Evaluating the Vitality of Introduced Woody Plant Species in the Donetsk–Makeyevka Urban Agglomeration
Abstract
1. Introduction
2. Results and Discussions
- From the plant communities of the roadside network, which is an ecological corridor for the active transfer of reproductive material of plants, exclude or limit and gradually replace A. negundo, F. pennsylvanica, and A. altissima due to the high invasiveness of these introduced species and the allergenicity of their pollen, which is formed in large quantities.
- Due to the low decorative and functional value of J. regia and S. myrsinifolia, as well as the allelopathic aggressiveness of J. regia, exclude their use in roadside plantings.
- In plantations, gradually replace all types of poplars with male individuals, preferably pyramidal or other compact forms. Reduce their service life and, in order to avoid accidents with large individuals, regularly monitor their condition using instrumental methods.
- In order to increase efficiency and extend the service life of plantations, review the functional and spatial distribution of species in accordance with their bioecological characteristics, as well as their ratio in plantations, since failure to maintain the recommended balance between different life forms characterized by different functional characteristics increases the load on the main mass of trees that maximally absorb dust, anti-icing reagents, and other pollutants from the soil and air. In areas directly adjacent to the roadway, it is necessary to increase the proportion of shrubs and shrubby trees, primarily slow-growing species that are more resistant to mechanical stress, giving preference to representatives of the Rosaceae and Cupressus families, which have shown a higher degree of adaptation to anthropogenic loads in the arid conditions of the steppe zone.
- Reproduction of plants for landscaping roadside areas should be carried out against a provocative background, i.e., in regional nurseries, in areas with a sufficiently high anthropogenic load, using material from the most viable individuals selected directly from linear plantings. From the plant communities of the roadside network, which is an ecological corridor for the active transfer of reproductive material of plants, exclude or limit and gradually replace A. negundo, F. pennsylvanica, and A. altissima due to the high invasiveness of these introduced species and the allergenicity of their pollen, which is produced in large quantities.
3. Materials and Methods
- -
- Level 1 (healthy tree)—there is no external damage to the crown and trunk; crown density is typical for dominant trees; dead and dying branches are concentrated in the lower part of the crown and are absent in its upper half; leaves that have finished growing are green or dark green; lifespan is typical for the region; leaf damage is insignificant (<10%) and does not affect the condition of the tree.
- -
- Level 2 (damaged (weakened) tree)—at least one of the following signs is required: a decrease in crown density by 30%; the presence of 30% dead and (or) drying branches in the upper half of the crown; damage (nutrition, burn, chlorosis, necrosis, etc.); and exclusion of 30% of the leaf surface from assimilation activity.
- -
- Level 3 (severely damaged (severely weakened) tree)—at least one of the following signs is required: a decrease in crown density by 60% due to premature leaf fall or thinning of the skeletal part of the crown; the presence of 60% dead and (or) drying branches in the upper half of the crown; damage by various factors and the exclusion of 60% of the leaf area from assimilating activity; the presence of the death of the top of the crown.
- -
- Level 4 (dying tree)—the crown is destroyed; its density is at least 15–20% compared to a healthy one; >70% of branches, including in the upper half, are dry or pale green, yellowish, orange-red in color; necrosis is whitish, brown or black; signs of pest infestation are possible in the butt and middle part of the trunk.
- -
- Level 5 (fresh and old dead wood)—dead trees. They may have remains of dry needles or leaves; the bark and small branches are often intact. As a rule, they are inhabited by xylophagous insects.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSL-UC | maximum longevity under urban conditions |
References
- Bao, L.; Ma, K.; Xu, X.; Yu, X. Foliar particulate matter distribution in urban road system of Beijing, China. Chin. Geogr. Sci. 2019, 29, 591–600. [Google Scholar] [CrossRef]
- Jacyna, M.; Wasiak, M.; Lewczuk, K.; Karoń, G. Noise and environmental pollution from transport: Decisive problems in developing ecologically efficient transport systems. J. Vibroeng. 2017, 19, 5639–5655. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Safonov, A.; Kravtsova, A.; Chaligava, O.; Germonova, E. Neutron activation analysis of rare earth elements (Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb) in the diagnosis of ecosystems of Donbass. Phys. Part. Nucl. Lett. 2024, 21, 186–200. [Google Scholar] [CrossRef]
- Kucherova, A.V.; Minnikova, T.V.; Kolesnikov, S.I.; Khrapai, E.S.; Nalivaychenko, A.A.; Sherstnev, A.K. Assessment of the health of soils polluted by municipal solid waste landfill. J. Hazard. Mat. Adv. 2025, 18, 100643. [Google Scholar] [CrossRef]
- Tsepina, N.I.; Minnikova, T.V.; Kolesnikov, S.I.; Minkina, T.M. Pollution of silver and silver nanoparticles in the ecosystems and their interactions with plants and soil microbiota. In Emerging Contaminants: Sustainable Agriculture and the Environment; Woodhead Publishing: Cambridge, UK, 2024; pp. 267–290. [Google Scholar] [CrossRef]
- Kornienko, V.O. Retrospective analysis of anthropogenic pollution of the city of Donetsk. Vibration and acoustic noise. Bull. Donetsk Natl. Univ. Ser. A Nat. Sci. 2024, 1, 93–100. [Google Scholar] [CrossRef]
- Korniyenko, V.O.; Kalaev, V.N. Impact of natural climate factors on mechanical stability and failure rate in Silver birch trees in the city of Donetsk. Contemp. Probl. Ecol. 2022, 15, 806–816. [Google Scholar] [CrossRef]
- Celik, A.; Kartal, A.; Akdogan, A.; Kaska, Y. Determining the heavy metal pollution in Denizli (Turkey) by using Robinia pseudoacacia L. Environ. Int. 2005, 31, 105–112. [Google Scholar] [CrossRef]
- Černiauskas, V.; Varnagirytė-Kabašinskienė, I.; Čėsnienė, I.; Armoška, E.; Araminienė, V. Response of Tree Seedlings to a Combined Treatment of Particulate Matter, Ground-Level Ozone, and Carbon Dioxide: Primary Effects. Plants 2025, 14, 6. [Google Scholar] [CrossRef]
- Hofman, J.; Bartholomeus, H.; Calders, K.; Van Wittenberghe, S.; Wuyts, K.; Samson, R. On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: A ground-based LiDAR approach. Atmos. Environ. 2014, 99, 130–139. [Google Scholar] [CrossRef]
- Honour, S.L.; Bell, J.N.B.; Ashenden, T.W.; Cape, J.N.; Power, S.A. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environ. Pollut. 2009, 157, 1279–1286. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Kim, D.-H.; Sivanesan, I. Reviewing the Impact of Vehicular Pollution on Road-Side Plants—Future Perspectives. Sustainability 2021, 13, 5114. [Google Scholar] [CrossRef]
- Rai, P.; Mishra, R.M. Effect of urban air pollution on epidermal traits of road side tree species, Pongamia pinnata (L.). Merr. J. Environ. Sci. Toxicol. Food Technol. 2013, 2, 2319–2402. [Google Scholar] [CrossRef]
- Swami, A. Impact of Automobile Induced Air Pollution on road side vegetation: A Review. Int. J. Environ. Rehabil. Conserv. 2018, 9, 101–116. [Google Scholar] [CrossRef]
- Yılmaz, F.; Aksoy, Y. Şehir içi yol bitkilendirmelerinin İstanbul İli Beyoğlu İlçesi Cumhuriyet, Halaskargazi ve Büyükdere Caddesi örneğinde irdelenmesi. J. Yaşar Univ. 2009, 4, 2699–2728. [Google Scholar]
- Kornienko, V.O.; Reutskaya, V.V. Populus L. trees in the urbanized environment of Donetsk. Probl. Ecol. Nat. Prot. Technol. Reg. 2025, 1, 24–34. [Google Scholar] [CrossRef]
- Zakrutkin, V.E.; Gibkov, E.V. Technogenic geochemical flows of coal mining areas and their impact on the environment (on the example of the Donetsk Basin). News Univ. North Cauc. Reg. Nat. Sci. 2016, 3, 66–71. [Google Scholar]
- Zakrutkin, V.E.; Zubova, L.G.; Gibkov, E.V.; Zubov, A.R.; Vorobiev, S.G. Waste dump of the coal-mining areas of Donbass as source of impact on the environment. News Univ. North Cauc. Reg. Nat. Sci. 2017, 3, 69–75. [Google Scholar] [CrossRef]
- Oksanen, E.; Kontunen-Soppela, S. Plants have different strategies to defend against air pollutants. Curr. Opin. Environ. Sci. Health 2021, 19, 100222. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 2021, 9, 603757. [Google Scholar] [CrossRef]
- Roy, R. Stress Physiology of Woody Plant; CRC Press: Boca Raton, CA, USA, 2019; 284p. [Google Scholar]
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Keskin, N.; Ili, P. Investigation of particular matters on the leaves of Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe In Denizli (Turkey). Pak. J. Bot. 2012, 44, 1369–1374. [Google Scholar]
- Leghari, S.K.; Zaidi, M. Effect of air pollution on the leaf morphology of common plant species of Quetta city. Pak. J. Bot. 2013, 45, 447–454. [Google Scholar]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Ghani, M.A.; Stokes, A.; Fourcaud, T. The effect of root architecture and root loss through trenching on the anchorage of tropical urban trees (Eugenia grandis Wight). Trees 2009, 23, 197–209. [Google Scholar] [CrossRef]
- He, H.R.; Hou, T.-Z.; Li, Y.-F.; Li, B.-M. Advances in Effects of Sound Waves on Plants. J. Integr. Agric. 2014, 13, 335–348. [Google Scholar] [CrossRef]
- Kosmala, M.; Roslon-Szerynska, E.; Suchocka, M. Influence of mechanical damage on the condition of trees. Hortic. Landsc. Archit. 2008, 29, 137–144. [Google Scholar]
- Kornienko, V.O.; Yaitsky, A.S. Mechanical stability of Fagus sylvatica L. in the conditions of the south of the East European Plain: The theory of loss of stability. Samara J. Sci. 2024, 13, 42–51. [Google Scholar] [CrossRef]
- Kornienko, V.O.; Kalaev, V.N. Viability of pedunculate oak in the conditions of the city of Donetsk. Sib. J. For. Sci. 2024, 4, 95–106. [Google Scholar] [CrossRef]
- Kornienko, V.O.; Kalaev, V.N. Mechanical stability of Virginian juniper trees in steppe zone of the eastern-european plain. Lesovedenie 2024, 1, 70–78. [Google Scholar] [CrossRef]
- Kornienko, V.O.; Kalaev, V.N. Ecological and Biological Features and Mechanical Stability of Woody Plants Used in Landscaping of Donetsk City; VSU Publishing House: Voronezh, Russia, 2021; 107p, ISBN 978-5-9273-3220-5. [Google Scholar]
- Šerá, B. Salt-tolerant trees usable for Central European cities—A review. Hort. Sci. 2017, 44, 43–48. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Podlaski, R.; Dołegowska, S.; Michalik, A. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ. Monit. Assess. 2011, 176, 451–464. [Google Scholar] [CrossRef]
- Sokolskaya, O.B.; Vergunova, A.A.; Tokareva, V.M. Urban Greening in Forest Steppe and Steppe Zones of Russia: Solving the Problems. Sci. Res. Innov. 2020, 1, 113–122. [Google Scholar]
- Netsvetov, M.; Sergeyev, M.; Nikulina, V.; Korniyenko, V.; Prokopuk, Y. The climate to growth relationships of pedunculate oak in steppe. Dendrochronologia 2017, 44, 31–38. [Google Scholar] [CrossRef]
- Bulygin, N.E.; Yarmishko, V.T. Dendrology; Nauka: St. Petersburg, Russia, 2000; 528p. [Google Scholar]
- Götmark, F.; Götmark, E.; Jensen, A.M. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front. Plant Sci. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Kentbayeva, B.; Baigazakova, Z.; Baybatshanov, M.; Asemkulova, G.; Kentbayev, Y. Environmental Assessment of Dust-Holding and OxygenProducing Productivity of Hawthorns in Kazakhstan. Online J. Biol. Sci. 2022, 22, 363–374. [Google Scholar] [CrossRef]
- Marosz, A.; Nowak, J.S. Effect of salinity stress on growth and macroelements uptake of four tree species. Dendrobiology 2008, 59, 23–29. [Google Scholar]
- Solomentseva, A.S.; Kolmukidi, S.V.; Lebed, N.I.; Lebed, M.B.; Mezhevova, A.S.; Berestneva, Y.V.; Bikmetova, K.R.; Isakov, A.S. Tree-shrub species promising for protective afforestation and planting in the Volgograd region. IOP Conf. Ser. Earth Environ. Sci. 2020, 579, 012056. [Google Scholar] [CrossRef]
- Zeybert, E.A.; Akinshina, N.G.; Mitusov, A.V. Dust Retaining Capacity of Deciduous and Coniferous Trees in Tashkent City, Uzbekistan. Cent. Asian J. Water Res. 2022, 8, 160–176. [Google Scholar] [CrossRef]
- Giniyatullin, R.K.; Zaitsev, G.A. Evaluation of the metal content of cleaned and dirty balsam poplar leaves in industrial pollution conditions. IOP Conf. Ser. Earth Environ. Sci. 2022, 1061, 012022. [Google Scholar] [CrossRef]
- Zalesny, R.S., Jr.; Zhu, J.Y.; Headlee, W.L.; Gleisner, R.; Pilipovi’c, A.; Acker, J.V.; Bauer, E.O.; Birr, B.A.; Wiese, A.H. Ecosystem Services, Physiology, and Biofuels Recalcitrance of Poplars Grown for Landfill Phytoremediation. Plants 2020, 9, 1357. [Google Scholar] [CrossRef]
- Vinogradova, Y.; Pergl, J.; Essl, F.; Hejda, M.; Kleunen, M.V.; Pyšek, P. Invasive alien plants of Russia: Insights from regional inventories. Biol. Invasions 2018, 20, 1931–1943. [Google Scholar] [CrossRef]
- Kornienko, V.O.; Kalaev, V.N. Mechanical Stability of Tree Species and Recommendations for Preventing Their Accidents in Urban Areas; The Wind Rose: Voronezh, Russia, 2018; 92p, ISBN 978-5-905181-21-4. [Google Scholar]
- Kornienko, V.; Reuckaya, V.; Shkirenko, A.; Meskhi, B.; Olshevskaya, A.; Odabashyan, M.; Shevchenko, V.; Teplyakova, S. Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities. Plants 2025, 14, 2052. [Google Scholar] [CrossRef]
- Kornienko, V.; Shkirenko, A.; Reuckaya, V.; Meskhi, B.; Dzhedirov, D.; Olshevskaya, A.; Odabashyan, M.; Shevchenko, V.; Mangasarian, D.; Kulikova, N. Taxus baccata L. Under Changing Climate Conditions in the Steppe Zone of the East European Plain. Plants 2025, 14, 1970. [Google Scholar] [CrossRef]
- Bassuk, N.; Deanna, F.C.; Marranca, B.Z.; Barb, N. Recommended Urban Trees: Site Assessment and Tree Selection for Stress Tolerance; Urban Horticulture Institute, Cornell University: Ithaca, NY, USA, 2009; 122p. [Google Scholar]
- Gennaro, M.; Giorcelli, A. The biotic adversities of poplar in Italy: A reasoned analysis of factors determining the current state and future perspectives. Ann. Silvic. Res. 2019, 43, 41–51. [Google Scholar] [CrossRef]
- Puchałka, R.; Paź-Dyderska, S.; Jagodziński, A.M.; Sádlo, J.; Vítková, M.; Klisz, M.; Koniakin, S.; Prokopuk, Y.; Netsvetov, M.; Nicolescu, V.-N.; et al. Predicted range shifts of alien tree species in Europe. Agric. For. Meteorol. 2023, 341, 109650. [Google Scholar] [CrossRef]
- Senator, S.A.; Vinogradova, Y.K. Invasive Plants of Russia: Results of Inventory, Peculiarities of Distribution, and Management Issues. Biol. Bull. Rev. 2023, 13, 681–690. [Google Scholar] [CrossRef]
- Nikolaeva, A.A.; Golosova, E.V.; Shelepova, O.V. Allelopathic activity of Acer negundo L. leaf litter as a vector of invasion species into plant communities. BIO Web Conf. 2021, 38, 00088. [Google Scholar] [CrossRef]
- Drozd, G.Y. Response of the urban environment to climate change in Donbass. News Automob. Road Inst. 2020, 3, 60–72. [Google Scholar]
- Katjutin, P.N.; Stavrova, N.I.; Gorshkov, V.V.; Lyanguzov, A.Y.; Bakkal, I.J.; Mikhailov, S.A. Radial growth of trees differing in their vitality in the middle-aged scots pine forests in the Kola Peninsula. Silva Fenn. 2020, 54, 10263. [Google Scholar] [CrossRef]
- Khomenko, Y.V.; Soldatova, A.S. Assessment of the problems of the Donbass waste heaps. Econ. Bull. Donbass 2015, 39, 12–19. [Google Scholar]
- World Flora Online. World Flora Online Plant List. 2024. Available online: http://www.worldfloraonline.org (accessed on 20 November 2024).
Geoelement | Species | Individuals | Ratio of Individuals by Vitality Levels, % | ||||||
---|---|---|---|---|---|---|---|---|---|
N | % | N | % | 1 | 2 | 3 | 4 | 5 | |
European–Caucasian | 14 | 18 | 585 | 11 | 44 | 54 | 1 | - | 1 |
Eurasian | 20 | 25 | 1544 | 28 | 36 | 53 | 10 | 0.4 | 0.6 |
Central Asian | 4 | 5 | 121 | 2 | 41 | 54 | 5 | - | - |
East Asian | 16 | 21 | 757 | 14 | 48 | 47 | 3 | - | 2 |
Mediterranean | 4 | 5 | 567 | 10 | 55 | 44 | 1 | - | - |
North American | 20 | 26 | 1935 | 35 | 26 | 53 | 12 | 3 | 6 |
Total: | 78 | 100 | 5509 | 100 | - | - | - | - | - |
Species | Resistance to Mechanical Loads [32,47] | Natural Environment | Urbanized Environment | Degree of Change, % | ||||
---|---|---|---|---|---|---|---|---|
Static | Dynamic | Height, m | Longevity, Years | Height, m | MSL-UC, Years | Height, m | MSL-UC, Years | |
Acer negundo | - | - | 20 | 90 | 12.1 | 50 | −39.5 | −44.4 |
A. pseudoplatanus | ± | ± | 30 | 200 | 9.7 | 50 | −67.7 | −75 |
A. saccarinum | ± | ± | 25 | 100 | 11.8 | 50 | −52.8 | −50 |
Aesculus hippocastanum | + | ± | 35 | 200 | 10.1 | 50 | −71.1 | −75 |
Ailanthus altissima | ± | ± | 30 | 100 | 18 | 45+ | −40 | −55 |
Berberis aquifolium | + | + | 1 | 50 | ned | ned | ned | ned |
Buddleia japonica | + | + | 1.5 | 25 | ned | ned | ned | ned |
Buxus sempervirens | + | + | 15 | 500 | 10 | 20+ | −33.3 | −96 |
Caragana arborescens | + | + | 5 | 40 | 2 | 20+ | −60 | −50 |
Chaenomeles japonica | + | + | 1.5 | 80 | 1 | 10+ | −33.3 | −87.5 |
Cornus alba | + | + | 3 | 25 | 2 | 20 | −33.3 | −20 |
Corylus colurna | + | + | 30 | 200 | 12 | 50+ | −60 | −75 |
Crataegus crus-gally | + | + | 12 | ned | 5 | ned | −58.3 | ned |
Crataegus sanguinea | - | + | 8 | 200 | 6 | 20 | −25 | −90 |
Crataegus. submollis | + | + | 8 | ned | 3 | 15 | −62.5 | ned |
Forsythia europaea | + | + | 3 | 70 | 1.5 | 10+ | −50 | −85.7 |
Fraxinus pennsylvanica | ± | ± | 20 | 200 | 17 | 50 | −15 | −75 |
Gleditsia triacanthos | + | ± | 40 | 300 | 18 | 60 | −55 | −80 |
Juglans nigra | ± | ± | 40 | 130 | 11 | 40 | −72.5 | −69.2 |
Juglans regia | + | + | 30 | 300 | 10 | 20+ | −66.7 | −93.3 |
Juniperus chinensis | + | + | 5 | 600 | 2 | 15 | −60 | −97.5 |
Juniperus communis | + | + | 8 | 600 | 3 | 10+ | −62.5 | −98.3 |
Juniperus horizontalis | + | + | 0.4 | 200 | 0.3–0.4 | 10+ | 0 | −95 |
Juniperus sabina | + | + | 2 | 500 | 2 | 15 | 0 | −97 |
Juniperus squamata | + | + | 5 | 400 | 5 | 10+ | 0 | −97.5 |
Juniperus virginiana | ± | + | 20 | 200 | 6 | 20+ | −70 | −90 |
Larix decidua | + | + | 40 | 500 | 12 | 20+ | −70 | −96 |
Larix sibirica | ± | ± | 30 | 500 | 15 | 20+ | −50 | −96 |
Lonicera tatarica | + | + | 4 | 80 | 2 | 15+ | −50 | −81.3 |
Malus domestica | ± | ± | 10 | 100 | 5 | 10+ | −50 | −90 |
Malus floribunda | + | + | 10 | 100 | 8 | 25 | −20 | −75 |
Malus niedzwetzkyana | + | + | 8 | 100 | 5 | 20 | −37.5 | −80 |
Malus purpurea | + | + | 8 | 100 | 6 | 10+ | −25 | −90 |
Morus alba | + | + | 20 | 250 | 10 | 50+ | −50 | −80 |
Parthenocissus quinquefolia | + | + | 20 | ned | 20 | ned | 0 | ned |
Philadelphus coronarius | + | + | 3 | 40 | 2.5 | 10 | −16.7 | −75 |
Picea abies | + | + | 35 | 250 | 12 | 35+ | −65.7 | −86 |
Picea pungens | + | + | 20 | 350 | 20 | 60 | 0 | −82.9 |
Pinus mugo | + | + | 10 | 150 | 5 | 20+ | −50 | −86.7 |
Pinus nigra ssp. pallasiana | + | + | 25 | 500 | 10 | 50+ | −60 | −90 |
Platanus acerifolia | + | + | 35 | 400 | 16 | 50+ | −54.3 | −87.5 |
Platycladus orientalis | ± | ± | 10 | 1000 | 5 | 15+ | −50 | −98.5 |
Populus alba | + | + | 30 | 350 | 16 | 70 | −46.7 | −80 |
P. × canadensis | + | + | 45 | 70 | 18 | 45 | −60 | −35.7 |
P. balsamifera | ± | ± | 30 | 120 | 15 | 45 | −50 | −62.5 |
P. nigra | + | + | 40 | 200 | 27 | 100 | −32.5 | −50 |
P. nigra f. Italica | + | + | 40 | 150 | 20 | 50 | −50 | −66.7 |
P. simonii | + | + | 20 | 85 | 16 | 50 | −20 | −41.2 |
P. tremula | + | + | 20 | 90 | ned | ned | ned | ned |
Prunus armeníaca | - | - | 12 | 80 | 8 | 30+ | −33.3 | −62.5 |
Prunus cerasifera | + | + | 10 | 100 | 5 | 20+ | −50 | −80 |
Prúnus doméstica | - | - | 15 | 25 | 10 | 15 | −33.3 | −40 |
Prunus serotina | - | - | 20 | 80 | 9 | 30+ | −55 | −62.5 |
Prunus triloba | + | + | 9 | 50 | ned | ned | ned | ned |
Ptelea trifoliata | ± | ± | 8 | 70 | 2 | 15 | −75 | −78.6 |
Pyrus domestica | ± | ± | 30 | 200 | 12 | 25 | −60 | −87.5 |
Quercus rubra | + | + | 30 | 350 | 15 | 50 | −50 | −85.7 |
Robinia pseudoacacia | + | - | 25 | 300 | 17 | 90 | −32 | −70 |
Rosa multiflora | + | + | 3 | 25 | 3 | 15+ | 0 | −40 |
Salix alba f. pendula | ± | ± | 30 | 100 | 8 | 40 | −73.3 | −60 |
Salix caprea | ± | ± | 10 | 30 | 5 | 15+ | −50 | −50 |
Salix myrsinifolia | + | + | 6 | 25 | ned | ned | ned | ned |
Scandosorbus intermedia | + | + | 15 | 85 | 8 | 20 | −46.7 | −76.5 |
Sorbaria sorbifolia | + | + | 2.5 | 25 | 2 | 10 | −20 | −60 |
Sorbus aucuparia | ± | ± | 9 | 100 | 6 | 15+ | −33.3 | −85 |
Spiraea × billiardii | + | + | 2.5 | 20 | 2.5 | 8+ | 0 | −60 |
Spiraea japonica | + | + | 1.5 | 40 | 1.5 | 10 | 0 | −75 |
Spiraea × vanhouttei | + | + | 2 | 30 | 1.5 | 10 | −25 | −66.7 |
Symphoricarpos albus | + | + | 2 | 55 | 1 | 10+ | −50 | −81.8 |
Syringa vulgaris | + | + | 8 | 100 | 3 | 20+ | −62.5 | −80 |
Táxus baccáta | ± | + | 5 | 1500 | 4 | 50+ | −20 | −96.7 |
Thuja occidentalis | ± | + | 15 | 100 | 12 | 30+ | −20 | −70 |
Tilia europaea | ± | + | 25 | 1100 | 15 | 20+ | −40 | −98.2 |
Tilia platyphyllos | + | + | 35 | 200 | 19 | 60 | −45.7 | −70 |
Ulmus laevis | + | ± | 25 | 200 | 25 | 70 | 0 | −65 |
Ulmus parvifolia | + | + | 15 | 100 | 15 | 60 | 0 | −40 |
Vitis amurensis | + | + | 30 | ned | ned | ned | ned | ned |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornienko, V.; Pirko, I.; Meskhi, B.; Olshevskaya, A.; Shevchenko, V.; Odabashyan, M.; Teplyakova, S.; Vershinina, A.; Eroshenko, A. Evaluating the Vitality of Introduced Woody Plant Species in the Donetsk–Makeyevka Urban Agglomeration. Plants 2025, 14, 3160. https://doi.org/10.3390/plants14203160
Kornienko V, Pirko I, Meskhi B, Olshevskaya A, Shevchenko V, Odabashyan M, Teplyakova S, Vershinina A, Eroshenko A. Evaluating the Vitality of Introduced Woody Plant Species in the Donetsk–Makeyevka Urban Agglomeration. Plants. 2025; 14(20):3160. https://doi.org/10.3390/plants14203160
Chicago/Turabian StyleKornienko, Vladimir, Inna Pirko, Besarion Meskhi, Anastasiya Olshevskaya, Victoriya Shevchenko, Mary Odabashyan, Svetlana Teplyakova, Anna Vershinina, and Arina Eroshenko. 2025. "Evaluating the Vitality of Introduced Woody Plant Species in the Donetsk–Makeyevka Urban Agglomeration" Plants 14, no. 20: 3160. https://doi.org/10.3390/plants14203160
APA StyleKornienko, V., Pirko, I., Meskhi, B., Olshevskaya, A., Shevchenko, V., Odabashyan, M., Teplyakova, S., Vershinina, A., & Eroshenko, A. (2025). Evaluating the Vitality of Introduced Woody Plant Species in the Donetsk–Makeyevka Urban Agglomeration. Plants, 14(20), 3160. https://doi.org/10.3390/plants14203160