Effects of the Center-Edge Gradient and Habitat Type on the Spatial Distribution of Plant Species Richness in Santiago, Chile
Abstract
1. Introduction
2. Methods
2.1. City of Santiago
2.2. Floristic Sampling
2.3. Flora
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2019; p. 56. [Google Scholar]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Z.; Wu, Y. Direct and indirect impacts of urbanization on biodiversity across the world’s cities. Remote Sens. 2025, 17, 956. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, biodiversity, and conservation. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Borden, J.B.; Flory, S.L. Urban evolution of invasive species. Front. Ecol. Environ. 2021, 19, 184–191. [Google Scholar] [CrossRef]
- Gippet, J.M.W.; Rocabert, C.; Colin, T.; Grangier, J.; Tauru, H.; Dumet, A.; Mondy, N.; Kaufmann, R. The observed link between urbanization and invasion can depend on how invasion is measured. Divers. Distrib. 2022, 28, 1171–1179. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Berthon, K.; Thomas, F.; Bekessy, S. The role of nativeness in urban greening to support animal biodiversity. Landsc. Urban Plan. 2021, 205, 103959. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Xiong, C.; Wei, Z.; Chen, Q.-L.; Ma, B.; Zhou, S.-Y.-D.; Tan, J.; Zhang, L.-M.; Cui, H.-L.; Duan, G.-L. Impacts of global change on the phyllosphere microbiome. New Phytol. 2022, 234, 1977–1986. [Google Scholar] [CrossRef]
- Lin, Q.C.; Cen, Y.-Q.; Xu, M.; Jian, D.-D.; Zhang, J. Effects of urban green space habitats and tree species on ectomycorrhizal fungi. Sci. Rep. 2024, 14, 15448. [Google Scholar]
- Arcos-LeBert, G.; Aravena-Hidalgo, T.; Figueroa, J.A.; Jaksic, F.M.; Castro, S.A. Native trees provide more benefits than exotic trees when ecosystem services are weighted in Santiago, Chile. Trees 2021, 35, 1663–1672. [Google Scholar] [CrossRef]
- McPhearson, T.; Frantzeskaki, N.; Ossola, A.; Diep, L.; Anderson, P.M.L.; Blatch, T.; Collier, M.J.; Cook, E.M.; Culwick-Fatti, C.; Grabowski, Z.J.; et al. Global synthesis and regional insights for mainstreaming urban nature-based solutions. Proc. Natl. Acad. Sci. USA 2025, 122, e2315910121. [Google Scholar] [CrossRef]
- Strashok, O.; Bidolakh, D.; Ziemiańska, M. Ecosystem benefits of urban woody plants for sustainable cities. Sci. Rep. 2025, 15, 95581. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Nizamani, M.M.; Harris, A.J.; Padullés-Cubino, J.; Johnson, J.B.; Cui, J.-P.; Zhang, H.-L.; Zhou, J.-J.; Zhu, Z.-Z.; Wang, H.-F. Anthropogenic factors explain urban plant diversity across cities. Urban For. Urban Green. 2024, 93, 128057. [Google Scholar]
- de Barros Ruas, R.; Santana-Costa, L.M.; Bered, F. Urbanization driving changes in plant species and communities. Glob. Ecol. Conserv. 2022, 34, e02025. [Google Scholar]
- Wu, C.-C.; Chang, C.-Y.; Deal, B.; Li, D.; Sullivan, W. Unraveling urban plant diversity: Independent effects of environment, management, and socioeconomics. Urban For. Urban Green. 2025, 98, 130012. [Google Scholar]
- Rega-Brodsky, C.C.; Aronson, M.F.J.; Piana, M.R.; Carpenter, E.-S.; Hahs, A.K.; Herrera-Montes, A.; Knapp, S.; Kotze, D.J.; Lepczyk, C.A.; Moretti, M.; et al. Urban biodiversity: State of the science and future directions. Urban Ecosyst. 2022, 25, 1083–1096. [Google Scholar] [CrossRef]
- Skaldina, O.; Blande, J.D. Global biases in ecology and conservation research. Conserv. Sci. Pract. 2024, 6, e1310. [Google Scholar]
- Convention on Biological Diversity (CBD). Updated Global Strategy for Plant Conservation (2020–2030): Decision 16/20; CBD Secretariat: Montreal, QC, Canada, 2024. [Google Scholar]
- Botanic Gardens Conservation International (BGCI). The Global Strategy for Plant Conservation 2020–2030: Overview Implementation; Botanic Gardens Conservation International: Richmond, UK, 2024. [Google Scholar]
- Slezák, M.; Čiliak, M.; Hrivnák, R.; Májeková, J.; Eliáš, P., Jr.; Hegedüšová-Vantarová, K.; Svitková, I.; Dudáš, M.; Čejka, T. Species diversity of urban biota: The role of habitat type and biogeography. Urban For. Urban Green. 2025, 129, 129089. [Google Scholar] [CrossRef]
- Harms, P.; Hofer, M.; Artmann, M. Planning cities with nature for sustainability transformations. Urban Transform. 2024, 6, 66. [Google Scholar] [CrossRef]
- Casanelles-Abella, J.; Egerer, M. Ecology for future cities. Basic Appl. Ecol. 2025, 95, 55–63. [Google Scholar] [CrossRef]
- Vakhlamova, T.; Rusterholz, H.-P.; Kanibolotskaya, Y.; Baur, B. Changes in plant diversity along an urban-rural gradient in an expanding city in Kazakhstan. Landsc. Urban Plan. 2014, 132, 111–120. [Google Scholar] [CrossRef]
- Cameron, G.N.; Culley, T.M.; Kolbe, S.E.; Miller, A.I.; Matter, S.F. Effects of urbanization on herbaceous forest vegetation. Urban Ecosyst. 2015, 18, 1051–1069. [Google Scholar] [CrossRef]
- Jha, R.K.; Nölke, N.; Diwakara, B.N.; Tewari, V.P.; Kleinn, C. Differences in tree species diversity along the rural-urban gradient in Bengaluru, India. Urban For. Urban Green. 2019, 46, 126464. [Google Scholar] [CrossRef]
- Alue, B.A.; Salleh Hudin, N.; Mohamed, F.; Mat Said, Z.; Ismail, K. Plant diversity along an urbanization gradient of a tropical city. Diversity 2022, 14, 1024. [Google Scholar] [CrossRef]
- Sotillo, A.; Hardion, L.; Chanez, E.; Fujiki, K.; Muratet, A. Plant responses to urban gradients: Extinction, plasticity, adaptation. J. Ecol. 2024, 112, 2861–2875. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Lososová, Z.; Horsák, M.; Chytrý, M.; Čejka, T.; Danihelka, J.; Fajmon, K.; Hájek, O.; Juřičková, L.; Kintrová, K.; Láníková, D.; et al. Diversity of Central European urban biota: Effects of human-made habitat types on plants and snails. J. Biogeogr. 2011, 38, 1152–1163. [Google Scholar] [CrossRef]
- Lososová, Z.; Chytrý, M.; Tichý, L.; Danihelka, J.; Fajmon, K.; Hájek, O.; Kintrová, K.; Kühn, I.; Láníková, D.; Otýpková, Z.; et al. Native and alien floras in urban habitats: A comparison across 32 cities of Central Europe. Glob. Ecol. Biogeogr. 2012, 21, 545–555. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs, Population Division. World Population. Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022; p. 40. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Marquet, P.; Marticorena, C.; Simonetti, J.; Cavieres, L.; Squeo, F.; Simonetti-Zambelli, J.A.; Rozzi, R.; Massardo, F. El Hotspot Chileno, Prioridad Mundial Para la Conservación; Comisión Nacional del Medio Ambiente: Santiago, Chile, 2006; pp. 94–97. [Google Scholar]
- Teillier-Arredondo, J.S.; Macaya-Berti, J.; Marticorena-Garri, A.E.; Rojas-Villegas, G.; García-Berguecio, N.; Niemeyer-Marich, H. Flora de la Región Metropolitana de Santiago: Una Guía Para la Identificación de Las Especies; Editorial Universidad de Chile: Santiago, Chile, 2022; p. 671. [Google Scholar]
- Figueroa, J.A.; Teillier, S.; Guerrero, N.; Ray, C.; Rivano, C.; Saavedra, D.; Castro, S.A. Vascular flora in public space of Santiago, Chile. Gayana Botánica 2016, 73, 44–69. [Google Scholar] [CrossRef]
- Castro, S.A.; Rojas, G.; Jaksic, F.M. Vascular flora of Punta Arenas city: Comparative analysis of composition, life forms, and biogeographic origins. Rev. Chil. Hist. Nat. 2024, 97, 5. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- de la Maza, C.L.; Rodríguez, R.; Bown, H.; Hernández, J.; Escobedo, F. Vegetation diversity in the Santiago de Chile urban ecosystem. Arboric. J. 2002, 26, 347–357. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J.; Wagner, J.E.; de la Maza, C.L.; Rodríguez, M.; Crane, D.E.; Hernández, J. The socioeconomics and management of Santiago de Chile’s public urban forests. Urban For. Urban Green. 2006, 4, 105–114. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Palmas-Pérez, S.; Dobbs, C.; Gezan, S.; Hernández, J. Spatio-temporal changes in structure for a Mediterranean urban forest: Santiago, Chile 2002–2014. Forests 2016, 7, 121. [Google Scholar] [CrossRef]
- Hernández, H.J.; Villaseñor, N.R. Twelve-year change in tree diversity and spatial segregation in Santiago, Chile. Urban For. Urban Green. 2018, 29, 10–18. [Google Scholar] [CrossRef]
- Fernández, I.C. Dime qué tipo de vegetación tienes y te diré en qué comuna vives. Rev. Geogr. Norte Gd. 2022, 82, 193–208. [Google Scholar] [CrossRef]
- Guevara, B.R.; Uribe, S.V.; de la Maza, C.L.; Villaseñor, N.R. Socioeconomic disparities in urban forest diversity and structure in green areas of Santiago de Chile. Plants 2024, 13, 1841. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.A.; Guerrero-Leiva, N.; Bolados, M.; Figueroa, J.A. Riqueza y distribución de la flora urbana de Santiago de Chile: Una aproximación basada en interpolación IDW. Cad. Pesqui. 2018, 30, 41–54. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística. Available online: https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda (accessed on 10 July 2025).
- Instituto Geográfico Militar. Available online: https://www.igm.cl/ (accessed on 10 July 2025).
- Dirección Meteorológica de Chile. Available online: https://climatologia.meteochile.gob.cl/publicaciones/reporteEvolucionClima/reporteEvolucionClima2023.pdf (accessed on 10 July 2025).
- Stehberg, R.; Sotomayor, G. Mapocho incaico. Boletín Mus. Nac. Hist. Nat. 2012, 61, 85–149. [Google Scholar] [CrossRef]
- di Castri, F.; Hajek, E. Bioclimatología de Chile; Ediciones Universidad Católica de Chile: Santiago, Chile, 1976. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System (v3.x). Open Source Geospatial Foundation. Available online: https://qgis.org (accessed on 20 July 2025).
- Google Earth Pro. Google Earth Pro desktop (v7.x). Google LLC. 2025. Available online: https://www.google.com/earth/versions/ (accessed on 20 July 2025).
- Estudio de Percepciones Económicas. Available online: https://percepcioneseconomicas.cl/desarrollo-economico/los-grupos-socioeconomicos-en-chile/ (accessed on 22 July 2025).
- World Flora Online (WFO). World Flora Online Portal. Available online: http://www.worldfloraonline.org (accessed on 22 July 2025).
- Plants of the World Online (POWO). POWO Portal. Royal Botanic Gardens, Kew. Available online: http://powo.science.kew.org (accessed on 25 July 2025).
- Santilli, L.; Castro, S.A.; Figueroa, J.A.; Guerrero, N.; Ray, C.; Romero-Mieres, M.; Rojas, G.; Lavandero, N. Exotic species predominates in the urban woody flora of central Chile. Gayana Bot. 2018, 75, 568–588. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Aronson, M.F.J.; Williams, N.S.G.; Celesti-Grapow, L.; Cilliers, S.; Clarkson, B.D.; Dolan, R.W.; Hipp, A.; Klotz, S.; Kühn, I.; et al. Beta diversity of urban floras among European and non-European cities. Glob. Ecol. Biogeogr. 2014, 23, 769–779. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; v. 2025.0.5.0+496; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (R Package Version 0.4.7). Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 25 July 2025).
- Lenth, R.V. Least-Squares Means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Bolker, B.; Robinson, D. Package ‘broom.mixed’: Tidying Methods for Mixed Models (R Package Version 0.2.9.6). Available online: https://CRAN.R-project.org/package=broom.mixed (accessed on 25 July 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation (R Package Version 1.1.4). Available online: https://dplyr.tidyverse.org (accessed on 25 July 2025).
- Sarricolea-Espinoza, P.; Martín-Vide, J. El estudio de la Isla de calor urbana de superficie del Área Metropolitana de Santiago de Chile con imágenes Terra-MODIS y Análisis de Componentes Principales. Rev. Geogr. Norte Gd. 2014, 57, 123–141. [Google Scholar] [CrossRef]
- Romero, H.; Irarrázaval, F.; Opazo, D.; Salgado, M.; Smith, P. Climas urbano y contaminación atmosférica en Santiago de Chile. Eure 2010, 36, 35–62. [Google Scholar] [CrossRef]
- Zhu, Z.; Roeder, M.; Xie, J.; Nizamania, M.M.; Ross-Friedmand, C.; Wang, H.-F. Plant taxonomic richness and phylogenetic diversity across different cities in China. Urban For. Urban Green. 2019, 39, 55–66. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, C.; Li, F.; Shen, P.; Liu, L.; Hu, Y. Distribution patterns of urban spontaneous vegetation diversity and their response to habitat heterogeneity: A case study of five cities in Heilongjiang Province, China. Plants 2024, 13, 2982. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Nizamani, M.M.; Padullés-Cubino, J.; Harris, A.J.; Guo, L.-Y.; Zhou, J.-J.; Wang, H.-F. Habitat heterogeneity explains cultivated and spontaneous plant richness in Haikou City, China. Ecol. Indic. 2023, 154, 110713. [Google Scholar] [CrossRef]
- Alós-Ortí, M.; Casanelles-Abella, J.; Chiron, F.; Deguines, T.; Hallikma, T.; Jaksi, P.; Kwiatkowska, P.K.; Moretti, M.; Muyshondt, B.; Niinemets, Ü.; et al. Negative relationship between woody species density and size of urban green spaces in seven European cities. Urban For. Urban Green. 2022, 74, 127650. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Handel, S.N.; La Puma, I.P.; Clemants, S.E. Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst. 2015, 18, 31–45. [Google Scholar] [CrossRef]
- Guerrero-Leiva, N.; Cerda, C.; Bidegain, I. Residential sidewalk gardens and biological conservation in the cities: Motivations and preferences that guide the floristic composition of a little-explored space. Urban For. Urban Green. 2021, 63, 127227. [Google Scholar] [CrossRef]
- Gartner, E.; Rojas, G.; Castro, S.A. Compositional patterns of ruderal herbs in Santiago, Chile. Gayana Botánica 2015, 72, 192–202. [Google Scholar] [CrossRef]
- Bascuñán, T.; Fernández, F.; Figueroa, J.A. Estudio del Mercado de la Oferta de Plantas Nativas de la Región Metropolitana de Santiago. In Fondo de Innovación y Competitividad FIC (BIP Nº 40044421-0); Informe Técnico; Gobierno Regional de la Región Metropolitana de Santiago: Santiago, Chile, 2023. [Google Scholar]
- Fernández, I.C.; Wu, J.; Simonetti, J.A. The urban matrix matters: Quantifying the effects of surrounding urban vegetation on natural habitat remnants in Santiago de Chile. Landsc. Urban Plan. 2018, 187, 181–190. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Saldías, G.; Teillier, S.; Carrera, E.; Castro, S.A. Seed Banks in urban vacant lots of a Latin American megacity are easily germinable and strongly dominated for exotic flora. Urban Ecosyst. 2020, 23, 945–955. [Google Scholar] [CrossRef]
- Leong, M.; Dunn, R.; Trautwein, M. Biodiversity and socioeconomics in the city: A review of the luxury effect. Biol. Lett. 2018, 14, 20180082. [Google Scholar] [CrossRef]
- Padullés-Cubino, J.; Cavender-Bares, J.; Hobbie, S.E.; Hall, S.J.; Trammell, T.L.E.; Neill, C.; Avolio, M.L.; Darling, L.E.; Groffman, P.M. Contribution of non-native plants to the phylogenetic homogenization of U.S. yard floras. Ecosphere 2019, 10, e02638. [Google Scholar] [CrossRef]
- Padullés-Cubino, J.; Retana, J. Socioeconomics explain tree diversity, abundance and composition in the compact city of Barcelona, Spain. Landsc. Urban Plan. 2023, 236, 104778. [Google Scholar] [CrossRef]
- Yücedağ, C.; Aşık, Y. Association between socioeconomic status and woody plant diversity in neighborhood parks. Urban Ecosyst. 2023, 26, 1071–1080. [Google Scholar] [CrossRef]
- Hope, D.; Gries, C.; Zhu, W.; Fagan, W.; Redman, C.; Grimm, N.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Fernández, F. El patrimonio natural ha sido olvidado en el diseño de las áreas verdes en la ciudad de Santiago, Chile. Rev. Diseño Urbano Paisaje 2023, 44, 47–54. [Google Scholar]
- Fuentes, E.; Prenafeta-Jenkin, S. Ecología del Paisaje en Chile Central: Estudios Sobre Sus Espacios Montañosos; Ediciones Universidad Católica de Chile: Santiago, Chile, 1988. [Google Scholar]
- Figueroa, J.A.; Chandía-Jaure, R.; Cataldo-Cunich, A.; Cárdenas-Muñoz, S.; Fernández-Cano, F. Native plants can strengthen urban green infrastructure: An experimental case study in the mediterranean-type region of Central Chile. Plants 2025, 14, 3025. [Google Scholar] [CrossRef]
- Boisier, J.P.; Rondanelli, R.; Garreaud, R.D.; Muñoz, F. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett. 2015, 43, 413–421. [Google Scholar] [CrossRef]
- Donoso, G. Water Policy in Chile; Springer: Cham, Switzerland, 2018; p. 224. [Google Scholar]
- Garreaud, R.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.; Veloso-Aguila, D. The central Chile megadrought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the future of urban biodiversity: A global review of city-scale initiatives. BioScience 2017, 67, 332–342. [Google Scholar] [CrossRef]




| Sidewalks | Parks | Vacant Lots | Total (%) | |
|---|---|---|---|---|
| Biogeographic origin (a) | ||||
| Native | 66 | 75 | 47 | 93 (13%) |
| Exotic | 483 | 468 | 302 | 606 (87%) |
| Total | 549 | 543 | 349 | 699 (100%) |
| Life form (b) | ||||
| Tree | 120 | 143 | 81 | 161 (23%) |
| Shrub | 119 | 102 | 45 | 146 (21%) |
| Herb | 81 | 45 | 223 | 392 (56%) |
| Total | 320 | 290 | 349 | 699 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, S.A.; Ray, C.; Figueroa, J.A.; Alfaro, M.; Orrego, F.; Vergara, P.M. Effects of the Center-Edge Gradient and Habitat Type on the Spatial Distribution of Plant Species Richness in Santiago, Chile. Plants 2025, 14, 3433. https://doi.org/10.3390/plants14223433
Castro SA, Ray C, Figueroa JA, Alfaro M, Orrego F, Vergara PM. Effects of the Center-Edge Gradient and Habitat Type on the Spatial Distribution of Plant Species Richness in Santiago, Chile. Plants. 2025; 14(22):3433. https://doi.org/10.3390/plants14223433
Chicago/Turabian StyleCastro, Sergio A., Cristian Ray, Javier A. Figueroa, Mathías Alfaro, Fabiola Orrego, and Pablo M. Vergara. 2025. "Effects of the Center-Edge Gradient and Habitat Type on the Spatial Distribution of Plant Species Richness in Santiago, Chile" Plants 14, no. 22: 3433. https://doi.org/10.3390/plants14223433
APA StyleCastro, S. A., Ray, C., Figueroa, J. A., Alfaro, M., Orrego, F., & Vergara, P. M. (2025). Effects of the Center-Edge Gradient and Habitat Type on the Spatial Distribution of Plant Species Richness in Santiago, Chile. Plants, 14(22), 3433. https://doi.org/10.3390/plants14223433

