, 269.0441, 413.0839 | −0.69 | C27H30O14 | Flavone glycoside | Level 2 |
| 15 | 5.35 | Luteolin | 287.0550 | 287.0543 | [M+H]+ | 133.0633, 153.0180, 161.0588, 241.0473, 269.0426 | −2.44 | C15H10O6 | Flavone | Level 2 |
| 16 | 5.35 | Kaempferol 3-O-arabinoside (Juglalin) | 417.0827 | 417.0827 | [M−H]− | 68.9989, 107.0494, 149.0602, 227.0320, 255.0306, 257.0413, 284.0323, 297.0764 | 0.00 | C20H18O10 | Flavonol glycoside | Level 2 |
| 17 | 5.33 | Kaempferol 3-O-α-l-arabinopyranosyl-7-O-α-l-rhamnopyranoside | 565.1552 | 565.1546 | [M+H]+ | 85.0284, 287.0552, 469.1318 | −1.06 | C26H28O14 | Flavonol glycoside | Level 2 |
| 18 | 6.58 | Murrangatin | 277.1071 | 277.1064 | [M+H]+ | 55.0545, 69.0334, 103.0537, 131.0487, 172.9893 | −2.53 | C15H16O5 | Coumarin | Level 2 |
| 19 | 7.29 | Gmelinoside N (6-O-α-l-(2″, 3″-di-O-trans-p-hydroxycinnamoyl)rhamnopyranosylcatalpol) | 799.2455 | 799.2465 | [M−H]− | 59.0137, 119.0501, 135.0446, 145.0297, 163.0401, 187.0405, 205.0520, 291.0864, 359.1142, 377.1237, 437.1234, 455.1332, 523.1624, 653.2079 | 1.25 | C39H44O18 | Iridoid glycoside | Level 2 |
| 20 | 8.01 | 9,12,13-Trihydroxy-10E-octadecenoic acid | 329.2333 | 329.233 | [M−H]− | 57.0349, 59.0127, 71.0510, 99.0810, 127.1122, 139.1122, 165.1275, 171.1020, 183.1389, 193.1218, 209.1194, 211.1339, 229.1437 | −0.91 | C18H34O5 | Fatty acid | Level 2 |
| 21 | 10.80 | Gelomulide N | 415.2115 | 415.2111 | [M−H2O+H]+ | 91.0536, 107.0856, 119.0856, 133.0645 | −0.96 | C24H32O7 | Diterpenoids | Level 2 |
| 22 | 12.66 | α-Linolenic acid | 279.2319 | 279.2317 | [M+H]+ | 57.0696, 67.0537, 71.0851, 81.0694, 95.0845, 183.1354 | −0.72 | C18H30O2 | Fatty acid | Level 2 |
| 23 | 13.17 | 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine | 452.2783 | 452.2784 | [M−H]− | 57.0341, 59.0129, 71.0149, 75.0085, 78.9592, 87.0074, 140.0107, 166.9247, 177.0393, 196.0364, 255.2324, 277.2187, 390.7082 | 0.22 | C21H44NO7P | Phospholipid | Level 2 |
| 24 | 14.51 | 1-Monolinolenin | 353.2686 | 353.2685 | [M+H]+ | 55.0545, 67.0540, 81.0695, 95.0850, 107.0855, 121.1007, 135.1162, 261.2216, 300.1405 | −0.28 | C21H36O4 | Glycerolipids | Level 2 |
| 25 | 13.20 | Lysophosphatidylcholine (16:0) | 496.3398 | 496.3392 | [M+H]+ | 60.0807, 86.0962, 104.1067, 124.9995, 184.0728, 313.2718 | −1.21 | C24H50NO7P | Phospholipid | Level 2 |
| 26 | 13.38 | α-Linolenoyl ethanolamide | 322.2741 | 322.273 | [M+H]+ | 55.0542, 62.0596, 67.0534, 81.0694, 93.0697, 107.0847, 154.1217, 179.1043, 309.0737 | −3.41 | C20H35NO2 | Fatty amides | Level 2 |
| 27 | 14.47 | Linoleoyl ethanolamide | 324.2897 | 324.2887 | [M+H]+ | 57.0696, 62.0597, 67.0539, 81.0695, 95.0853, 109.0995, 238.8297, 290.1763 | −3.08 | C20H37NO2 | Fatty amides | Level 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, S.H.; Sung Lee, G.; Jang, Y.S.; Fayez, S.; Kim, K.H.; Kim, C.S.; El-Shazly, M. Chemical Profiling of Gmelina philippensis Cham. Leaf Extract and Its Antioxidant and Anti-Cholinesterase Properties. Plants 2025, 14, 3494. https://doi.org/10.3390/plants14223494
Aly SH, Sung Lee G, Jang YS, Fayez S, Kim KH, Kim CS, El-Shazly M. Chemical Profiling of Gmelina philippensis Cham. Leaf Extract and Its Antioxidant and Anti-Cholinesterase Properties. Plants. 2025; 14(22):3494. https://doi.org/10.3390/plants14223494
Chicago/Turabian StyleAly, Shaza H., Gyu Sung Lee, Yoon Seo Jang, Shaimaa Fayez, Ki Hyun Kim, Chung Sub Kim, and Mohamed El-Shazly. 2025. "Chemical Profiling of Gmelina philippensis Cham. Leaf Extract and Its Antioxidant and Anti-Cholinesterase Properties" Plants 14, no. 22: 3494. https://doi.org/10.3390/plants14223494
APA StyleAly, S. H., Sung Lee, G., Jang, Y. S., Fayez, S., Kim, K. H., Kim, C. S., & El-Shazly, M. (2025). Chemical Profiling of Gmelina philippensis Cham. Leaf Extract and Its Antioxidant and Anti-Cholinesterase Properties. Plants, 14(22), 3494. https://doi.org/10.3390/plants14223494

