Harnessing the Sorghum Microbiome for Enhancing Crop Productivity and Food Security Towards Sustainable Agriculture in Smallholder Farming
Abstract
1. Introduction
2. Methodology
3. Overview of the Sorghum Microbiome Community
4. Prospects of the Sorghum Microbiome for Improved Crop Productivity in Smallholder Farming
5. Procedures and Guidelines to Facilitate Successful Application of Sorghum Microbiome in Smallholder Farming
5.1. Isolation, Characterisation and Efficacy Testing of Native Microbial Strains Under Controlled and Field Conditions
5.2. Formulation and Application Strategies for Sorghum Microbial Inoculants
5.3. Monitoring, Evaluation, and Regulatory Compliance for Sustainable Use of Sorghum Microbiome-Based Inoculants
5.4. Integration with Sustainable Farming Practices
6. Isolation and Characterisation of the Sorghum Microbiome
7. Challenges and Future Directions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frederick, C.; Herrero, M.; Dreyfus, G.; Gonzalez-Fisher, C.; Powers, Y. Opportunities for Improving Productivity and Reducing Methane Emissions in Smallholder Dairy Systems in Low-and Middle-Income Countries. Agric. Syst. 2024, 206, 103497. [Google Scholar]
- Dhillon, R.; Moncur, Q. Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Mupaso, N.; Makombe, G.; Mugandani, R. Smallholder irrigation and poverty reduction in developing countries: A review. Heliyon 2023, 9, e13341. [Google Scholar] [CrossRef] [PubMed]
- Motsi, H.; Molapo, M.; Phiri, E.E. A review of the adaptive capacity of sweet sorghum to improve food security and poverty alleviation in sub-Saharan Africa. S. Afr. J. Bot. 2022, 150, 323–329. [Google Scholar] [CrossRef]
- Fan, S.; Rue, C. The role of smallholder farms in a changing world. In The Role of Smallholder Farms in Food and Nutrition Security; Springer International Publishing: Cham, Switzerland, 2020; pp. 13–28. [Google Scholar]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef]
- Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Sithole, A.; Olorunfemi, O.D. The Adoption of Sustainable Farming Practices by Smallholder Crop Farmers: Micro-Level Evidence from North-Eastern South Africa. Agriculture 2024, 14, 2370. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Kaur, H.; Mehta, S.; Husen, A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Res. Lett. 2021, 16, 156. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Purohit, H.J.; Pandit, P.; Pal, R.; Warke, R.; Warke, G.M. Soil microbiome: An intrinsic driver for climate smart agriculture. J. Agric. Food Res. 2024, 18, 101433. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a key player in sustainable agriculture and human health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Derese, S.A. Breeding Sorghum [Sorghum bicolor (L.) Moench] for Drought Tolerance and Medium-Maturity. Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2017. [Google Scholar]
- Begna, T. Effect of striga species on sorghum (Sorghum bicolor L. Moench) production and its integrated management approaches. Int. J. Res. Stud. Agric. Sci. 2021, 7, 10–22. [Google Scholar] [CrossRef]
- Zheng, H.; Dang, Y.; Diao, X.; Sui, N. Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies. J. Integr. Agric. 2024, 23, 741–768. [Google Scholar] [CrossRef]
- Kawa, D.; Thiombiano, B.; Shimels, M.Z.; Taylor, T.; Walmsley, A.; Vahldick, H.E.; Rybka, D.; Leite, M.F.; Musa, Z.; Bucksch, A. The soil microbiome modulates the sorghum root metabolome and cellular traits with a concomitant reduction of Striga infection. Cell Rep. 2024, 43, 113971. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Pauli, D.; Plecki, C.; Alnasser, H.; Rozzi, B.; Calleja, S.; Arnold, A.E. The Root Endophytic Microbiome Shifts Under Drought in High-Performing Sorghum. Phytobiomes J. 2024, 8, 282–296. [Google Scholar] [CrossRef]
- Babalola, O.O.; Adedayo, A.A. Endosphere microbial communities and plant nutrient acquisition toward sustainable agriculture. Emerg. Top. Life Sci. 2023, 7, 207–217. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Wu, A.; Sun, A.; Dong, E.; Wang, Y.; Huang, X.; Hu, H.; Jiao, X. Plant-associated microorganisms during the reproductive period best predict sorghum yield and quality. Field Crops Res. 2023, 304, 109167. [Google Scholar] [CrossRef]
- Kabir, A.H.; Baki, M.Z.I.; Ahmed, B.; Mostofa, M.G. Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience. New Crops 2024, 1, 100013. [Google Scholar] [CrossRef]
- He, P.; Sun, A.; Jiao, X.; Ren, P.; Li, F.; Wu, B.; He, J.Z.; Hu, H.W. National-scale distribution of protists associated with sorghum leaves and roots. Environ. Microbiol. Rep. 2024, 16, e70024. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024, 10, e40517. [Google Scholar] [CrossRef]
- Dong, C.-J.; Wang, L.-L.; Li, Q.; Shang, Q.-M. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 2019, 14, e0223847. [Google Scholar] [CrossRef]
- Dastogeer, K.M.; Tumpa, F.H.; Sultana, A.; Akter, M.A.; Chakraborty, A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 2020, 23, 100161. [Google Scholar] [CrossRef]
- Doan, H.K.; Ngassam, V.N.; Gilmore, S.F.; Tecon, R.; Parikh, A.N.; Leveau, J.H. Topography-driven shape, spread, and retention of leaf surface water impacts microbial dispersion and activity in the phyllosphere. Phytobiomes J. 2020, 4, 268–280. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Miller, T.; Kisiel, A.; Cembrowska-Lech, D.; Mikiciuk, M.; Łobodzińska, A.; Bokszczanin, K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture 2024, 14, 2228. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Seth, C.S.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Alekhya, G.; Gopalakrishnan, S. Exploiting plant growth-promoting Amycolatopsis sp. in chickpea and sorghum for improving growth and yield. J. Food Legumes 2016, 29, 225–231. [Google Scholar]
- Kon, E.S.; Kant, E.F. Diversity of arbuscular mycorrhizal fungi associated to Sorghum (Sorghum bicolor L. Moench) in soils of Sikasso region (Mali). Afr. J. Environ. Sci. Technol. 2021, 15, 223–229. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Rajini, S.B.; Nandhini, M.; Udayashankar, A.C.; Niranjana, S.R.; Lund, O.S.; Prakash, H.S. Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol. 2020, 69, 642–654. [Google Scholar] [CrossRef]
- Rodrigues, R.T.; de Souza Silva, M.M.; de Oliveira, D.M.; Simplício, J.B.; Costa, C.M.C.; de Siqueira, V.M. Endophytic fungi from Sorghum bicolor (L.) moench: Influence of genotypes and crop systems and evaluation of antimicrobial activity. J. Agric. Sci. Technol. 2018, 8, 267–277. [Google Scholar]
- Jeyanthi, V.; Kanimozhi, S. Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: A review. J. Pure Appl. Microbiol. 2018, 12, 733–749. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Ahmed, A.I.; Mahmood, M.; El-Tahan, A.M.; Ebrahim, A.A.; Abd El-Mageed, T.A.; Negm, S.H. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Front. Plant Sci. 2022, 13, 923880. [Google Scholar] [CrossRef]
- Saber, W.I.; Ghoneem, K.M.; Rashad, Y.M.; Al-Askar, A.A. Trichoderma harzianum WKY1: An indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci. Technol. 2017, 27, 654–676. [Google Scholar] [CrossRef]
- Nzioki, H.S.; Oyosi, F.; Morris, C.E.; Kaya, E.; Pilgeram, A.L.; Baker, C.S.; Sands, D.C. Striga biocontrol on a toothpick: A readily deployable and inexpensive method for smallholder farmers. Front. Plant Sci. 2016, 7, 1121. [Google Scholar] [CrossRef] [PubMed]
- Pambuka, G.T.; Kinge, T.R.; Ghosh, S.; Cason, E.D.; Nyaga, M.M.; Gryzenhout, M. Plant and soil core mycobiomes in a two-year sorghum–legume intercropping system of underutilized crops in South Africa. Microorganisms 2022, 10, 2079. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv. Res. 2022, 40, 45–58. [Google Scholar] [CrossRef]
- Cloutier, M.; Chatterjee, D.; Elango, D.; Cui, J.; Bruns, M.A.; Chopra, S. Sorghum root flavonoid chemistry, cultivar, and frost stress effects on rhizosphere bacteria and fungi. Phytobiomes J. 2021, 5, 39–50. [Google Scholar] [CrossRef]
- Trdá, L.; Boutrot, F.; Claverie, J.; Brulé, D.; Dorey, S.; Poinssot, B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Front. Plant Sci. 2015, 6, 219. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Chen, Y.; Tang, Y. Adaptive microbiome responses to anthracnose in sorghum: Enhanced network complexity and disease resistance across plant niches. Physiol. Mol. Plant Pathol. 2024, 134, 102421. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Mdindikasi, Z.; Mchau, D.; Mwenda, E.; Sanga, D.; Garcia-Oliveira, A.L.; Ojiewo, C.O. Advances in Sorghum Improvement for Climate Resilience in the Global Arid and Semi-Arid Tropics: A Review. Agronomy 2024, 14, 3025. [Google Scholar] [CrossRef]
- Iqbal, B.; Li, G.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Tariq, M.; Javed, Q.; Naeem, M.; Ahmad, N. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 2023, 10, 100283. [Google Scholar] [CrossRef]
- Langyintuo, A. Smallholder farmers’ access to inputs and finance in Africa. In The Role of Smallholder Farms in Food and Nutrition Security; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–152. [Google Scholar]
- Musara, J.; Musemwa, L.; Mushunje, A.; Mutenje, M.; Pfukwa, C. Sorghum value chain analysis in semi-arid Zimbabwe. S. Afr. J. Agric. Ext. 2019, 47, 164–178. [Google Scholar] [CrossRef]
- Araya, T.; Ochsner, T.E.; Mnkeni, P.N.; Hounkpatin, K.; Amelung, W. Challenges and constraints of conservation agriculture adoption in smallholder farms in sub-Saharan Africa: A review. Int. Soil Water Conserv. Res. 2024, 12, 828–843. [Google Scholar] [CrossRef]
- Mareque, C.; Taulé, C.; Beracochea, M.; Battistoni, F. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L.) Moench). Ann. Microbiol. 2015, 65, 1057–1067. [Google Scholar] [CrossRef]
- da Silva, J.F.; da Silva, T.R.; Escobar, I.E.C.; Fraiz, A.C.R.; Dos Santos, J.W.M.; do Nascimento, T.R.; Dos Santos, J.M.R.; Peters, S.J.W.; de Melo, R.F.; Signor, D. Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands. World J. Microbiol. Biotechnol. 2018, 34, 186. [Google Scholar] [CrossRef] [PubMed]
- Manzar, N.; Singh, Y.; Kashyap, A.S.; Sahu, P.K.; Rajawat, M.V.S.; Bhowmik, A.; Sharma, P.K.; Saxena, A.K. Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biol. Control 2021, 152, 104474. [Google Scholar] [CrossRef]
- Rizvi, A.; Ahmed, B.; Khan, M.S.; Umar, S.; Lee, J. Sorghum-phosphate solubilizers interactions: Crop nutrition, biotic stress alleviation, and yield optimization. Front. Plant Sci. 2021, 12, 746780. [Google Scholar] [CrossRef]
- Alapati, P.S.N.T.; Saharan, B.S. Identification and functional characterization of plant growth-promoting rhizobacteria enhancing growth and nutritional quality of Sorghum bicolor. Discov. Plants 2025, 2, 191. [Google Scholar] [CrossRef]
- Patil, S.; Wagh, V.; Patil, A.; Patel, P. Potential of Indigenous Rhizobacteria and the Consortium for Promoting the Growth of Sorghum bicolor (L.). Indian J. Agric. Res. 2025, 1, 5. [Google Scholar] [CrossRef]
- Yadav, S.S.; Arya, A.; Singh, V.; Singh, Y. Elicitation of native bio protective microbial agents associated systemic defense responses and plant growth promotion against bacterial stalk rot pathogen in sorghum (Sorghum bicolor). Phytopathol. Res. 2023, 5, 47. [Google Scholar] [CrossRef]
- Grover, M.; Madhubala, R.; Ali, S.Z.; Yadav, S.; Venkateswarlu, B. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J. Basic Microbiol. 2014, 54, 951–961. [Google Scholar] [CrossRef]
- Carlson, R.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A.; Hassen, A.I.; Labuschagne, N. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiol. Res. 2020, 232, 126388. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, M.; Chandrasekhar, C.; Senthil, A.; Kalaiselvi, T.; Santhi, R.; Ravikesavan, R. Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Arch. Microbiol. 2022, 204, 354. [Google Scholar] [CrossRef] [PubMed]
- Santana, S.R.A.; Voltolini, T.V.; Antunes, G.d.R.; da Silva, V.M.; Simões, W.L.; Morgante, C.V.; de Freitas, A.D.S.; Chaves, A.R.d.M.; Aidar, S.d.T.; Fernandes-Júnior, P.I. Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum. Arch. Microbiol. 2020, 202, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Tulu, U.T.; Haileselassie, T.; Abera, S.; Tessema, T. Screening and identification of potential Striga [Striga hermonthica (Del.)] suppressing rhizobacteria associated with Sorghum [Sorghum bicolor (L.) Moench] in Northern Ethiopia. Technol. Agron. 2024, 4, e013. [Google Scholar] [CrossRef]
- Tukaram, J.H. Studies on Combined Effect of Biofertilizers and Bioagents on Growth and Yield of Sweet Sorghum. Ph.D. Thesis, Mahatma Phule Krishi Vidyapeeth University, Rahuri, India, 2018. [Google Scholar]
- Idris, H.A.; Labuschagne, N.; Korsten, L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 2007, 40, 97–106. [Google Scholar] [CrossRef]
- Hassanien, S.M.; Afiah, S.A.; El-Hadidy, A.E.; Balah, A.M. Multifaceted potentialities of some rhizobacteria associated with sorghum plants on their growth and development. Egypt. Acad. J. Biol. Sci. G Microbiol. 2017, 9, 1–17. [Google Scholar] [CrossRef]
- Kumar, C.; Esposito, A.; Bertani, I.; Musonerimana, S.; Midekssa, M.J.; Tesfaye, K.; Derr, D.C.; Donaldson, L.; Piazza, S.; Bez, C. Sorghum rhizosphere bacteriome studies and generation of multistrain beneficial bacterial consortia. Microbiol. Res. 2025, 292, 128036. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Razdan, N.; Saharan, K. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol. Res. 2022, 254, 126901. [Google Scholar] [CrossRef]
- Ruiz, V.V.; Carrazco, A.M.; Cota, F.I.P.; de los Santos Villalobos, S. Polyphasic taxonomy of strains in bacterial inoculants. In New Insights, Trends, and Challenges in the Development and Applications of Microbial Inoculants in Agriculture; Elsevier: Amsterdam, The Netherlands, 2024; pp. 87–97. [Google Scholar]
- Díaz-Rodríguez, A.M.; Parra Cota, F.I.; Cira Chávez, L.A.; García Ortega, L.F.; Estrada Alvarado, M.I.; Santoyo, G.; de Los Santos-Villalobos, S. Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants 2025, 14, 191. [Google Scholar] [CrossRef]
- Qiu, Z.; Egidi, E.; Liu, H.; Kaur, S.; Singh, B.K. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 2019, 37, 107371. [Google Scholar] [CrossRef] [PubMed]
- Bharti, N.; Sharma, S.K.; Saini, S.; Verma, A.; Nimonkar, Y.; Prakash, O. Microbial plant probiotics: Problems in application and formulation. In Probiotics and Plant Health; Springer: Berlin/Heidelberg, Germany, 2017; pp. 317–335. [Google Scholar]
- Bernabeu, P.R.; García, S.S.; López, A.C.; Vio, S.A.; Carrasco, N.; Boiardi, J.L.; Luna, M.F. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity. World J. Microbiol. Biotechnol. 2018, 34, 81. [Google Scholar] [CrossRef] [PubMed]
- Aloo, B.N.; Mbega, E.R.; Makumba, B.A.; Tumuhairwe, J.B. Effects of carrier materials and storage temperatures on the viability and stability of three biofertilizer inoculants obtained from potato (Solanum tuberosum L.) rhizosphere. Agriculture 2022, 12, 140. [Google Scholar] [CrossRef]
- Lobo, C.B.; Tomás, M.S.J.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef]
- Akter, T.; Shah, S.T.; Al Mamun, M.A.; Bari, M.L.; Begum, S.; Rahman, N.; Miah, M.I. Costeffective formulation of bio-fertilizer using agricultural residues as carriers and determination of shelflife of bio-fertilizer inoculants. Dhaka Univ. J. Biol. Sci. 2023, 32, 189–199. [Google Scholar] [CrossRef]
- Raimi, A. Quality Assessment of Commercial Biofertilisers and the Awareness of Smallholder Farmers in Gauteng Province, South Africa; University of South Africa (South Africa): Pretoria, South Africa, 2018. [Google Scholar]
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Rubin, R.L.; van Groenigen, K.J.; Hungate, B.A. Plant growth promoting rhizobacteria are more effective under drought: A meta-analysis. Plant Soil 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Lopes, M.J.d.S.; Dias-Filho, M.B.; Gurgel, E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021, 5, 606454. [Google Scholar] [CrossRef]
- O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol. 2016, 100, 5729–5746. [Google Scholar] [CrossRef]
- Carrazco, A.M.; Díaz-Rodríguez, A.M.; Cota, F.I.P.; de los Santos Villalobos, S. Legal framework for the development of microbial inoculants. In New Insights, Trends, and Challenges in the Development and Applications of Microbial Inoculants in Agriculture; Elsevier: Amsterdam, The Netherlands, 2024; pp. 143–151. [Google Scholar]
- Basir, M.S.; Buckmaster, D.; Raturi, A.; Zhang, Y. From pen and paper to digital precision: A comprehensive review of on-farm recordkeeping. Precis. Agric. 2024, 25, 2643–2682. [Google Scholar] [CrossRef]
- Adeniji, A.; Fadiji, A.E.; Li, S.; Guo, R. From lab bench to farmers’ fields: Co-creating microbial inoculants with farmers input. Rhizosphere 2024, 31, 100920. [Google Scholar] [CrossRef]
- Friedman, N.; Tan, Z.; Haskins, M.N.; Ju, W.; Bailey, D.; Longchamps, L. Understanding Farmers’ Data Collection Practices on Small-to-Medium Farms for the Design of Future Farm Management Information Systems. Proc. ACM Hum.-Comput. Interact. 2024, 8, 139. [Google Scholar] [CrossRef]
- Mawcha, K.T.; Kyampaire, D.; Marciale, C.; Simiyu-Wafukho, S.; Chinyama, C.; Babalola, O.O.; Kinyanjui, G.; Ndolo, D. An overview of biopesticide regulatory frameworks in selected countries in Southern Africa. Front. Sustain. Food Syst. 2025, 9, 1522526. [Google Scholar] [CrossRef]
- dos Reis, G.A.; Martínez-Burgos, W.J.; Pozzan, R.; Pastrana Puche, Y.; Ocán-Torres, D.; de Queiroz Fonseca Mota, P.; Rodrigues, C.; Lima Serra, J.; Scapini, T.; Karp, S.G. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability 2024, 16, 8720. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Crowther, T.W.; Rappuoli, R.; Corinaldesi, C.; Danovaro, R.; Donohue, T.J.; Huisman, J.; Stein, L.Y.; Timmis, J.K.; Timmis, K.; Anderson, M.Z. Scientists’ call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024, 187, 5195–5216. [Google Scholar] [CrossRef]
- Khan, M.H.; Liu, H.; Zhu, A.; Khan, M.H.; Hussain, S.; Cao, H. Conservation tillage practices affect soil microbial diversity and composition in experimental fields. Front. Microbiol. 2023, 14, 1227297. [Google Scholar] [CrossRef]
- Sow, A.A.; Hossner, L.; Unger, P.W.; Stewart, B.A. Tillage and residue effects on root growth and yields of grain sorghum following wheat. Soil Tillage Res. 1997, 44, 121–129. [Google Scholar] [CrossRef]
- Koskey, G.; Mburu, S.W.; Awino, R.; Njeru, E.M.; Maingi, J.M. Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front. Sustain. Food Syst. 2021, 5, 606308. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O.; Glick, B.R. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere 2021, 20, 100433. [Google Scholar] [CrossRef]
- Elvia, J.C.; de Freitas, R.; Germida, J.J. Bacterial microbiomes associated with the rhizosphere, root interior, and aboveground plant organs of wheat and canola at different growth stages. Phytobiomes J. 2021, 5, 442–451. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Humayun, P.; Kiran, B.K.; Kannan, I.G.K.; Vidya, M.S.; Deepthi, K.; Rupela, O. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 2011, 27, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, J.B.A.; Lorenzi, A.S.; do Vale, H.M.M. Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Arch. Microbiol. 2022, 204, 675. [Google Scholar] [CrossRef]
- Martinez-Absalon, S.; Orozco-Mosqueda, M.d.C.; Martinez-Pacheco, M.; Farias-Rodriguez, R.; Govindappa, M.; Santoyo, G. Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Genet Mol. Res. 2012, 11, 2665–2673. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.K. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi-arid region. Environ. Exp. Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Fretes, C.d.; Suryani, R.; Purwestri, Y.A.; Nuringtyas, T.R.; Widianto, D. Diversity of endophytic bacteria in sweet sorghum (Sorghum bicolor (L.) Moench) and their potential for promoting plant growth. Indian J. Sci. Technol. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Nwachukwu, B.C.; Babalola, O.O. Metagenomics: A tool for exploring key microbiome with the potentials for improving sustainable agriculture. Front. Sustain. Food Syst. 2022, 6, 886987. [Google Scholar] [CrossRef]
- Bilal, T.; Malik, B.; Hakeem, K.R. Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. J. Microbiol. Methods 2018, 155, 65–69. [Google Scholar] [CrossRef]
- Dubey, S.; Sharma, S. Rhizospheric microbiome engineering as a sustainable tool in agriculture: Approaches and challenges. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Volume 2. Soil & Agroecosystems; Springer: Singapore, 2019; pp. 257–272. [Google Scholar]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M. Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef]
- Kochar, M.; Singh, P. Sorghum-associated bacterial communities—Genomics and research perspectives. In The Sorghum Genome; Springer: Cham, Switzerland, 2017; pp. 269–284. [Google Scholar]
- Govindasamy, V.; Raina, S.K.; George, P.; Kumar, M.; Rane, J.; Minhas, P.S.; Vittal, K.P.R. Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie Van Leeuwenhoek 2017, 110, 925–943. [Google Scholar] [CrossRef]
- Coelho, M.R.; Marriel, I.E.; Jenkins, S.N.; Lanyon, C.V.; Seldin, L.; O’Donnell, A.G. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl. Soil Ecol. 2009, 42, 48–53. [Google Scholar] [CrossRef]
- Lu, G.-H.; Zheng, K.; Cao, R.; Fazal, A.; Na, Z.; Wang, Y.; Yang, Y.; Sun, B.; Yang, H.; Na, Z.-Y. Root-associated fungal microbiota of the perennial sweet sorghum cultivar under field growth. Front. Microbiol. 2022, 13, 1026339. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sarsaiya, S.; Singh, R.; Gong, Q.; Wu, Q.; Shi, J. Omics approaches in understanding the benefits of plant-microbe interactions. Front. Microbiol. 2024, 15, 1391059. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wen, J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb. Cell Factories 2021, 20, 178. [Google Scholar] [CrossRef] [PubMed]
- Hara, S.; Morikawa, T.; Wasai, S.; Kasahara, Y.; Koshiba, T.; Yamazaki, K.; Fujiwara, T.; Tokunaga, T.; Minamisawa, K. Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 2019, 10, 407. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; El-Sappah, A.H.; Sun, Y.; Liu, Y.; Pan, S.; Zhu, K.; Sun, X.; Xiong, T.; Luo, H. Influence of two sorghum varieties on metabolic factors, microbial community, and flavor component precursors of strong-flavor Baijiu Zaopei. Food Chem. 2025, 474, 143079. [Google Scholar] [CrossRef]
- Wang, P.; Chai, Y.N.; Roston, R.; Dayan, F.E.; Schachtman, D.P. The sorghum bicolor root exudate sorgoleone shapes bacterial communities and delays network formation. mSystems 2021, 6, e00749-20. [Google Scholar] [CrossRef]
- Shi, X.; Guo, P.; Chen, Y.; Liu, C.; Liu, C.; Yu, H.; Zhou, Y.; Zou, H. Integrated Analysis of Soil Metagenome and Soil Metabolome Reveals the Differential Responses of Sorghum and Peanut Rhizosphere Microbes to Salt Stress. J. Soil Sci. Plant Nutr. 2024, 24, 2959–2971. [Google Scholar] [CrossRef]
- Mohammed, M.; Dakora, F.D. Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments. Microorganisms 2024, 12, 2225. [Google Scholar] [CrossRef]
- Mawarda, P.C.; Le Roux, X.; Van Elsas, J.D.; Salles, J.F. Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol. Biochem. 2020, 148, 107874. [Google Scholar] [CrossRef]
- Vieira, C.K.; dos Anjos Borges, L.G.; Marascalchi, M.N.; Russi, C.H.; Marandola, T.; Kemmelmeier, K.; Soares, C.R.F.S.; Stürmer, S.L.; Giongo, A. Interaction between arbuscular mycorrhizal fungi and native soil microbiome on early stage restoration of a coal-mine soil. Mycorrhiza 2025, 35, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhyr, L.; Furch, A.C.; Mithöfer, A. Beneficial microbes in agriculture: Curse or blessing? Trends Plant Sci. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.D.; Singh, B.K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268. [Google Scholar] [CrossRef]
- Anang, B.T.; Dagunga, G.; Bosompem, M. Predictors of inoculant-based technology adoption by smallholder soybean farmers in northern Ghana: Implications for soil fertility management. Agric. Food Secur. 2023, 12, 29. [Google Scholar] [CrossRef]
- Raimi, A.; Roopnarain, A.; Adeleke, R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. Sci. Afr. 2021, 11, e00694. [Google Scholar] [CrossRef]

| Microbe Type | Example in Sorghum | Key Mechanism of Action in Promoting Plant Growth | Reference |
|---|---|---|---|
| Plant growth-promoting rhizobacteria (PGPR) | Pseudomonas spp., Rhizobium spp., Azospirillum spp., Enterobacter spp., Bacillus spp., Paenibacillus spp., Amycolatopsis spp., and Streptomyces spp. | They promote plant growth and productivity through phosphate (P) solubilisation, nitrogen (N) fixation, and siderophore production, inducing the expression of phytohormones and enhancing the synthesis of antioxidant enzymes. | [26,27,28] |
| Arbuscular mycorrhizal fungi (AMF) | Gigaspora spp., Scutellospora spp., Glomus spp., Sclerocystis spp., Entrophospora spp., and Acaulospora spp. | Forms an extensive hyphal network and symbiotic relationship with sorghum roots to enhance water and nutrient uptake. | [29,30] |
| Plant growth-promoting fungi (PGPF) | Trichoderma spp., Penicillium spp., and Aspergillus spp. | Contributes to plant growth through diverse mechanisms, including the synthesis of secondary metabolites and plant-growth-promoting substances. | [31,32] |
| Plant growth-promoting endophytes (PGPE) | Bacillus spp., Pseudomonas spp., Burkholderia spp., Micrococcus spp., Stenotrophomonas spp., and Pantoea spp. | They colonise internal plant tissues and synthesise bioactive compounds, as well as growth-promoting hormones. They induce the expression of stress response genes that promote plant growth and stress resilience. | [26] |
| Microbial Group | Representative Taxa | Study Type | Source of Isolate | Crop Treated | Target Stress | Mechanism of Action | Key Outcomes | Key Limitations | Ref |
|---|---|---|---|---|---|---|---|---|---|
| PGPE | Enterobacter spp., Klebsiella spp., Pantoea spp. | Greenhouse (51 days) | Sorghum roots | Sorghum | None | Increased auxin production; ACC deaminase activity | Increased shoot biomass and nitrogen concentration | Controlled environment; short duration (51 days); quantitative increase over control not specified. | [48] |
| PGPE | Rhizobium spp., Pantoea spp., Enterobacter spp., Bacillus spp. | Greenhouse (3 months) | Sorghum root, stem and seeds | Sorghum | None | IAA production; nitrogen fixation | 10–35% increase in shoot, root, and stem biomass | Short-term greenhouse trial only | [47] |
| PGPR | Acinetobacter pittii | Greenhouse (1 month) | Sorghum rhizosphere soil | Sorghum | None | IAA and siderophore production; P and potassium (K) solubilisation | Improved morphological, physiological, and biochemical traits | Controlled environment; short duration (1 month); quantitative increase over control not specified | [51] |
| PGPE | Bacillus spp., Paenibacillus intermedius, A. pittii | In vitro (7 days) | Sorghum root | Sorghum | Drought (PEG-induced) | Osmolyte (Proline accumulation); Exopolysaccharides production; IAA and GA production | >20% increase in germination; >30% increase in biomass | Drought stress was simulated using PEG (6000) for 7 days; Not validated in planta. | [56] |
| PGPR | Bacillus spp. | Greenhouse (47 days) | Field-grown sorghum | Sorghum | Drought | Not specified | Increased nitrogen accumulation; improved photosynthesis & transpiration | Controlled environment; short duration (47 days); precise mechanism not elucidated. | [57] |
| PGPR | Bacillus spp. | Greenhouse | Sorghum rhizosphere soil | Sorghum | Moisture stress | Not specified | Increased shoot length, root biomass, chlorophyll, proline, and sugar content. | Greenhouse study only; no field validation. | [54] |
| PGPR | Pseudomonas spp., Klebsiella spp., Bacillus spp., Enterobacter spp. | In vitro (3 days) | Sorghum farm soil | Sorghum | Weed (Striga spp.) | Hydrogen cyanide and IAA production | Reduction of Striga seed germination to 0% in vitro. | In vitro assay only (3 days); not tested in soil or field conditions. | [58] |
| PGPF + PDPE | Trichoderma spp., Pseudomonas spp., Bacillus spp. | Greenhouse + field | Sorghum rhizosphere soil | Sorghum | Bacterial wilt (Dickeya dadantii) | Callose/lignin deposition; pathogen inhibition | >30% disease reduction; 19–36% increase shoot length; 33–78% root biomass; ~30% yield increase | Field validation limited to 2 seasons; Field consistency unknown (2-season trial). | [53] |
| PGPE | Trichoderma asperellum, Epicoccum nigrum, Alternaria longipes | Greenhouse + field | Sorghum root, stem, seed | Sorghum | Fungal pathogens (Fuariun thapsinum, Epicoccum sorghinum, Alternaria alternata, Curvularia lunata) | Antifungal activity; competition; host resistance induction; siderophore production; P solubilisation. | >90% increase in germination and yield | Field validation limited (2 seasons, 1 location) | [31] |
| PGPE | Trichoderma spp. | Greenhouse + field | Sorghum farm soil | Sorghum | Fungi (Colletotrichum graminicola) | Antioxidant defence induction; root lignification | >50% disease reduction; >20% yield increase | Field validation limited (2 seasons, 1 location) | [49] |
| PGPE | Azospirillum, Acetobacter, Trichoderma | Field (90 days) | Sorghum rhizosphere soil | Sorghum | None | Enhanced nutrient acquisition via P solubilisation | ~50% improved germination; increased grain yield | Short-term field trial(90 days); single location | [59] |
| PGPR | Bacillus spp. | Greenhouse (4 weeks) | Sorghum rhizosphere soil | Sorghum | Fungi (Fusariun oxysporum) | Direct competition with pathogenic fungi for root colonisation | 70–100% disease reduction; | Greenhouse only; short duration (4 weeks). | [60] |
| PGPR | Pseudomonas geniculat, Rhizobium pusense, and Bacillus spp. | Greenhouse (8 weeks) | Rhizosphere and non-rhizosphere sorghum soil | Sorghum | Not applicable | Phytohormone production; phosphate solubilisation | >20% increase in root and shoot; 50–160% increase in photosynthetic pigment. | Greenhouse only; short duration (8 weeks) | [61] |
| PGPR | Not specified | Greenhouse (30 days) | Sorghum rhizosphere | Sorghum | Not applicable | Phytohormone production; phosphate solubilisation; ACC deaminase production | 100% increase in germination rate. | Greenhouse only; short duration (30 days); the names of the isolates was not specified. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aina, O.; Donaldson, L. Harnessing the Sorghum Microbiome for Enhancing Crop Productivity and Food Security Towards Sustainable Agriculture in Smallholder Farming. Plants 2025, 14, 3242. https://doi.org/10.3390/plants14213242
Aina O, Donaldson L. Harnessing the Sorghum Microbiome for Enhancing Crop Productivity and Food Security Towards Sustainable Agriculture in Smallholder Farming. Plants. 2025; 14(21):3242. https://doi.org/10.3390/plants14213242
Chicago/Turabian StyleAina, Omolola, and Lara Donaldson. 2025. "Harnessing the Sorghum Microbiome for Enhancing Crop Productivity and Food Security Towards Sustainable Agriculture in Smallholder Farming" Plants 14, no. 21: 3242. https://doi.org/10.3390/plants14213242
APA StyleAina, O., & Donaldson, L. (2025). Harnessing the Sorghum Microbiome for Enhancing Crop Productivity and Food Security Towards Sustainable Agriculture in Smallholder Farming. Plants, 14(21), 3242. https://doi.org/10.3390/plants14213242

