The Journey of Mango: How the Shipping Systems Affect Fruit Quality, Consumer Acceptance, and Environmental Impact
Abstract
1. Introduction
2. Results
2.1. Chemical-Physical Characterisation of Mango Fruits
2.1.1. Weight and Flesh Firmness
2.1.2. Total Soluble Solids (TSSs), Titratable Acidity (TA), Their Ratio (TSS/TA), and pH
2.2. VOCs Profiling by PTR-ToF-MS
2.3. Sensory Evaluation and Consumer Acceptance by Trained and Untrained Panellists, Respectively
2.3.1. Sensory Evaluation by Trained Panellists
2.3.2. Consumer Acceptance
2.4. Comparative GHG Emissions and Emissions Intensity
3. Discussion
4. Materials and Methods
4.1. Fruit Samples Collection
4.2. Analysis of Pomological Character (Total Soluble Solids (TSSs), Titratable Acidity (TA), pH, Flesh Firmness (FF), and Ratio (TSS/TA)
4.3. PTR-ToF-MS Acquisition
4.4. Sensory Measurements by Trained and Untrained Panellists
4.4.1. Sample Preparation
4.4.2. Panel Test by Trained Panellists
4.4.3. Consumer Acceptability by Untrained Panellists
4.5. Greenhouse Gas Evaluation
4.6. Statistical Data Analysis
4.6.1. PLS-DA Analysis on Mango Samples by Transport Class
4.6.2. PCA Analysis on Mango Samples from Different Origins and Transport Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonavita, G.; FAO. Major Tropical Fruits: Market Review 2021; FAO: Rome, Italy, 2022. [Google Scholar]
- MANGO—An INFOCOMM Commodity Profile. Available online: https://unctad.org/system/files/official-document/INFOCOMM_cp07_Mango_en.pdf (accessed on 10 June 2025).
- FAO. Major Tropical Fruits Market Review. Preliminary Results 2023; FAO: Rome, Italy, 2024. [Google Scholar]
- Kiloes, A.M.; Azizan, F.A.; Checco, J.; Joyce, D.; Abdul Aziz, A. What do consumers want in fresh mangoes? A systematic literature review. Int. J. Food Sci. Technol. 2022, 57, 1473–1492. [Google Scholar] [CrossRef]
- Honja, T. Review of Mango Value Chain in Ethiopia. J. Biol. 2014, 4, 230–239. [Google Scholar]
- Arauz, L.F. Mango Anthracnose: Economic Impact and Current Options For Integrated Management. Plant Dis. 2000, 84, 600–611. [Google Scholar] [CrossRef]
- Sabbe, S. Consumer Perception and Behaviour Towards Tropical Fruits in Belgium. Ph.D. Thesis, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium, 2009. [Google Scholar]
- Luckow, T.; Delahunty, C. Consumer acceptance of orange juice containing functional ingredients. Food Res. Int. 2004, 37, 805–814. [Google Scholar] [CrossRef]
- Steptoe, A.; Perkins-Porras, L.; Rink, E.; Hilton, S.; Cappuccio, F.P. Psychological and Social Predictors of Changes in Fruit and Vegetable Consumption Over 12 Months Following Behavioral and Nutrition Education Counseling. Health Psychol. 2004, 23, 574–581. [Google Scholar] [CrossRef]
- Krystallis, A.; Petrovici, D.; Arvanitoyannis, I. From Commodities to the Consumption of Quality Foods in Eastern European Context: An Empirical Examination of the Determinants of Consumer Behavior Towards Honey. J. East-West Bus. 2007, 12, 5–17. [Google Scholar] [CrossRef]
- Mitra, S.K. Mango production in the world—Present situation and future prospect. Acta Hortic. 2016, IV 1111, 287–296. [Google Scholar] [CrossRef]
- Jantuma, N.; Ruangchai, S.; Ketkaew, C.; Naruetharadhol, P. Sustainability assessment for Thai mango: The environmental impact and economic benefits from cradle-to-grave. J. Infrastruct. Policy Dev. 2023, 7, 2793. [Google Scholar] [CrossRef]
- Müller Carneiro, J.; Dias, A.F.; Barros, V.D.S.; Giongo, V.; Folegatti Matsuura, M.I.D.S.; Brito De Figueirêdo, M.C. Carbon and water footprints of Brazilian mango produced in the semiarid region. Int. J. Life Cycle Assess. 2019, 24, 735–752. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Juliano, P.; Sanguansri, P.; Sellahewa, J. The water footprint of food waste: Case study of fresh mango in Australia. J. Clean. Prod. 2010, 18, 1714–1721. [Google Scholar] [CrossRef]
- Singh, Z.; Singh, R.K.; Sane, V.A.; Nath, P. Mango—Postharvest Biology and Biotechnology. Crit. Rev. Plant Sci. 2013, 32, 217–236. [Google Scholar] [CrossRef]
- Jantapirak, S.; Laguerre, O.; Denis, A.; Salomon, Y.P.; Flick, D.; Vangnai, K.; Jittanit, W.; Duret, S. Experimental simulation of temperature non-uniformity in a loaded container along air cargo supply chain: Mango case study. J. Food Eng. 2024, 380, 112161. [Google Scholar] [CrossRef]
- Jiang, Y.; Bian, B.; Zheng, B.; Chu, J. A time space network optimization model for integrated fresh fruit harvest and distribution considering maturity. Comput. Ind. Eng. 2024, 190, 110029. [Google Scholar] [CrossRef]
- Ndlela, S.; Obala, F.; Mwando, N.L.; Mkiga, A.M.; Azrag, A.G.A.; Mohamed, S.A. Hot Water Disinfestation Treatment Does Not Affect Physical and Biochemical Properties of Export Quality Mango Fruit [Mangifera indica L.]. Agriculture 2022, 12, 570. [Google Scholar] [CrossRef]
- Sivakumar, D.; Jiang, Y.; Yahia, E.M. Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res. Int. 2011, 44, 1254–1263. [Google Scholar] [CrossRef]
- Taiti, C.; Vivaldo, G.; Masi, E.; Giordani, E.; Nencetti, V. Postharvest monitoring and consumer choice on traditional and modern apricot cultivars. Eur. Food Res. Technol. 2023, 249, 2719–2739. [Google Scholar] [CrossRef]
- Maffei, M.E. Sites of synthesis, biochemistry and functional role of plant volatiles. South Afr. J. Bot. 2010, 76, 612–631. [Google Scholar] [CrossRef]
- El Hadi, M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Marone, E.; Bazihizina, N.; Caparrotta, S.; Azzarello, E.; Petrucci, A.W.; Pandolfi, C.; Giordani, E. Sometimes a Little Mango Goes a Long Way: A Rapid Approach to Assess How Different Shipping Systems Affect Fruit Commercial Quality. Food Anal. Methods 2016, 9, 691–698. [Google Scholar] [CrossRef]
- Velasquez, A.M.; Contreras, R.; Baez, M.A.; Crisosto, C.H. Skin discoloration and softening are the primary factors impacting postharvest quality of hot water-treated mango (Mangifera indica L.). Sci. Hortic. 2023, 316, 112005. [Google Scholar] [CrossRef]
- Wei, S.; Mei, J.; Xie, J. Effects of Edible Coating and Modified Atmosphere Technology on the Physiology and Quality of Mangoes after Low-Temperature Transportation at 13 °C in Vibration Mitigation Packaging. Plants 2021, 10, 2432. [Google Scholar] [CrossRef]
- Laguerre, O.; Duret, S.; Chaomuang, N.; Denis, A.; Derens-Bertheau, E.; Mawilai, P.; Ndoye, F.T.; Pongsuttiyakorn, T.; Rakmae, S.; Srisawat, K.; et al. Influence of long-distance air transport conditions on horticultural product quality: Case study of fresh mango shipment from Thailand to France. Int. J. Refrig. 2023, 152, 16–25. [Google Scholar] [CrossRef]
- Baloch, M.K.; Bibi, F. Effect of harvesting and storage conditions on the post harvest quality and shelf life of mango (Mangifera indica L.) fruit. South Afr. J. Bot. 2012, 83, 109–116. [Google Scholar] [CrossRef]
- Shahzad, F.; Doron, M.; Sargent, S.A.; Brecht, J.K. Development and feasibility of an approach utilizing modified atmosphere packaging (MAP) and ethylene scrubbing to allow extended international transport and marketing of tree-ripe mangos. Postharvest Biol. Technol. 2025, 225, 113488. [Google Scholar] [CrossRef]
- Fonseca, J.d.M.; Alves, M.J.d.S.; Soares, M.J.d.S.; Alves, L.S.; Moreira, R.d.F.P.M.; Valencia, G.A.; Monteiro, A.R. A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives. Food Res. Int. 2021, 144, 110378. [Google Scholar] [CrossRef]
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Changxiong Li, D.; Merkert, R. “Door-to-door” carbon emission calculation for airlines—Its decarbonization potential and impact. Transp. Res. Part Transp. Environ. 2023, 121, 103849. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Gütschow, J.; Obli-Laryea, G.; Conchedda, G.; Pan, X.; Qi, S.Y.; Halldórudóttir Heiðarsdóttir, H.; Wanner, N.; et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 2022, 14, 1795–1809. [Google Scholar] [CrossRef]
- Vidergar, P.; Perc, M.; Lukman, R.K. A survey of the life cycle assessment of food supply chains. J. Clean. Prod. 2021, 286, 125506. [Google Scholar] [CrossRef]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef]
- Taiti, C.; Costa, C.; Menesatti, P.; Caparrotta, S.; Bazihizina, N.; Azzarello, E.; Petrucci, W.A.; Masi, E.; Giordani, E. Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur. Food Res. Technol. 2015, 241, 91–102. [Google Scholar] [CrossRef]
- Liguori, G.; Gentile, C.; Sortino, G.; Inglese, P.; Farina, V. Food Quality, Sensory Attributes and Nutraceutical Value of Fresh “Osteen” Mango Fruit Grown under Mediterranean Subtropical Climate Compared to Imported Fruit. Agriculture 2020, 10, 103. [Google Scholar] [CrossRef]
- Farina, V.; Gentile, C.; Sortino, G.; Gianguzzi, G.; Palazzolo, E.; Mazzaglia, A. Tree-Ripe Mango Fruit: Physicochemical Characterization, Antioxidant Properties and Sensory Profile of Six Mediterranean-Grown Cultivars. Agronomy 2020, 10, 884. [Google Scholar] [CrossRef]
- Lee, T.Y.; Smith, A.; Seppi, K.; Elmqvist, N.; Boyd-Graber, J.; Findlater, L. The human touch: How non-expert users perceive, interpret, and fix topic models. Int. J. Hum.-Comput. Stud. 2017, 105, 28–42. [Google Scholar] [CrossRef]
- FAO. Major Tropical Fruits Market Review 2022; FAO: Rome, Italy, 2023. [Google Scholar]
- Gentile, C.; Di Gregorio, E.; Di Stefano, V.; Mannino, G.; Perrone, A.; Avellone, G.; Sortino, G.; Inglese, P.; Farina, V. Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chem. 2019, 277, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Sabbe, S.; Verbeke, W.; Van Damme, P. Familiarity and purchasing intention of Belgian consumers for fresh and processed tropical fruit products. Br. Food J. 2008, 110, 805–818. [Google Scholar] [CrossRef]
- Campbell, J.M.; Fairhurst, A.E. Reducing the intention-to-behaviour gap for locally produced foods purchasing: The role of store, trust, and price. Int. J. Retail Distrib. Manag. 2016, 44, 508–523. [Google Scholar] [CrossRef]
- Ward, G.; Holliday, N.; Awang, D.; Harson, D. Creative approaches to service design: Using co-creation to develop a consumer focused assistive technology service. Technol. Disabil. 2015, 27, 5–15. [Google Scholar] [CrossRef]
- Evans, E.A.; Ballen, F.H.; Siddiq, M. Mango Production, Global Trade, Consumption Trends, and Postharvest Processing and Nutrition. In Handbook of Mango Fruit; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–16. ISBN 978-1-119-01436-2. [Google Scholar]
- Honja, T.; Geta, E.; Mitiku, A. Mango Value Chain Analysis: The Case of Boloso Bombe Woreda, Wolaita Zone, Southern Ethiopia. Develop. Ctry. Stud. 2016, 6, 103–123. [Google Scholar]
- Mutonyi, S.; Beukel, K.; Gyau, A.; Hjortsø, C.N. Price satisfaction and producer loyalty: The role of mediators in business to business relationships in Kenyan mango supply chain. Br. Food J. 2016, 118, 6. [Google Scholar] [CrossRef]
- Qanti, S.R.; Reardon, T.; Iswariyadi, A. Triangle of Linkages among Modernising Markets, Sprayer–traders, and Mango-farming Intensification in Indonesia. Bull. Indones. Econ. Stud. 2017, 53, 187–208. [Google Scholar] [CrossRef]
- FFV-45: Mangoes-2023. Available online: https://unece.org/sites/default/files/2024-03/FFV-45_Mangoes_2023_e.pdf (accessed on 9 June 2025).
- Yasunaga, E.; Fukuda, S.; Nagle, M.; Spreer, W. Effect of Storage Conditions on the Postharvest Quality Changes of Fresh Mango Fruits for Export during Transportation. Environ. Control Biol. 2018, 56, 39–44. [Google Scholar] [CrossRef]
- Kailaku, S.I.; Arkeman, Y.; Purwanto, Y.A.; Udin, F. Appropriate harvest age of mango (Mangifera indica cv. Arumanis) for quality assurance in long distance transportation planning in Indonesia. J. Agric. Food Res. 2023, 14, 100763. [Google Scholar] [CrossRef]
- Aggarwal, S.; Mohite, A.M.; Sharma, N. The Maturity and Ripeness Phenomenon with regard to the Physiology of Fruits and Vegetables: A Review. Bull. Transilv. Univ. Brasov Ser. II For. Wood Ind. Agric. Food Eng. 2018, 11, 77–88. [Google Scholar]
- Wang, K.; Li, Q.; He, P.; Jia, X.; Ren, W.; Wang, J.; Xu, H. Grading by Fruit Density: An Effective way to Control the Drying Characteristics and Qualities of Mulberry (Morus nigra L.). Food Bioprocess Technol. 2024, 17, 1814–1830. [Google Scholar] [CrossRef]
- Sung, J.; Suh, J.H.; Chambers, A.H.; Crane, J.; Wang, Y. Relationship between Sensory Attributes and Chemical Composition of Different Mango Cultivars. J. Agric. Food Chem. 2019, 67, 5177–5188. [Google Scholar] [CrossRef]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Lebrun, M.; Plotto, A.; Goodner, K.; Ducamp, M.-N.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [Google Scholar] [CrossRef]
- White, I.R.; Blake, R.S.; Taylor, A.J.; Monks, P.S. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics 2016, 12, 57. [Google Scholar] [CrossRef]
- Nassur, R.d.C.M.R.; González-Moscoso, S.; Crisosto, G.M.; Lima, L.C.d.O.; Vilas Boas, E.V.d.B.; Crisosto, C.H. Describing Quality and Sensory Attributes of 3 Mango (Mangifera indica L.) Cultivars at 3 Ripeness Stages Based on Firmness. J. Food Sci. 2015, 80, S2055–S2063. [Google Scholar] [CrossRef]
- Echeverría, G.; Cantín, C.M.; Ortiz, A.; López, M.L.; Lara, I.; Graell, J. The impact of maturity, storage temperature and storage duration on sensory quality and consumer satisfaction of ‘Big Top®’ nectarines. Sci. Hortic. 2015, 190, 179–186. [Google Scholar] [CrossRef]
- Baumeister, S. ‘Each flight is different’: Carbon emissions of selected flights in three geographical markets. Transp. Res. Part Transp. Environ. 2017, 57, 1–9. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Gianguzzi, G.; Farina, V.; Inglese, P.; Rodrigo, M.G.L. Effect of Harvest Date on Mango (Mangifera indica L. Cultivar Osteen) Fruit’s Qualitative Development, Shelf Life and Consumer Acceptance. Agronomy 2021, 11, 811. [Google Scholar] [CrossRef]
- Dobruszkes, F.; Mattioli, G.; Gozzoli, E. The elephant in the room: Long-haul air services and climate change. J. Transp. Geogr. 2024, 121, 104022. [Google Scholar] [CrossRef]
- Islam, M.K.; Khan, M.Z.H.; Sarkar, M.A.R.; Absar, N.; Sarkar, S.K. Changes in Acidity, TSS, and Sugar Content at Different Storage Periods of the Postharvest Mango (Mangifera indica L.) Influenced by Bavistin DF. Int. J. Food Sci. 2013, 2013, 939385. [Google Scholar] [CrossRef]
- Costa, J.D.d.S.; Figueiredo Neto, A.; Olivier, N.C.; Irmão, M.A.d.S.; Costa, M.d.S.; Gomes, J.P. Road transport vibration stress impact on ‘Palmer’ mangoes quality and shelflife. Rev. Bras. Frutic. 2021, 43, e-641. [Google Scholar] [CrossRef]
- Wijethunga, W.M.U.D.; Shin, M.H.; Jayasooriya, L.S.H.; Kim, G.H.; Park, K.M.; Cheon, M.G.; Choi, S.W.; Kim, H.L.; Kim, J.G. Enhancing the Quality of Ripened ‘Irwin’ Mangoes and the Shelf Life through Chitosan Edible Coating and Modified Atmosphere Packaging. Hortic. Sci. Technol. 2024, 42, 291–311. [Google Scholar] [CrossRef]
- Le, T.D.; Viet Nguyen, T.; Muoi, N.V.; Toan, H.T.; Lan, N.M.; Pham, T.N. Supply Chain Management of Mango (Mangifera indica L.) Fruit: A Review With a Focus on Product Quality During Postharvest. Front. Sustain. Food Syst. 2022, 5, 799431. [Google Scholar] [CrossRef]
- Schouten, R.E.; Fan, S.; Verdonk, J.C.; Wang, Y.; Kasim, N.F.M.; Woltering, E.J.; Tijskens, L.M.M. Mango Firmness Modeling as Affected by Transport and Ethylene Treatments. Front. Plant Sci. 2018, 9, 1647. [Google Scholar] [CrossRef]
- Vilvert, J.C. Chitosan and graphene oxide-based biodegradable packaging for maintaining postharvest quality of mango. LWT 2021, 154, 112741. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hasan, M.K. Impacts of liner shipping connectivity and global competitiveness on logistics performance: The mediating role of the quality of port and infrastructure. Transport 2023, 38, 87–104. [Google Scholar] [CrossRef]
- Srisawat, K.; Sirisomboon, P.; Pun, U.K.; Krusong, W.; Rakmae, S.; Chaomuang, N.; Mawilai, P.; Pongsuttiyakorn, T.; Chookaew, C.; Pornchaloempong, P. Temperature Difference in Loading Area (Tarmac) during Handling of Air Freight Operations and Distance of Production Area Affects Quality of Fresh Mango Fruits (Mangifera indica L. ‘Nam Dok Mai Si Thong’). Horticulturae 2022, 8, 1001. [Google Scholar] [CrossRef]
- Aura, C.; Widayanti, S.; Fitriana, N.H.I. Export Position of Indonesian Mango Commodities in the International Market (Case Study in Seven Destination Countries). Bul. Penelit. Sos. Ekon. Pertan. Fak. Pertan. Univ. Haluoleo 2023, 25, 9–18. [Google Scholar] [CrossRef]
- Ayyaz, S.; Bonney, L.B.; Adhikari, R. Consumers’ insight and behaviour towards mango quality and safety attributes: Implications for integrated value chain development. Br. Food J. 2023, 125, 4518–4538. [Google Scholar] [CrossRef]
- Dos Santos Moreira, D.; Nicolosi, A.; Laganà, V.R.; Di Gregorio, D.; Agosteo, G.E. Factors Driving Consumption Preferences for Fresh Mango and Mango-Based Products in Italy and Brazil. Sustainability 2024, 16, 9401. [Google Scholar] [CrossRef]
- Spina, D.; Zanchini, R.; Hamam, M.; Di Vita, G.; Chinnici, G.; Raimondo, M.; Caracciolo, F.; D’Amico, M. Unveiling the exotic fascination of tropical fruits: The role of food values on consumer behavior towards mangoes. J. Agric. Food Res. 2024, 15, 100956. [Google Scholar] [CrossRef]
- Anand Agricultural University; Padaliya, S.P.; Pundir, R.S. Anand Agricultural University Challenges faced by mango exporters. Gujarat J. Ext. Educ. 2022, 34, 15–20. [Google Scholar] [CrossRef]
- Araújo, J.L.P.; Garcia, J.L.L. A study of the mango market in the European Union. Rev. Econômica Nordeste 2012, 43, 281–296. [Google Scholar] [CrossRef]
- Navarro-del Águila, I.; de Burgos-Jiménez, J. Short Food Supply Chains for Fresh Fruit and Vegetables. In Handbook of Public Health Nutrition: International, National, and Regional Perspectives; Springer Nature: Cham, Switzerland, 2025; pp. 1–22. [Google Scholar]
- Baeza-Herrera, L.; Jaen-Contreras, D.; San-Martín-Hernández, C.; Chávez-Franco, S.H.; Lopéz-Jiménez, A.; Muratalla-Lua, A.; Garcia-Osorio, C. Changes in mango postharvest quality due to nitrogen-phosphorus-potassium dose and production season. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13522. [Google Scholar] [CrossRef]
- Lanza, M.; Acton, W.J.; Sulzer, P.; Breiev, K.; Jürschik, S.; Jordan, A.; Hartungen, E.; Hanel, G.; Märk, L.; Märk, T.D.; et al. Selective reagent ionisation-time of flight-mass spectrometry: A rapid technology for the novel analysis of blends of new psychoactive substances. J. Mass Spectrom. 2015, 50, 427–431. [Google Scholar] [CrossRef]
- Blake, R.S.; Whyte, C.; Hughes, C.O.; Ellis, A.M.; Monks, P.S. Demonstration of Proton-Transfer Reaction Time-of-Flight Mass Spectrometry for Real-Time Analysis of Trace Volatile Organic Compounds. Anal. Chem. 2004, 76, 3841–3845. [Google Scholar] [CrossRef]
- Cappellin, L.; Biasioli, F.; Granitto, P.M.; Schuhfried, E.; Soukoulis, C.; Costa, F.; Märk, T.D.; Gasperi, F. On data analysis in PTR-TOF-MS: From raw spectra to data mining. Sens. Actuators B Chem. 2011, 155, 183–190. [Google Scholar] [CrossRef]
- Tani, A. Fragmentation and Reaction Rate Constants of Terpenoids Determined by Proton Transfer Reaction-mass Spectrometry. Environ. Control Biol. 2013, 51, 23–29. [Google Scholar] [CrossRef]
- Maleknia, S.D.; Bell, T.L.; Adams, M.A. PTR-MS analysis of reference and plant-emitted volatile organic compounds. Int. J. Mass Spectrom. 2007, 262, 203–210. [Google Scholar] [CrossRef]
- Dekhili, S.; d’Hauteville, F. Effect of the region of origin on the perceived quality of olive oil: An experimental approach using a control group. Food Qual. Prefer. 2009, 20, 525–532. [Google Scholar] [CrossRef]
- Normativa. Available online: https://www.arsarp.it/attivita/analisi-sensoriale/normativa (accessed on 19 September 2025).
- Crisosto, C.H.; Crisosto, G.M. Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol. Technol. 2005, 38, 239–246. [Google Scholar] [CrossRef]
- Taiti, C.; Marone, E.; Lanza, M.; Azzarello, E.; Masi, E.; Pandolfi, C.; Giordani, E.; Mancuso, S. Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer’s preference. Eur. Food Res. Technol. 2017, 243, 1917–1931. [Google Scholar] [CrossRef]
- Anthes, R.; Borschel, M. Environmental Methodology and Data Update 2025, ISO 14083 Version 4.0. Available online: https://emissioncalculator.ecotransit.world/ (accessed on 30 May 2025).
- Royo, B.; Zhang, Y.; Lewis, A.; Dehdari, P. CO2 emissions in urban freight transport: Developing and testing the EcoLogistics tool. Case Stud. Transp. Policy 2025, 20, 101415. [Google Scholar] [CrossRef]
- Kleinwechter, U.; Grethe, H. The adoption of the Eurepgap Standard by Mango Exporters in Piura, Peru. In Proceedings of the 2006 Annual Meeting, Queensland, Australia, 12–18 August 2006. [Google Scholar] [CrossRef]
- Medina-Urrutia, V.M.; Vázquez-García, M.; Virgen-Calleros, G. Organic Mango Production in Mexico: Status of Orchard Management. Acta Hortic. 2011, 894, 255–263. [Google Scholar] [CrossRef]
- Shah, M.H.; Rafique, R.; Almas, M.; Usman, M.; Yasin, S.; Bibi, S. A Review: Fruit Production Industry of Pakistan Trends, Issues and Way Forward. Pak. J. Agric. Res. 2022, 35, 523–532. [Google Scholar] [CrossRef]
- Schneider, D.; Stern, R.A.; Love, C.; Noy, M. Factors affecting “omer” and “maya” mango production in israeli orchards. Acta Hortic. 2015, 1075, 95–102. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R.; Gálvez Ruiz, B.; Gutiérrez Gordillo, S.; García-Tejero, I.F. Water use and fruit yield of mango (Mangifera indica L.) grown in a subtropical Mediterranean climate. Int. J. Fruit Sci. 2019, 19, 136–150. [Google Scholar] [CrossRef]
- The Dutch Market Potential for fresh Fruit and Vegetables|CBI. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/netherlands/market-potential (accessed on 21 August 2025).
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
Mango Cultivar | Mango Fruit and Shape Descriptor * | Transportation Mode | Fruit Origin | Weight (g) | Firmness (kg/cm2) | TSS (°Brix) | TA | pH | TSS/TA Ratio |
---|---|---|---|---|---|---|---|---|---|
Tommy Atkins | 3 | Boat | Brazil | 557 ± 33 | 2.73 ± 0.12 | 12.50 ± 0.5 | 4.63 ± 0.23 | 3.54 ± 0.42 | 2.70 ± 0.29 |
Kent | 3 | Boat | Brazil | 475 ± 86 | 2.32 ± 0.25 | 13.00 ± 0.5 | 4.05 ± 0.20 | 3.73 ± 0.23 | 3.21 ± 0.25 |
Keitt | 4 | Boat | Brazil | 502 ± 19 | 2.36 ± 0.40 | 12.55 ± 0.5 | 4.20 ± 0.43 | 3.67 ± 0.24 | 3.00 ± 0.40 |
Osteen | 1 | Truck | Spain | 548 ± 19 | 1.16 ± 0.16 | 16.00 ± 0.7 | 3.00 ± 0.30 | 4.10 ± 0.34 | 5.35 ± 0.50 |
Kensington Pride | 3 | Truck | Italy | 419 ± 24 | 1.25 ± 0.35 | 14.50 ± 0.5 | 3.35 ± 0.25 | 4.05 ± 0.40 | 4.33 ± 0.25 |
Kent | 3 | Plane | Israel | 461 ± 26 | 1.18 ± 0.15 | 14.50 ± 0.4 | 3.10 ± 0.35 | 4.12 ± 0.17 | 4.70 ± 0.35 |
Kent | 3 | Plane | Brazil | 434 ± 27 | 1.09 ± 0.20 | 15.80 ± 0.6 | 3.12 ± 0.21 | 4.10 ± 0.38 | 5.02 ± 0.20 |
Palmer | 1 | Plane | Brazil | 533 ± 14 | 1.05 ± 0.14 | 16.20 ± 0.5 | 2.90 ± 0.25 | 4.03 ± 0.20 | 5.60 ± 0.31 |
Kent | 3 | Plane | Mexico | 578 ± 31 | 1.28 ± 0.25 | 16.75 ± 0.8 | 1.60 ± 0.54 | 4.43 ± 0.12 | 10.47 ± 1.4 |
Kent | 3 | Plane | Peru | 524 ± 13 | 0.93 ± 0.16 | 16.50 ± 0.9 | 2.25 ± 0.31 | 4.20 ± 0.28 | 7.33 ± 0.95 |
Sindhri | 2 | Plane | Pakistan | 282 ± 23 | 0.74 ± 0.18 | 18.75 ± 1.3 | 1.46 ± 0.50 | 4.73 ± 0.25 | 12.80 ± 1.9 |
By Boat | 511 ± 42 A | 2.47 ±0.22 B | 12.7 ± 0.3 A | 4.29 ± 0.43 B | 3.69 ± 0.29 A | 2.97 ± 0.25 A | |||
By Plane | 469 ± 105 A | 1.03 ± 0.18 A | 16.4 ± 1.4 B | 2.41 ± 0.81 A | 4.39 ± 0.33 B | 7.65 ± 3.30 C | |||
By Truck | 484 ± 70 A | 1.16 ± 0.21 A | 15.3 ± 1.1 B | 3.42 ± 0.35 A | 4.11 ± 0.14 B | 4.83 ± 0.71 B |
Sample ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Origin | Brazil | Brazil | Brazil | Spain | Italy | Israel | Brazil | Brazil | Mexico | Peru | Pakistan | |||
Transportation System | Ship | Ship | Ship | Truck | Truck | Plane | Plane | Plane | Plane | Plane | Plane | |||
Cultivar | Tommy Atkins | Keitt | Kent | Osteen | Kensington Pride | Kent | Kent | Palmer | Kent | Kent | Sindhri | |||
N° | m/z | Chemical Formula | Tentative Identification | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD | Average + SD |
1 | 27.022 | C2H3+ | Acetylene | 195.09 ± 49.6 | 103.5 ± 21.4 | 376.5 ± 21.4 | 1466.7 ± 472.2 | 313.4 ± 111.9 | 569.1 ± 101.4 | 155.3 ± 53.0 | 154.2 ± 46.4 | 187.3 ± 38.6 | 148.9 ± 30.6 | 250.6 ± 104.8 |
2 | 30.030 | C2H6+ | Ethylene (isotope) | 19.2 ± 5.3 | 9.6 ± 3.1 | 19.7 ± 8.5 | 9.8 ± 5.0 | 5.3 ± 5.1 | 13.4 ± 3.9 | 17.0 ± 5.7 | 8.3 ± 4.9 | 6.6 ± 3.2 | 4.2 ± 1.4 | 19.0 ± 7.2 |
3 | 31.018 | CH3O+ | Formaldehyde | 182.2 ± 56.6 | 6.2 ± 2.5 | 32.8 ± 12.2 | 10.1 ± 2.9 | 34.6 ± 6.8 | 30.3 ± 8.2 | 30.3 ± 6.7 | 7.6 ± 2.5 | 12.6 ± 2.8 | 20.8 ± 9.2 | 75.2 ± 5.3 |
4 | 33.033 | CH5O+ | Methanol | 197.2 ± 50.4 | 278.6 ± 106.8 | 397.6 ± 96.6 | 2509.1 ± 778.3 | 544.1 ± 84.0 | 1059.5 ± 335.7 | 1178.7 ± 293.0 | 1287.6 ± 301.0 | 931.7 ± 411.1 | 941.8 ± 229.4 | 2918.1 ± 446.1 |
5 | 41.038 | C3H5+ | Fragments | 166.3 ± 74.3 | 113.6 ± 25.8 | 71.9 ± 25.1 | 37.0 ± 5.1 | 61.0 ± 14.5 | 26.8 ± 9. | 18.0 ± 6.0 | 16.8 ± 2.1 | 29.5 ± 9.7 | 6.9 ± 2.8 | 80.3 ± 8.5 |
6 | 43.018 | C2H3O+ | Acetates fragment | 225.8 ± 78.1 | 22.6 ± 5.1 | 191.7 ± 72.8 | 618.4 ± 324.4 | 125.4 ± 20.4 | 97.3 ± 12.0 | 166.8 ± 51.2 | 23.2 ± 2.7 | 90.5 ± 33.5 | 13.8 ± 7.0 | 619.9 ± 55.0 |
7 | 43.054 | C3H7+ | Fragments (e.g., propanal) | 90.9 ± 30.6 | 45.5 ± 9.5 | 52.5 ± 31.1 | 24.4 ± 3.5 | 53.7 ± 12.1 | 14.9 ± 4.7 | 22.6 ± 9.5 | 8.8 ± 1.1 | 17.4 ± 6.3 | 13.9 ± 5.4 | 244.3 ± 44.5 |
8 | 45.033 | C2H5O+ | Acetaldehyde | 460.8 ± 103.4 | 477.4 ± 25.2 | 556.4 ± 52.2 | 2273.0 ± 592.1 | 1488.7 ± 409.9 | 1732.9 ± 348.4 | 1539.2 ± 354.2 | 1769.7 ± 371.9 | 2256.1 ± 482.2 | 1867.4 ± 533.5 | 2916.1 ± 469.3 |
9 | 47.049 | C2H7O+ | Ethanol | 15.0 ± 3.2 | 15.9 ± 3.7 | 22.9 ± 2.9 | 160.9 ± 27.4 | 65.4 ± 26.8 | 60.7 ±13.8 | 61.5 ±15.2 | 31.0 ± 3.6 | 49.0 ±14.9 | 46.0 ± 14.4 | 215.2 ± 44.5 |
10 | 53.038 | C4H5+ | Fragments | 40.6 ± 19.1 | 25.7 ± 5.1 | 17.6 ± 5.7 | 7.2 ± 0.9 | 12.6 ±4.5 | 2.4 ± 1.6 | 1.9 ± 0.7 | 6.1 ± 2.8 | 4.5 ± 1.4 | 1.3 ± 0.7 | 0.7 ± 0.1 |
11 | 55.054 | C4H7+ | Butadiene/Alkyl Fragments | 42.9 ± 18.6 | 23.6 ± 5.0 | 27.9 ±25.2 | 7.4 ± 1.1 | 25.0 ± 3.1 | 6.6 ± 1.8 | 8.1 ± 2.7 | 3.5 ± 0.4 | 4.1 ± 1.5 | 4.3 ± 1.8 | 4.7 ± 0.6 |
12 | 57.033 | C3H5O+ | Fragments (e.g., Butanol fragment) | 42.9 ± 18.6 | 23.6 ± 5.0 | 27.9 ± 25.2 | 7.4 ± 1.1 | 25.0 ± 3.1 | 6.6 ± 1.8 | 8.1 ± 2.7 | 3.5 ± 0.4 | 4.1 ± 1.5 | 4.3 ± 1.8 | 4.7 ± 0.6 |
13 | 57.069 | C4H9+ | Alkyl fragment | 31.4 ± 13.2 | 18.9 ± 3.9 | 29.3 ± 14.6 | 6.3 ± 0.8 | 12.4 ± 4.2 | 6.9 ± 0.6 | 3.0 ± 1.4 | 2.8 ± 0.3 | 3.6 ± 1.2 | 1.0 ± 0.4 | 1.2 ± 0.3 |
14 | 59.049 | C3H7O+ | Propanal, Acetone | 219.3 ± 126.9 | 114.8 ± 2.4 | 220.3 ± 83.4 | 32.3 ± 8.7 | 53.8 ± 5.3 | 27.8 ± 4.1 | 42.6 ± 17.0 | 22.6 ± 6.4 | 32.4 ± 13.8 | 61.1 ± 31.7 | 20.3 ± 2.4 |
15 | 61.028 | C2H5O2+ | Acetates | 48.8 ± 10.3 | 17.9 ± 5.1 | 71.5 ± 25.5 | 83.4 ± 33.0 | 35.6 ± 13.7 | 24.8 ± 3.8 | 53.6 ± 16.3 | 25.1 ± 7.6 | 22.2 ± 5.3 | 28.1 ± 8.8 | 337.7 ± 75.0 |
16 | 67.054 | C5H7+ | Terpene fragments | 31.4 ± 13.7 | 15.3 ± 3.1 | 31.7 ± 10.9 | 5.5 ± 0.7 | 17.8 ± 6.2 | 4.3± 0.4 | 3.9 ± 1.5 | 2.8 ± 0.4 | 3.0 ± 1.0 | 0.0 ± 0.0 | 1.1 ± 0.8 |
17 | 69.033 | C4H5O+ | Furan | 8.3 ± 3.5 | 4.4 ± 0.8 | 8.7 ± 5.6 | 17.5 ± 3.6 | 5.2 ± 1.8 | 1.9 ± 0.2 | 1.8 ± 0.6 | 1.6 ± 0.2 | 0.9 ± 0.3 | 1.4 ± 0.4 | 162.4 ± 21.5 |
18 | 69.069 | C5H9+ | Isoprene | 41.8 ± 17.4 | 24.3 ± 5.4 | 33.9 ± 17.5 | 8.2 ± 2.3 | 22.8 ± 3.2 | 6.7 ± 0.6 | 3.5 ± 1.2 | 4.5 ± 0.6 | 5.0 ± 1.7 | 0.9 ± 0.3 | 14.9 ± 2.0 |
19 | 71.049 | C4H7O+ | Ethyl butanoate | 2.1 ± 0.9 | 1.1 ± 0.6 | 15.7 ± 18.1 | 6.5 ± 2.4 | 2.4 ± 0.9 | 1.7 ± 0.1 | 1.7 ± 0.5 | 0.3 ± 0.3 | 0.9 ± 0.3 | 0.0 ± 0.0 | 25.9 ± 2.4 |
20 | 73.065 | C4H9O+ | Methyl ethyl ketone | 1.7 ± 0.6 | 1.0 ± 0.4 | 6.9 ± 7.3 | 0.9 ± 0.3 | 0.8 ±0.2 | 0.8 ± 0.1 | 5.3 ± 2.1 | 1.9 ± 0.8 | 0.0 ± 0.0 | 3.6 ± 1.6 | 1.8 ± 0.2 |
21 | 75.044 | C3H7O2+ | Butanol/Methyl acetate | 15.2 ± 8.1 | 24.8 ± 11.5 | 43.7 ± 35.8 | 31.6 ± 6.7 | 54.8 ± 32.5 | 34.8 ± 10.6 | 87.2 ± 23.4 | 26.6 ± 4.8 | 66.3 ± 32.1 | 10.3 ± 4.6 | 225.2 ± 34.5 |
22 | 77.038 | C6H5+ | Alkyl fragment | 20.4 ± 6.6 | 11.8 ± 2.5 | 14.6 ± 8.1 | 2.7 ± 0.3 | 7.4 ± 2.1 | 2.6 ± 0.2 | 3.2 ± 1.6 | 1.8 ± 0.2 | 1.9 ± 0.6 | 0.6 ± 0.3 | 0.7 ± 0.1 |
23 | 81.069 | C6H9+ | Terpene fragments | 604.9 ± 94.9 | 543.4 ± 80.1 | 444.8 ± 49.2 | 59.6 ± 19.5 | 53.5 ± 16.9 | 51.0 ± 11.5 | 39.6 ± 17.1 | 35.1 ± 8.6 | 24.8 ± 8.1 | 17.6 ± 5.4 | 6.7 ± 2.5 |
24 | 83.086 | C6H11+ | C6 compounds/hexenol fragment | 5.3 ± 3.6 | 1.0 ± 0.4 | 13.4 ± 8.0 | 0.9 ± 0.8 | 3.3 ± 0.4 | 0.7 ± 0.0 | 1.9 ± 0.7 | 0.6 ± 0.4 | 0.4 ± 0.1 | 0.0 ± 0.0 | 0.3 ± 0.1 |
25 | 87.044 | C4H7O2+ | 2-Butenoic acid | 2.5 ± 1.4 | 1.1 ± 0.6 | 14.7 ± 3.6 | 10.2 ± 3.8 | 1.6 ± 0.6 | 1.9 ± 0.5 | 3.9 ± 1.5 | 3.2 ± 1.9 | 6.9 ± 3.2 | 13.1 ± 5.3 | 88.6 ± 11.2 |
26 | 89.059 | C4H9O2+ | Ethyl acetate | 12.1 ± 4.4 | 17.1 ± 7.0 | 46.6 ± 19.9 | 105.3 ± 31.9 | 59.7 ± 19.8 | 76.4 ± 26.7 | 104.1 ±38.8 | 95.3 ± 30.0 | 158.0 ± 63.9 | 171.0 ± 66.1 | 348.0 ± 103.5 |
27 | 91.054 | C7H7+ | Monoterpene fragments | 8.5 ± 2.1 | 5.3 ± 1.1 | 16.3 ± 4.6 | 1.2 ± 0.2 | 3.9 ± 1.4 | 1.4 ± 0.0 | 1.0 ± 0.7 | 1.1 ± 0.8 | 0.8 ± 0.3 | 0.0 ± 0.0 | 0.8 ± 0.8 |
28 | 93.069 | C7H9+ | Terpene fragments | 36.1 ± 6.3 | 16.3 ± 1.3 | 58.8 ± 21.2 | 3.5 ± 0.9 | 10.7 ± 3.5 | 1.6 0.7 | 5.5 ± 2.1 | 1.2 ± 0.4 | 1.0 ± 0.3 | 0.9 ± 0.3 | 0.0 ± 0.0 |
29 | 95.086 | C7H11+ | Terpene fragments | 123.8 ± 41.9 | 120.1 ± 32.3 | 82.4 ± 13.2 | 30.3 ± 5.9 | 71.6 ± 19.7 | 17.1 ± 4.6 | 9.7 ± 4.6 | 14.0 ± 1.8 | 10.9 ± 3.4 | 9.7 ± 4.8 | 1.7 ± 0.2 |
30 | 99.080 | C6H11O+ | (E)-2-hexenal | 6.6 ± 2.5 | 5.9 ± 2.0 | 5.6 ± 3.1 | 0.5 ± 0.3 | 0.7 ± 0.1 | 0.6 ± 0.3 | 0.7 ± 0.1 | 0.6 ± 0.3 | 0.7 ± 0.1 | 0.6 ± 0.3 | 0.7 ± 0.1 |
31 | 101.060 | C6H13O+ | 3-Hexen-1-ol | 2.4 ± 1.0 | 2.4 ± 0.5 | 1.3 ± 0.7 | 0.3 ± 0.0 | 0.3 ± 0.1 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.4 ± 0.1 | 7.2 ± 3.1 |
32 | 103.075 | C5H11O2+ | Methylbutanoic acid/Methyl butanoate | 4.9 ± 1.9 | 4.1 ± 0.5 | 5.1 ± 2.5 | 11.2 ± 3.7 | 23.6 ± 7.0 | 30.4 ± 9.0 | 34.4 ± 11.8 | 38.7 ± 12.4 | 36.6 ± 15.9 | 92.2 ± 37.0 | 71.3 ± 8.3 |
33 | 109.101 | C8H13+ | Terpene fragments | 7.2 ± 3.3 | 1.9 ± 0.4 | 8.1 ± 4.7 | 0.9 ± 0.3 | 6.2 ± 3.2 | 4.7 ± 3.7 | 0.3 ± 0.2 | 0.7 ± 0.5 | 0.9 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 |
34 | 117.091 | C6H13O2+ | Ethyl butanoate/Isobutyl acetate | 4.6 ± 1.6 | 2.7 ± 0.1 | 5.0 ± 0.7 | 8.9 ± 4.1 | 7.8 ± 1.4 | 6.5 ± 2.6 | 12.5 ± 4.2 | 15.7 ± 3.1 | 37.6 ± 19.7 | 60.7 ± 21.2 | 76.5 ± 6.5 |
35 | 121.101 | C9H13+ | Monoterpene fragments | 2.3 ± 0.5 | 1.0 ± 0.6 | 3.9 ± 3.5 | 0.7 ± 0.3 | 7.3 ± 2.5 | 2.4 ± 1.2 | 0.2 ± 0.1 | 0.1 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
36 | 123.117 | C9H15+ | Terpene fragments | 1.1 ± 0.8 | 0.0 ± 0.0 | 1.5 ± 0.6 | 0.0 ± 0.0 | 1.8 ± 0.6 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
37 | 135.117 | C10H15+ | Terpene, e.g., p-Cymene/a-Cedrene | 1.3 ± 0.5 | 0.5 ± 0.1 | 7.3 ± 4.9 | 0.0 ± 0.0 | 12.6 ± 5.2 | 1.5 | 0.4 | 0.0 ± 0.0 | 0.0 | 0.0 | 0.0 ± 0.0 |
38 | 137.132 | C10H17+ | Monoterpenes | 49.6 ± 15.7 | 62.9 ± 12.4 | 82.3 ± 19.2 | 25.8 ± 5.8 | 39.6 ± 5.3 | 9.7 ± 3.5 | 5.1 ± 2.9 | 3.8 ± 1.2 | 1.3 ± 0.4 | 1.2 ± 0.6 | 2.4 ± 1.5 |
39 | 153.125 | C10H17O+ | Terpenoid-like compound | 1.4 ± 0.4 | 1.1 ± 0.6 | 0.7 ± 0.5 | 0.0 ± 0.0 | 1.3 ± 0.7 | 0.7 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
40 | 155.142 | C10H19O+ | (E)-2-decenal | 1.5 ± 0.7 | 1.1 ± 0.5 | 0.4 ± 0.4 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ±0.0 |
41 | 205.195 | C15H25+ | Sesquiterpenes | 5.2 ± 3.5 | 1.8 ± 1.4 | 2.3 ± 2.9 | 1.5 ± 0.6 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.2 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Total VOC emissions | 2981 ± 357 | 2170 ± 103 | 3072 ± 140 | 7587 ± 1347 | 3273 ± 368 | 3940 ± 368 | 3633 ± 408 | 3621 ± 294 | 4010 ± 756 | 3548 ± 568 | 8744 ± 636 | |||
Total Terpene emissions | 873 ± 63 | 770 ± 62 | 740 ± 56 | 129 ± 22 | 226 ± 19 | 94 ± 14 | 66 ± 16 | 59 ± 7 | 42 ± 8 | 29 ± 8 | 13 ± 4 | |||
Total Ester emission | 22 ± 6 | 24 ± 7 | 57 ± 17 | 125 ± 33 | 91 ± 20 | 113 ± 31 | 151 ± 35 | 150 ± 35 | 233 ± 77 | 324 ± 111 | 496 ± 99 | |||
Total Ripening-Linked VOCs | 673 ± 77 | 772 ± 131 | 977 ± 112 | 4943 ± 1237 | 2098 ± 373 | 2853 ± 658 | 3779 ± 334 | 3088 ± 298 | 3237 ± 732 | 2855 ± 494 | 6049 ± 680 |
Statistics | Classes | ||
---|---|---|---|
Boat | Plane | Truck | |
LVs | 3 | ||
SE (Cal) | 1.000 | 1.000 | 1.000 |
SP (Cal) | 1.000 | 1.000 | 1.000 |
SE (CV) | 1.000 | 1.000 | 1.000 |
SP (CV) | 1.000 | 1.000 | 1.000 |
SE (P) | 1.000 | 1.000 | 1.000 |
SP (P) | 1.000 | 1.000 | 1.000 |
Class. Error (Cal) | 0 | 0 | 0 |
Class. Error (CV) | 0 | 0 | 0 |
Class. Error (Pred) | 0 | 0 | 0 |
RMSEC | 0.11 | 0.15 | 0.16 |
RMSECV | 0.12 | 0.18 | 0.19 |
RMSEP | 0.97 | 0.82 | 0.67 |
R2 Cal | 0.93 | 0.91 | 0.84 |
R2 CV | 0.93 | 0.87 | 0.77 |
R2 Pred | 0.97 | 0.82 | 0.66 |
Protonated m/z | Tentative Identification | VIP Scores | ||
---|---|---|---|---|
Boat | Truck | Plane | ||
30.030 | Ethylene (isotope) | 0.83 | 1.9 | 0.85 |
43.018 | Acetate fragment | 0.74 | 1.39 | 0.49 |
45.033 | Acetaldehyde | 1.19 | 0.95 | 1.31 |
47.049 | Ethanol | 1.21 | 2.03 | 0.98 |
53.038 | Fragments | 1.22 | X | X |
81.069 | Terpene fragments | 1.25 | 0.75 | 1.27 |
91.054 | Monoterpene fragments | 1.17 | 0.47 | 1.23 |
93.069 | Terpene fragments | 1.21 | 0.24 | 1.26 |
95.086 | Terpene fragments | 1.22 | 0.92 | 1.31 |
99.080 | (E)-2-hexenal | 1.35 | 1.61 | 1.26 |
101.060 | 3-Hexen-1-ol | 0.84 | 1.74 | 0.76 |
103.075 | Methylbutanoic acid | 1.21 | 0.45 | 1.28 |
117.091 | Ethyl butanoate | 0.98 | 0.43 | 1.26 |
121.101 | Monoterpene fragments | 1.04 | 1.45 | 0.89 |
123.117 | Terpene fragments | 1.05 | 1.64 | 0.86 |
135.117 | Terpene, e.g., p-Cymene/a-Cedrene | 0.92 | 1.35 | 0.79 |
137.132 | Monoterpenes | 1.29 | 0.98 | 1.33 |
Mango Cultivar | Fruit Origin | Overall Judgment After Taste | Consumer Acceptability % (>5) |
---|---|---|---|
Tommy Atkins | Brazil | 4.94 ± 1.1 | 0.40 |
Kent | Brazil | 5.25 ± 1.1 | 0.52 |
Keitt | Brazil | 6.02 ± 0.9 | 0.61 |
Osteen | Spain | 7.03 ± 1.1 | 0.76 |
Kensington Pride | Italy | 6.42 ± 0.6 | 0.73 |
Kent | Israel | 6.88 ± 0.9 | 0.78 |
Kent | Brazil | 7.20 ± 1.1 | 0.88 |
Palmer | Brazil | 8.09 ± 1.3 | 0.94 |
Kent | Mexico | 8.10 ± 1.2 | 0.92 |
Kent | Peru | 8.37 ± 1.0 | 0.95 |
Sindhri | Pakistan | 7.02 ± 1.2 | 0.72 |
By Boat | 5.43 ± 0.5 A | 0.51 ± 0.11 A | |
By Plane | 7.61 ± 0.6 B | 0.87 ± 0.09 C | |
By Truck | 6.68 ± 0.4 B | 0.75 ± 0.04 B |
Cultivars | Route | Mode | Total CO2e (kg) | Emissions Intensity (kg CO2e/t·km) | Distance Segment for Vehicles (km) |
---|---|---|---|---|---|
Kent, Palmer | Recife–Florence | Airplane + Truck | 583,564 | 0.6315 | 7894 |
Keitt, Kent, Tommy Atkins | Recife–Florence | Sea ship + Truck | 19,132 | 0.0185 | 8939 |
Kent | Piura–Florence | Airplane + Truck | 1,010,918 | 0.7837 | 11,560 |
Kent | Guerreo–Florence | Airplane + Truck | 772,664 | 0.6970 | 9750 |
Sindhri | Punjab–Florence | Airplane + Truck | 485,053 | 0.6252 | 6316 |
Kent | Haifa–Florence | Airplane + Truck | 358,388 | 0.7272 | 3591 |
Osteen | Granada–Florence | Truck | 17,585 | 0.0913 | 1926 |
Kensington Pride | Palermo–Florence | Truck | 9500 | 0.0916 | 1036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiti, C.; Bighignoli, B.; Mozzo, G.; Marone, E.; Masi, E.; Comparini, D.; Giordani, E. The Journey of Mango: How the Shipping Systems Affect Fruit Quality, Consumer Acceptance, and Environmental Impact. Plants 2025, 14, 3241. https://doi.org/10.3390/plants14213241
Taiti C, Bighignoli B, Mozzo G, Marone E, Masi E, Comparini D, Giordani E. The Journey of Mango: How the Shipping Systems Affect Fruit Quality, Consumer Acceptance, and Environmental Impact. Plants. 2025; 14(21):3241. https://doi.org/10.3390/plants14213241
Chicago/Turabian StyleTaiti, Cosimo, Bruno Bighignoli, Giulia Mozzo, Elettra Marone, Elisa Masi, Diego Comparini, and Edgardo Giordani. 2025. "The Journey of Mango: How the Shipping Systems Affect Fruit Quality, Consumer Acceptance, and Environmental Impact" Plants 14, no. 21: 3241. https://doi.org/10.3390/plants14213241
APA StyleTaiti, C., Bighignoli, B., Mozzo, G., Marone, E., Masi, E., Comparini, D., & Giordani, E. (2025). The Journey of Mango: How the Shipping Systems Affect Fruit Quality, Consumer Acceptance, and Environmental Impact. Plants, 14(21), 3241. https://doi.org/10.3390/plants14213241