Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review
Abstract
1. Introduction
1.1. Study Background
1.2. Study Objectives
2. Methodology
2.1. Botanical Terminology
2.2. Data Collection
3. General Overview of Bark Extraction
3.1. Chemical Composition of Plant Barks
- Phenolic Compounds:
- Coumarins: A class of organic compounds characterized by a benzopyrone structure, which consists of a benzene ring fused to a pyrone ring. They are widely found in the plant kingdom and are known for their diverse biological activities, including anticoagulant, anti-inflammatory, antimicrobial, and antioxidant effects. Coumarins can be found in various parts of plants, including leaves, fruits, and especially in the bark of specific tree species [14,45].
- Saponins: A class of glycosides defined by their surfactant properties, which come from their structure that includes a hydrophobic aglycone (sapogenin) attached to one or more hydrophilic sugar groups. These compounds are common in the plant kingdom and are known for their wide range of biological activities, including antifungal, antibacterial, antiviral, and anti-inflammatory effects. Saponins also exhibit potential health benefits, including the ability to lower cholesterol and enhance the immune system [46,47].
- Terpenoids: A class of organic compounds derived from five-carbon isoprene units. They are known for their strong aromatic properties and are commonly found in essential oils, resins, and various plant extracts. Terpenoids play crucial roles in plant defense mechanisms, attract pollinators, and protect against herbivores and pathogens. They exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, antioxidant, and anticancer effects [11,38,48].
3.2. Importance of Bark as a Source of Extracts
3.3. Extraction Principles and Challenges
4. Extraction Techniques for Bark Extracts
4.1. Water-Based Extraction Methods (Infusion/Decoction)
4.2. Maceration
4.3. Soxhlet Extraction
4.4. Microwave-Assisted Extraction (MAE)
4.5. Ultrasound-Assisted Extraction (UAE)
4.6. Supercritical Fluid Extraction (SFE)
4.7. Other Methods
4.7.1. Ionic Liquids Extraction
4.7.2. Enzymatic Extraction
4.7.3. Deep Eutectic Solvent Extraction
4.8. Summary of Key Advantages and Drawbacks of Extraction Methods
4.9. General Recommendations for the Selection of Extraction Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| MAE | Microwave-assisted extraction |
| UAE | Ultrasound-assisted extraction |
| SFE | Supercritical fluid extraction |
| DES | Deep eutectic solvent |
| HBA | Hydrogen bond acceptor |
| HBD | Hydrogen bond donor |
| SC-CO2 | supercritical carbon dioxide |
| MeOH | Methanol |
| EtOH | Ethanol |
| NaOH | Sodium hydroxide |
References
- Tanase, C.; Nicolescu, A.; Nisca, A.; Ștefănescu, R.; Babotă, M.; Mare, A.D.; Ciurea, C.N.; Man, A. Biological Activity of Bark Extracts from Northern Red Oak (Quercus rubra L.): An Antioxidant, Antimicrobial and Enzymatic Inhibitory Evaluation. Plants 2022, 11, 2357. [Google Scholar] [CrossRef]
- Talmale, S.A.; Bhujade, A.M.; Patil, M.B. Phytochemical Analysis of Stem Bark and Root Bark of Zizyphus Mauritiana. Int. J. Innov. Sci. Eng. Technol. 2014, 1, 526–535. [Google Scholar]
- Udem, G.C.; Dahiru, D.; Etteh, C.C. In Vitro Antioxidant Activities of Aqueous and Ethanol Extracts of Mangifera Indica Leaf, Stem-Bark and Root-Bark. Pharmacogn. Commun. 2018, 8, 119–124. [Google Scholar] [CrossRef]
- Kang, S.-A.; Kim, D.-H.; Hong, S.-H.; Park, H.-J.; Kim, N.-H.; Ahn, D.-H.; An, B.-J.; Kwon, J.-H.; Cho, Y.-J. Anti-Inflammatory Activity of Pinus Koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction. Prev. Nutr. Food Sci. 2016, 21, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, R.; Ciurea, C.N.; Mare, A.D.; Man, A.; Nisca, A.; Nicolescu, A.; Mocan, A.; Babotă, M.; Coman, N.-A.; Tanase, C. Quercus Robur Older Bark—A Source of Polyphenolic Extracts with Biological Activities. Appl. Sci. 2022, 12, 11738. [Google Scholar] [CrossRef]
- Cetera, P.; D’Auria, M.; Mecca, M.; Todaro, L. Gallic Acid as Main Product in the Water Extractives of Quercus Frainetto Ten. Nat. Prod. Res. 2019, 33, 2864–2867. [Google Scholar] [CrossRef] [PubMed]
- Aroso, I.M.; Araújo, A.R.; Fernandes, J.P.; Santos, T.; Batista, M.T.; Pires, R.A.; Mano, J.F.; Reis, R.L. Hydroalcoholic Extracts from the Bark of Quercus suber L. (Cork): Optimization of Extraction Conditions, Chemical Composition and Antioxidant Potential. Wood Sci. Technol. 2017, 51, 855–872. [Google Scholar] [CrossRef]
- Santos Aleman, R.; Marcia Fuentes, J.; Montero Fernández, I.; Moncada, M.; Lozano-Sánchez, J.; Duque-Soto, C.; Hoskin, R.; Ruano, J. Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow (Salix alba) Bark Aqueous and Ethanolic Extracts. Plants 2023, 12, 2533. [Google Scholar] [CrossRef]
- Tienaho, J.; Reshamwala, D.; Sarjala, T.; Kilpeläinen, P.; Liimatainen, J.; Dou, J.; Viherä-Aarnio, A.; Linnakoski, R.; Marjomäki, V.; Jyske, T. Salix spp. Bark Hot Water Extracts Show Antiviral, Antibacterial, and Antioxidant Activities—The Bioactive Properties of 16 Clones. Front. Bioeng. Biotechnol. 2021, 9, 797939. [Google Scholar] [CrossRef]
- Venkatesan, T.; Choi, Y.-W.; Kim, Y.-K. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus Densiflora Bark Extract. BioMed Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed]
- Nisca, A.; Ștefănescu, R.; Stegăruș, D.I.; Mare, A.D.; Farczadi, L.; Tanase, C. Comparative Study Regarding the Chemical Composition and Biological Activity of Pine (Pinus nigra and P. sylvestris) Bark Extracts. Antioxidants 2021, 10, 327. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Moreirinha, C.; Silva, S.; Costa, E.M.; Veiga, M.; Coscueta, E.; Santos, S.A.O.; Almeida, A.; Pintado, M.M.; Freire, C.S.R.; et al. The Health-Promoting Potential of Salix spp. Bark Polar Extracts: Key Insights on Phenolic Composition and In Vitro Bioactivity and Biocompatibility. Antioxidants 2019, 8, 609. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Moldovan, C.; Mocan, A.; Mare, A.D.; Ciurea, C.N.; Man, A.; Muntean, D.-L.; Tanase, C. Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant and Anti-Microbial Activity in Quercus Cerris Bark Extracts. Plants 2022, 11, 240. [Google Scholar] [CrossRef]
- Gligorić, E.; Igić, R.; Teofilović, B.; Grujić-Letić, N. Phytochemical Screening of Ultrasonic Extracts of Salix Species and Molecular Docking Study of Salix-Derived Bioactive Compounds Targeting Pro-Inflammatory Cytokines. Int. J. Mol. Sci. 2023, 24, 11848. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Sinan, K.I.; Zengin, G.; Mahomoodally, M.F.; Sadeer, N.B.; Etienne, O.K.; Cziáky, Z.; Jekő, J.; Glamocilja, J.; Sokovic, M.; et al. Identification of Chemical Profiles and Biological Properties of Rhizophora Racemosa G. Mey. Extracts Obtained by Different Methods and Solvents. Antioxidants 2020, 9, 533. [Google Scholar] [CrossRef]
- Quek, A.; Mohd Zaini, H.; Kassim, N.K.; Sulaiman, F.; Rukayadi, Y.; Ismail, A.; Zainal Abidin, Z.; Awang, K. Oxygen Radical Antioxidant Capacity (ORAC) and Antibacterial Properties of Melicope Glabra Bark Extracts and Isolated Compounds. PLoS ONE 2021, 16, e0251534. [Google Scholar] [CrossRef]
- Barfour, A.F.; Mensah, A.Y.; Asante-Kwatia, E.; Danquah, C.A.; Anokwah, D.; Adjei, S.; Baah, M.K.; Mensah, M.L.K. Antibacterial, Antibiofilm, and Efflux Pump Inhibitory Properties of the Crude Extract and Fractions from Acacia Macrostachya Stem Bark. Sci. World J. 2021, 2021, 5381993. [Google Scholar] [CrossRef]
- Boulfia, M.; Lamchouri, F.; Toufik, H. Mineral Analysis, In Vitro Evaluation of Alpha-Amylase, Alpha-Glucosidase, and Beta-Galactosidase Inhibition, and Antibacterial Activities of Juglans regia L. Bark Extracts. BioMed Res. Int. 2021, 2021, 1585692. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, N.; Sourirajan, A.; Khosla, P.K.; Dev, K. Comparative Evaluation of Antimicrobial and Antioxidant Potential of Ethanolic Extract and Its Fractions of Bark and Leaves of Terminalia Arjuna from North-Western Himalayas, India. J. Tradit. Complement. Med. 2018, 8, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Nilofar; Sinan, K.I.; Dall’Acqua, S.; Sut, S.; Uba, A.I.; Etienne, O.K.; Ferrante, C.; Ahmad, J.; Zengin, G. Ziziphus Mauritiana Lam. Bark and Leaves: Extraction, Phytochemical Composition, In Vitro Bioassays and In Silico Studies. Plants 2024, 13, 2195. [Google Scholar] [CrossRef]
- Kashiwada, M.; Nakaishi, S.; Usuda, A.; Miyahara, Y.; Katsumoto, K.; Katsura, K.; Terakado, I.; Jindo, M.; Nakajima, S.; Ogawa, S.; et al. Analysis of Anti-Obesity and Anti-Diabetic Effects of Acacia Bark-Derived Proanthocyanidins in Type 2 Diabetes Model KKAy Mice. J. Nat. Med. 2021, 75, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Junejo, J.A.; Rudrapal, M.; Nainwal, L.M.; Zaman, K. Antidiabetic Activity of Hydro-Alcoholic Stem Bark Extract of Callicarpa arborea Roxb. with Antioxidant Potential in Diabetic Rats. Biomed. Pharmacother. 2017, 95, 84–94. [Google Scholar] [CrossRef]
- Lartey, N.L.; Asare-Anane, H.; Ofori, E.K.; Antwi, S.; Asiedu-Larbi, J.; Ayertey, F.; Okine, L.K.N. Antidiabetic Activity of Aqueous Stem Bark Extract of Annickia polycarpa in Alloxan-Induced Diabetic Mice. J. Tradit. Complement. Med. 2021, 11, 109–116. [Google Scholar] [CrossRef]
- Mohammadi, S.; Fulop, T.; Khalil, A.; Ebrahimi, S.; Hasani, M.; Ziaei, S.; Farsi, F.; Mirtaheri, E.; Afsharianfar, M.; Heshmati, J. Does Supplementation with Pine Bark Extract Improve Cardiometabolic Risk Factors? A Systematic Review and Meta-Analysis. BMC Complement. Med. Ther. 2025, 25, 71. [Google Scholar] [CrossRef]
- Ray, S.; Saini, M.K. Cure and Prevention of Cardiovascular Diseases: Herbs for Heart. Clin. Phytosci. 2021, 7, 64. [Google Scholar] [CrossRef]
- Burlacu, E.; Tanase, C. Anticancer Potential of Natural Bark Products—A Review. Plants 2021, 10, 1895. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Avilés, E.; García-Pérez, M.E.; Garnica-Romo, M.G.; Figueroa-Cárdenas, J.D.D.; Meléndez-Herrera, E.; Salgado-Garciglia, R.; Martínez-Flores, H.E. Antioxidant Properties of Polyphenolic Extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla Bark. Antioxidants 2018, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Costa, C.; Conte, A.; La Porta, N.; Padalino, L.; Del Nobile, M.A. Bioactive Compounds from Norway Spruce Bark: Comparison Among Sustainable Extraction Techniques for Potential Food Applications. Foods 2019, 8, 524. [Google Scholar] [CrossRef]
- Barbini, S.; Jaxel, J.; Karlström, K.; Rosenau, T.; Potthast, A. Multistage Fractionation of Pine Bark by Liquid and Supercritical Carbon Dioxide. Bioresour. Technol. 2021, 341, 125862. [Google Scholar] [CrossRef]
- Tanase, C.; Babotă, M.; Nișca, A.; Nicolescu, A.; Ștefănescu, R.; Mocan, A.; Farczadi, L.; Mare, A.D.; Ciurea, C.N.; Man, A. Potential Use of Quercus dalechampii Ten. and Q. frainetto Ten. Barks Extracts as Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Agents. Pharmaceutics 2023, 15, 343. [Google Scholar] [CrossRef]
- Hofmann, T.; Makk, Á.N.; Albert, L. Extraction of (+)-Catechin from Oak (Quercus spp.) Bark: Optimization of Pretreatment and Extraction Conditions. Heliyon 2023, 9, e22024. [Google Scholar] [CrossRef]
- Oliveira, F.; de Lima-Saraiva, S.; Oliveira, A.; Rabêlo, S.; Rolim, L.; Almeida, J. Influence of the Extractive Method on the Recovery of Phenolic Compounds in Different Parts of Hymenaea Martiana Hayne. Pharmacogn. Res. 2016, 8, 270–275. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.l.L.; Lozano-Sánchez, J.; Fernández-Ochoa, Á.; Segura-Carretero, A. Enhancing the Yield of Bioactive Compounds from Sclerocarya birrea Bark by Green Extraction Approaches. Molecules 2019, 24, 966. [Google Scholar] [CrossRef]
- Yildiz-Ozturk, E.; Secim-Karakaya, P.; Alptekin, F.M.; Celiktas, M.S. Optimization of Green Extraction Techniques for Polyphenolics in Pinus brutia Bark Extract and Steam Gasification of the Remaining Fraction to Obtain Hydrogen-Rich Syngas and Activated Carbon. ACS Omega 2024, 9, 50158–50174. [Google Scholar] [CrossRef]
- Dubey, K.K.; Goel, N. Evaluation and Optimization of Downstream Process Parameters for Extraction of Betulinic Acid from the Bark of Ziziphus jujubae L. Sci. World J. 2013, 2013, 469674. [Google Scholar] [CrossRef]
- Duarte, H.; Gomes, V.; Aliaño-González, M.J.; Faleiro, L.; Romano, A.; Medronho, B. Ultrasound-Assisted Extraction of Polyphenols from Maritime Pine Residues with Deep Eutectic Solvents. Foods 2022, 11, 3754. [Google Scholar] [CrossRef] [PubMed]
- Ghitescu, R.-E.; Volf, I.; Carausu, C.; Bühlmann, A.-M.; Gilca, I.A.; Popa, V.I. Optimization of Ultrasound-Assisted Extraction of Polyphenols from Spruce Wood Bark. Ultrason. Sonochemistry 2015, 22, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Domingues, R.M.A.; Oliveira, E.L.G.; Freire, C.S.R.; Couto, R.M.; Simões, P.C.; Neto, C.P.; Silvestre, A.J.D.; Silva, C.M. Supercritical Fluid Extraction of Eucalyptus Globulus Bark-A Promising Approach for Triterpenoid Production. Int. J. Mol. Sci. 2012, 13, 7648–7662. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the Biological Potential of Pinus Pinaster Bark Extracts. Antioxidants 2020, 9, 334. [Google Scholar] [CrossRef]
- Barjoveanu, G.; Pătrăuțanu, O.-A.; Teodosiu, C.; Volf, I. Life Cycle Assessment of Polyphenols Extraction Processes from Waste Biomass. Sci. Rep. 2020, 10, 13632. [Google Scholar] [CrossRef]
- Hrůzová, K.; Matsakas, L.; Rova, U.; Christakopoulos, P. Organosolv Fractionation of Spruce Bark Using Ethanol-Water Mixtures: Towards a Novel Bio-Refinery Concept. Bioresour. Technol. 2021, 341, 125855. [Google Scholar] [CrossRef] [PubMed]
- Šukele, R.; Skadiņš, I.; Koka, R.; Bandere, D. Antibacterial Effects of Oak Bark (Quercus robur) and Heather Herb (Calluna vulgaris L.) Extracts against the Causative Bacteria of Bovine Mastitis. Vet. World 2022, 15, 2315–2322. [Google Scholar] [CrossRef]
- Sinan, K.I.; Zengin, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Picot-Allain, M.C.N.; Dall’Acqua, S.; Behl, T.; Goh, B.H.; Ying, P.T.S.; Mahomoodally, M.F. Exploring the Chemical Profiles and Biological Values of Two Spondias Species (S. dulcis and S. mombin): Valuable Sources of Bioactive Natural Products. Antioxidants 2021, 10, 1771. [Google Scholar] [CrossRef]
- Autor, E.; Cornejo, A.; Bimbela, F.; Maisterra, M.; Gandía, L.M.; Martínez-Merino, V. Extraction of Phenolic Compounds from Populus Salicaceae Bark. Biomolecules 2022, 12, 539. [Google Scholar] [CrossRef]
- Kuspradini, H.; Wulandari, I.; Putri, A.S.; Tiya, S.Y.; Kusuma, I.W. Phytochemical, Antioxidant and Antimicrobial Properties of Litsea Angulata Extracts. F1000Research 2018, 7, 1839. [Google Scholar] [CrossRef]
- Sanneur, K.; Leksawasdi, N.; Sumonsiri, N.; Techapun, C.; Taesuwan, S.; Nunta, R.; Khemacheewakul, J. Inhibitory Effects of Saponin-Rich Extracts from Pouteria Cambodiana against Digestive Enzymes α-Glucosidase and Pancreatic Lipase. Foods 2023, 12, 3738. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.-H.; Ta, N.T.A.; Pham, T.V.; Huynh, T.D.; Do, Q.T.G.; Dinh, N.C.G.; Dang, C.D.; Nguyen, T.K.C.; Bui, A.V. Effects of Solvent—Solvent Fractionation on the Total Terpenoid Content and in Vitro Anti-Inflammatory Activity of Serevenia buxifolia Bark Extract. Food Sci. Nutr. 2021, 9, 1720–1735. [Google Scholar] [CrossRef]
- Sut, S.; Maccari, E.; Zengin, G.; Ferrarese, I.; Loschi, F.; Faggian, M.; Paolo, B.; De Zordi, N.; Dall’Acqua, S. “Smart Extraction Chain” with Green Solvents: Extraction of Bioactive Compounds from Picea Abies Bark Waste for Pharmaceutical, Nutraceutical and Cosmetic Uses. Molecules 2022, 27, 6719. [Google Scholar] [CrossRef]
- Navarro Hoyos, M.; Sánchez-Patán, F.; Murillo Masis, R.; Martín-Álvarez, P.J.; Zamora Ramirez, W.; Monagas, M.J.; Bartolomé, B. Phenolic Assesment of Uncaria tomentosa L. (Cat’s Claw): Leaves, Stem, Bark and Wood Extracts. Molecules 2015, 20, 22703–22717. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Rajbhandary, S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum Armatum DC. Sci. World J. 2020, 2020, 8780704. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and Chemical Insights of Beech (Fagus sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Stegăruș, D.I.; Mare, A.D.; Farczadi, L.; Tanase, C. Phytochemical Profile and Biological Effects of Spruce (Picea abies) Bark Subjected to Ultrasound Assisted and Microwave-Assisted Extractions. Plants 2021, 10, 870. [Google Scholar] [CrossRef]
- Moomin, A.; Russell, W.R.; Knott, R.M.; Scobbie, L.; Mensah, K.B.; Adu-Gyamfi, P.K.T.; Duthie, S.J. Season, Storage and Extraction Method Impact on the Phytochemical Profile of Terminalia Ivorensis. BMC Plant Biol. 2023, 23, 162. [Google Scholar] [CrossRef]
- Halmemies, E.S.; Brännström, H.E.; Nurmi, J.; Läspä, O.; Alén, R. Effect of Seasonal Storage on Single-Stem Bark Extractives of Norway Spruce (Picea abies). Forests 2021, 12, 736. [Google Scholar] [CrossRef]
- Jylhä, P.; Halmemies, E.; Hellström, J.; Hujala, M.; Kilpeläinen, P.; Brännström, H. The Effect of Thermal Drying on the Contents of Condensed Tannins and Stilbenes in Norway Spruce (Picea abies [L.] Karst.) Sawmill Bark. Ind. Crops Prod. 2021, 173, 114090. [Google Scholar] [CrossRef]
- Chupin, L.; Maunu, S.L.; Reynaud, S.; Pizzi, A.; Charrier, B.; Charrier-EL Bouhtoury, F. Microwave Assisted Extraction of Maritime Pine (Pinus pinaster) Bark: Impact of Particle Size and Characterization. Ind. Crops Prod. 2015, 65, 142–149. [Google Scholar] [CrossRef]
- Baldosano, H.Y.; Elloran, C.D.H.; Bacani, F.T. Effect of Particle Size, Solvent and Extraction Time on Tannin Extract from Spondias purpurea Bark Through Soxhlet Extraction; De La Salle University: Manila, Philippines, 2015; Volume 3. [Google Scholar]
- Yang, C.-H.; Li, R.-X.; Chuang, L.-Y. Antioxidant Activity of Various Parts of Cinnamomum Cassia Extracted with Different Extraction Methods. Molecules 2012, 17, 7294–7304. [Google Scholar] [CrossRef]
- Lukubye, B.; Ajayi, C.O.; Wangalwa, R.; Kagoro-Rugunda, G. Phytochemical Profile and Antimicrobial Activity of the Leaves and Stem Bark of Symphonia globulifera L.f. and Allophylus abyssinicus (Hochst.) Radlk. BMC Complement. Med. Ther. 2022, 22, 223. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Aeri, V. Optimization of Microwave-Assisted Extraction Conditions for Preparing Lignan-Rich Extract from Saraca asoca Bark Using Box–Behnken Design. Pharm. Biol. 2016, 54, 1255–1262. [Google Scholar] [CrossRef]
- Sousa, J.N.; Pedroso, N.B.; Borges, L.L.; Oliveira, G.A.; Paula, J.R.; Conceição, E.C. Optimization of Ultrasound-Assisted Extraction of Polyphenols, Tannins and Epigallocatechin Gallate from Barks of Stryphnodendron adstringens (Mart.) Coville Bark Extracts. Pharmacogn. Mag. 2014, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.; Do, T.-H.; Nguyen, H. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Ostolski, M.; Adamczak, M.; Brzozowski, B.; Wiczkowski, W. Antioxidant Activity and Chemical Characteristics of Supercritical CO2 and Water Extracts from Willow and Poplar. Molecules 2021, 26, 545. [Google Scholar] [CrossRef]
- Pap, N.; Reshamwala, D.; Korpinen, R.; Kilpeläinen, P.; Fidelis, M.; Furtado, M.M.; Sant’Ana, A.S.; Wen, M.; Zhang, L.; Hellström, J.; et al. Toxicological and Bioactivity Evaluation of Blackcurrant Press Cake, Sea Buckthorn Leaves and Bark from Scots Pine and Norway Spruce Extracts under a Green Integrated Approach. Food Chem. Toxicol. 2021, 153, 112284. [Google Scholar] [CrossRef]
- Gatsou Djibersou, D.; Rosnay Tietcheu Galani, B.; Dieudonne Djamen Chuisseu, P.; Yanou Njintang, N. Anti-Oxidant and Anti-Inflammatory Potential of Aqueous Extracts of Leaves, Barks and Roots of Bixa orellana L. (Bixaceae) on Acetaminophen-Induced Liver Damage in Mice. Avicenna J. Phytomed. 2020, 10, 428–439. [Google Scholar]
- Wei, M.; Zhao, R.; Peng, X.; Feng, C.; Gu, H.; Yang, L. Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics. Molecules 2020, 25, 1401. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Yang, F.; Zhao, C.; Zhang, L.; Zu, Y. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix Gmelini Bark. Int. J. Mol. Sci. 2012, 13, 5163–5178. [Google Scholar] [CrossRef] [PubMed]
- Kajszczak, D.; Kowalska-Baron, A.; Sosnowska, D.; Podsędek, A. In Vitro Inhibitory Effects of Viburnum Opulus Bark and Flower Extracts on Digestion of Potato Starch and Carbohydrate Hydrolases Activity. Molecules 2022, 27, 3118. [Google Scholar] [CrossRef]
- Lerma-Torres, J.M.; Navarro-Ocaña, A.; Calderón-Santoyo, M.; Hernández-Vázquez, L.; Ruiz-Montañez, G.; Ragazzo-Sánchez, J.A. Preparative Scale Extraction of Mangiferin and Lupeol from Mango (Mangifera indica L.) Leaves and Bark by Different Extraction Methods. J. Food Sci. Technol. 2019, 56, 4625–4631. [Google Scholar] [CrossRef] [PubMed]
- Meindl, A.; Petutschnigg, A.; Schnabel, T. Microwave-Assisted Lignin Extraction—Utilizing Deep Eutectic Solvents to Their Full Potential. Polymers 2022, 14, 4319. [Google Scholar] [CrossRef]
- Kwak, B.M.; Kim, E.-H.; Kim, Y.-M.; Kim, H.-T. Component Analysis of Four-Part Extracts from Chamaecyparis Obtusa Endl. by Supercritical Fluid Extraction and Anti-Inflammatory Effect on RAW 264.7cells. J. Exerc. Rehabil. 2019, 15, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Bao, M.-H.; Ouyang, D.-S.; Wang, C.-Z.; Yuan, C.-S.; Zhou, H.-H.; Huang, W.-H. Unstable Simple Volatiles and Gas Chromatography-Tandem Mass Spectrometry Analysis of Essential Oil from the Roots Bark of Oplopanax Horridus Extracted by Supercritical Fluid Extraction. Molecules 2014, 19, 19708–19717. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Reshamwala, D.; Korpinen, R.; Azevedo, L.; Vieira do Carmo, M.A.; Cruz, T.M.; Marques, M.B.; Wen, M.; Zhang, L.; Marjomäki, V.; et al. From the Forest to the Plate—Hemicelluloses, Galactoglucomannan, Glucuronoxylan, and Phenolic-Rich Extracts from Unconventional Sources as Functional Food Ingredients. Food Chem. 2022, 381, 132284. [Google Scholar] [CrossRef] [PubMed]
- Harouak, H.; Ibijbijen, J.; Nassiri, L. Chemical Profile of Tetraclinis articulata (Vahl) Masters, and Juglans regia L. and Olea europaea L. Var. Sylvestris Used against Oral Diseases: In Vitro Analysis between Polyphenolic Content and Aqueous Extraction Optimization. Heliyon 2021, 7, e07118. [Google Scholar] [CrossRef] [PubMed]
- Tienaho, J.; Liimatainen, J.; Myllymäki, L.; Kaipanen, K.; Tagliavento, L.; Ruuttunen, K.; Rudolfsson, M.; Karonen, M.; Marjomäki, V.; Hagerman, A.E.; et al. Pilot Scale Hydrodynamic Cavitation and Hot-Water Extraction of Norway Spruce Bark Yield Antimicrobial and Polyphenol-Rich Fractions. Sep. Purif. Technol. 2025, 360, 130925. [Google Scholar] [CrossRef]
- Bianchi, S.; Kroslakova, I.; Janzon, R.; Mayer, I.; Saake, B.; Pichelin, F. Characterization of Condensed Tannins and Carbohydrates in Hot Water Bark Extracts of European Softwood Species. Phytochemistry 2015, 120, 53–61. [Google Scholar] [CrossRef]
- Kilpeläinen, P.; Liski, E.; Saranpää, P. Optimising and Scaling up Hot Water Extraction of Tannins from Norway Spruce and Scots Pine Bark. Ind. Crops Prod. 2023, 192, 116089. [Google Scholar] [CrossRef]
- Baldivia, D.D.S.; Leite, D.F.; de Castro, D.T.H.; Campos, J.F.; dos Santos, U.P.; Paredes-Gamero, E.J.; Carollo, C.A.; Silva, D.B.; De Picoli Souza, K.; Dos Santos, E.L. Evaluation of In Vitro Antioxidant and Anticancer Properties of the Aqueous Extract from the Stem Bark of Stryphnodendron adstringens. Int. J. Mol. Sci. 2018, 19, 2432. [Google Scholar] [CrossRef]
- Hertiani, T.; Pratiwi, S.U.T.; Yuswanto, A.; Permanasari, P. Potency of Massoia Bark in Combating Immunosuppressed-Related Infection. Pharmacogn. Mag. 2016, 12, S363–S370. [Google Scholar] [CrossRef][Green Version]
- Das, N.; Islam, M.E.; Jahan, N.; Islam, M.S.; Khan, A.; Islam, M.R.; Parvin, M.S. Antioxidant Activities of Ethanol Extracts and Fractions of Crescentia Cujete Leaves and Stem Bark and the Involvement of Phenolic Compounds. BMC Complement. Altern. Med. 2014, 14, 45. [Google Scholar] [CrossRef]
- Boussahel, S.; Speciale, A.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Ferlazzo, G.; Harzallah, D.; et al. Flavonoid Profile, Antioxidant and Cytotoxic Activity of Different Extracts from Algerian Rhamnus alaternus L. Bark. Pharmacogn. Mag. 2015, 11, S102–S109. [Google Scholar] [CrossRef]
- Habibou, H.H.; Abdoulahi, M.I.I.; Khalid, I. In Vitro Anti-Shigella, Antioxidant Activities, and Oral Acute Toxicity of Organics Extracts from the Root Bark of Detarium microcarpum Guill. and Perr. J. Trop. Med. 2024, 2024, 1330063. [Google Scholar] [CrossRef]
- Shahwar, D.-E.; Shehzadi, N.; Khan, M.T.; Zia, S.; Saleem, M.; Akhtar, S.; Saghir, F.; Iftikhar, S.; Mobashar, A.; Naheed, S.; et al. A New Anti-Inflammatory Lupane in Ziziphus jujuba (L.) Gaertn. Var. Hysudrica Edgew. Heliyon 2024, 10, e29989. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, S.; Islam, M.; Saeed, H.; Iqtedar, M.; Mehmood, A. Investigation of Olea Ferruginea Roylebark Extracts for Potential in Vitroantidiabetic and Anticancer Effects. Turk. J. Chem. 2021, 45, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Díaz, Y.; Tabio, D.; Rondón, M.; Piloto-Rodríguez, R.; Fernández, E. Phenomenological Model for the Prediction of Moringa Oleifera Extracted Oil Using a Laboratory Soxhlet Apparatus. Grasas Y Aceites 2021, 72, e422. [Google Scholar] [CrossRef]
- Vukmirović, S.; Ilić, V.; Tadić, V.; Čapo, I.; Pavlović, N.; Tomas, A.; Paut Kusturica, M.; Tomić, N.; Maksimović, S.; Stilinović, N. Comprehensive Analysis of Antioxidant and Hepatoprotective Properties of Morus nigra L. Antioxidants 2023, 12, 382. Antioxidants 2023, 12, 382. [Google Scholar] [CrossRef]
- Sajeesh, T.; Parimelazhagan, T. Analgesic, Anti-Inflammatory, and GC-MS Studies on Castanospermum australe A. Cunn. & C. Fraser Ex Hook. Sci. World J. 2014, 2014, 587807. [Google Scholar] [CrossRef]
- Meena, A.K.; Ilavarasan, R.; Perumal, A.; Singh, R.; Ojha, V.; Srikanth, N.; Dhiman, K.S. Evaluation for Substitution of Stem Bark with Small Branches of Cassia Fistula Linn for Traditional Medicinal Uses: A Comparative Chemical Profiling Studies by HPLC, LC-MS, GC-MS. Heliyon 2022, 8, e10251. [Google Scholar] [CrossRef]
- Carranza, M.G.; Sevigny, M.B.; Banerjee, D.; Fox-Cubley, L. Antibacterial Activity of Native California Medicinal Plant Extracts Isolated from Rhamnus californica and Umbellularia californica. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 29. [Google Scholar] [CrossRef]
- Alshabi, A.M.; Shaikh, I.A.; Asdaq, S.M.B. The Antiepileptic Potential of Vateria Indica Linn in Experimental Animal Models: Effect on Brain GABA Levels and Molecular Mechanisms. Saudi J. Biol. Sci. 2022, 29, 3600–3609. [Google Scholar] [CrossRef]
- Singaravelu, S.; Sankarapillai, J.; Sasidharn Chandrakumari, A.; Sinha, P. Effect of Azadirachta Indica Crude Bark Extracts Concentrations against Gram-Positive and Gram-Negative Bacterial Pathogens. J. Pharm. Bioallied Sci. 2019, 11, 33–37. [Google Scholar] [CrossRef]
- Bora, K.S.; Kumar, A.; Bisht, G. Evaluation of Antimicrobial Potential of Successive Extracts of Ulmus Wallichiana Planch. J. Ayurveda Integr. Med. 2018, 9, 190–194. [Google Scholar] [CrossRef]
- Xu, K.; He, G.; Qin, J.; Cheng, X.; He, H.; Zhang, D.; Peng, W. High-Efficient Extraction of Principal Medicinal Components from Fresh Phellodendron Bark (Cortex Phellodendri). Saudi J. Biol. Sci. 2018, 25, 811–815. [Google Scholar] [CrossRef]
- Abilleira, F.; Varela, P.; Cancela, Á.; Álvarez, X.; Sánchez, Á.; Valero, E. Tannins Extraction from Pinus pinaster and Acacia dealbata Bark with Applications in the Industry. Ind. Crops Prod. 2021, 164, 113394. [Google Scholar] [CrossRef]
- Pals, M.; Lauberte, L.; Ponomarenko, J.; Lauberts, M.; Arshanitsa, A. Microwave-Assisted Water Extraction of Aspen (Populus tremula) and Pine (Pinus sylvestris L.) Barks as a Tool for Their Valorization. Plants 2022, 11, 1544. [Google Scholar] [CrossRef]
- Mangang, K.C.S.; Chakraborty, S.; Deka, S.C. Optimized Microwave-Assisted Extraction of Bioflavonoids from Albizia Myriophylla Bark Using Response Surface Methodology. J. Food Sci. Technol. 2020, 57, 2107–2117. [Google Scholar] [CrossRef]
- Fonseca, F.S.; Reis, L.B.; Dos Santos, J.G.; Branco, C.C.; Ferreira, S.D.C.; David, J.; Branco, A. Betulinic Acid from Zizyphus Joazeiro Bark Using Focused Microwave-Assisted Extraction and Response Surface Methodology. Pharmacogn. Mag. 2017, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Tripathi, A.C.; Saraf, S.K. Bioactive Non-Sterol Triterpenoid from Streblus Asper: Microwave-Assisted Extraction, HPTLC Profiling, Computational Studies and Neuro-Pharmacological Evaluation in BALB/c Mice. Pharm. Biol. 2016, 54, 2454–2464. [Google Scholar] [CrossRef] [PubMed]
- Piątczak, E.; Dybowska, M.; Płuciennik, E.; Kośla, K.; Kolniak-Ostek, J.; Kalinowska-Lis, U. Identification and Accumulation of Phenolic Compounds in the Leaves and Bark of Salix alba (L.) and Their Biological Potential. Biomolecules 2020, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Cubas, J.; San Martin-Martínez, E.; Quiroz-Reyes, C.N.; Casañas-Pimentel, R.G. Cytotoxic Effect of Semialarium mexicanum (Miers) Mennega Root Bark Extracts and Fractions against Breast Cancer Cells. Physiol. Mol. Biol. Plants 2018, 24, 1185–1201. [Google Scholar] [CrossRef]
- Dulić, M.; Ciganović, P.; Vujić, L.; Zovko Končić, M. Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction. Molecules 2019, 24, 3613. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-C.; He, Y.; Deng, X.; Xia, X.-H.; Liang, J.; Yang, G.-L.; Li, W.; Wang, H. Ultrasound-Assisted Extraction of Syringin from the Bark of Ilex Rotunda Thumb Using Response Surface Methodology. Int. J. Mol. Sci. 2012, 13, 7607–7616. [Google Scholar] [CrossRef]
- Murauer, A.; Ganzera, M. Quantitative Determination of Major Alkaloids in Cinchona Bark by Supercritical Fluid Chromatography. J. Chromatogr. A 2018, 1554, 117–122. [Google Scholar] [CrossRef]
- Zwerger, M.; Deisl, A.; Hammerle, F.; Ganzera, M. Determination of Anthraquinones in Frangula Alnus by Supercritical Fluid Chromatography. J. Chromatogr. A 2024, 1737, 465432. [Google Scholar] [CrossRef]
- Silva, L.R.; Teixeira, R. Phenolic Profile and Biological Potential of Endopleura uchi Extracts. Asian Pac. J. Trop. Med. 2015, 8, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Atwi-Ghaddar, S.; Destandau, E.; Lesellier, E. Optimization of Supercritical Fluid Extraction of Polar Flavonoids from Robinia pseudoacacia L. Heartwood. J. CO2 Util. 2023, 70, 102440. [Google Scholar] [CrossRef]
- Abohassan, M.; Fayzullaev, N.; Edris, G.; Uthirapathy, S.; Sanghvi, G.; Vakada, N.B.R.; Sharma, S.; Nakash, P.; Mustafa, Y.F.; Shallan, M.A. Supercritical Extraction of Salicin, Aspirin Precursor, from the Willow Bark, Laboratory Optimization via Response Surface Methodology and Mathematical Modeling. J. Supercrit. Fluids 2025, 219, 106540. [Google Scholar] [CrossRef]
- Wang, H.-L.; Chang, J.-C.; Fang, L.-W.; Hsu, H.-F.; Lee, L.-C.; Yang, J.-F.; Liang, M.-T.; Hsiao, P.-C.; Wang, C.-P.; Wang, S.-W.; et al. Bulnesia Sarmientoi Supercritical Fluid Extract Exhibits Necroptotic Effects and Anti-Metastatic Activity on Lung Cancer Cells. Molecules 2018, 23, 3304. [Google Scholar] [CrossRef]
- Kwon, Y.-E.; Choi, S.-E.; Park, K.-H. Regulation of Cytokines and Dihydrotestosterone Production in Human Hair Follicle Papilla Cells by Supercritical Extraction-Residues Extract of Ulmus davidiana. Molecules 2022, 27, 1419. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Mo, K.; Liu, Z.; Yang, F.; Hou, K.; Li, S.; Zu, Y.; Yang, L. Ionic Liquid-Based Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark. Molecules 2014, 19, 9689–9711. [Google Scholar] [CrossRef]
- Gong, J.; Liang, C.; Majeed, Z.; Tian, M.; Zhao, C.; Luo, M.; Li, C. Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. Separations 2023, 10, 151. [Google Scholar] [CrossRef]
- Strehmel, N.; Strunk, D.; Strehmel, V. Extraction of Natural Products from Bark of Betula Pendula Using Ionic Liquids. Metabolomics 2017, 13, 135. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, G.; Li, N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules 2018, 23, 1765. [Google Scholar] [CrossRef] [PubMed]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity-Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Rezende, Y.R.R.S.; Nogueira, J.P.; Silva, T.O.M.; Barros, R.G.C.; Oliveira, C.S.D.; Cunha, G.C.; Gualberto, N.C.; Rajan, M.; Narain, N. Enzymatic and Ultrasonic-Assisted Pretreatment in the Extraction of Bioactive Compounds from Monguba (Pachira aquatic Aubl) Leaf, Bark and Seed. Food Res. Int. 2021, 140, 109869. [Google Scholar] [CrossRef]
- Zhou, Z.; Shao, H.; Han, X.; Wang, K.; Gong, C.; Yang, X. The Extraction Efficiency Enhancement of Polyphenols from Ulmus pumila L. Barks by Trienzyme-Assisted Extraction. Ind. Crops Prod. 2017, 97, 401–408. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Zhao, L.; Zu, Y.; Gu, H.; Yang, L. Enzymatic Hydrolysis and Simultaneous Extraction for Preparation of Genipin from Bark of Eucommia Ulmoides after Ultrasound, Microwave Pretreatment. Molecules 2015, 20, 18717–18731. [Google Scholar] [CrossRef]
- De Giani, A.; Pagliari, S.; Zampolli, J.; Forcella, M.; Fusi, P.; Bruni, I.; Campone, L.; Di Gennaro, P. Characterization of the Biological Activities of a New Polyphenol-Rich Extract from Cinnamon Bark on a Probiotic Consortium and Its Action after Enzymatic and Microbial Fermentation on Colorectal Cell Lines. Foods 2022, 11, 3202. [Google Scholar] [CrossRef] [PubMed]
- Jablonsky, M.; Majova, V.; Strizincova, P.; Sima, J.; Jablonsky, J. Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals 2020, 10, 402. [Google Scholar] [CrossRef]
- Shu, P.; Wang, N.; Meng, Y.; Fan, S.; Liu, S.; Fan, X.; Hu, D.; Yin, H.; Wang, H.; Wang, X.; et al. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Polysaccharides from Cercis Chinensis Bark: Optimization, Kinetics and Antioxidant Activities. Ultrason. Sonochemistry 2025, 121, 107535. [Google Scholar] [CrossRef]
- Sillero, L.; Prado, R.; Welton, T.; Labidi, J. Extraction of Flavonoid Compounds from Bark Using Sustainable Deep Eutectic Solvents. Sustain. Chem. Pharm. 2021, 24, 100544. [Google Scholar] [CrossRef]
- Hong, S.M.; Kamaruddin, A.H.; Nadzir, M.M. Sustainable Ultrasound-Assisted Extraction of Polyphenols from Cinnamomum Cassia Bark Using Hydrophilic Natural Deep Eutectic Solvents. Process Biochem. 2023, 132, 323–336. [Google Scholar] [CrossRef]
- Ahmad, I.; Arifianti, A.E.; Sakti, A.S.; Saputri, F.C.; Mun’im, A. Simultaneous Natural Deep Eutectic Solvent-Based Ultrasonic-Assisted Extraction of Bioactive Compounds of Cinnamon Bark and Sappan Wood as a Dipeptidyl Peptidase IV Inhibitor. Molecules 2020, 25, 3832. [Google Scholar] [CrossRef]
- Tanase, C.; Cosarca, S.; Toma, F.; Mare, A.; Cosarca, A.; Man, A.; Miklos, A.; Imre, S. Antibacterial Activities of Spruce Bark (Picea abies L.) Extract and Its Components Against Human Pathogens. Rev. Chim. 2018, 69, 1462–1467. [Google Scholar] [CrossRef]
- Suprun, A.R.; Dubrovina, A.S.; Aleynova, O.A.; Kiselev, K.V. The Bark of the Spruce Picea Jezoensis Is a Rich Source of Stilbenes. Metabolites 2021, 11, 714. [Google Scholar] [CrossRef]
- Škulcová, A.; Jablonsky, M. Green solvents based on choline chloride for the extraction of spruce bark (Picea abies). Cellul. Chem. Technol. 2018, 52, 171–179. [Google Scholar]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; El-Abedin, T.K.Z.; Yessoufou, K. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- De Melo, M.M.R.; Vieira, P.G.; Şen, A.; Pereira, H.; Portugal, I.; Silva, C.M. Optimization of the Supercritical Fluid Extraction of Quercus Cerris Cork towards Extraction Yield and Selectivity to Friedelin. Sep. Purif. Technol. 2020, 238, 116395. [Google Scholar] [CrossRef]
- Freitas, D.S.; Rocha, D.; Castro, T.G.; Noro, J.; Castro, V.I.B.; Teixeira, M.A.; Reis, R.L.; Cavaco-Paulo, A.; Silva, C. Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustain. Chem. Eng. 2022, 10, 7974–7989. [Google Scholar] [CrossRef]
- Vidić, M.; Grujić-Letić, N.; Teofilović, B.; Gligorić, E. Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds. Sustainability 2025, 17, 6347. [Google Scholar] [CrossRef]

| Plant Species | Plant Material | Solvents | Time of Extraction | References |
|---|---|---|---|---|
| Olea ferruginea R. | Bark | n-Hexane, Chloroform, Methanol | - | [84] |
| Z. armatum | Fruit, Seed, Bark | Methanol | 72 h | [50] |
| Cassia fistula L. | Stem bark, Small branches | Hexane, Chloroform, Ethyl-acetate, Ethanol | 24 h | [88] |
| Mangifera indica L. | Leaves, Bark | Ethanol-water (8:2 v/v), Hexane | 8 h | [69] |
| Castanospermum australe A. Cunn. | Leaves, Bark, Seeds | Petroleum ether, Benzene, Ethanol | - | [87] |
| Acacia macrostachya Rchb. ex DC. | Stem bark | Methanol | 8 h | [17] |
| Picea abies L. | Bark | Ethanol-water (70% v/v) | 6 h 34 min | [40] |
| Rhamnus californica Eschsch. | Leaves, Bark | Hexane, Dichlormethane, Methanol | 24 h | [89] |
| Umbellularia californica Nutt. | ||||
| Spondias dulcis G.Forst. | Leaves, Stem bark | Ethyl acetate, Methanol, Water | 6 h | [43] |
| Spondias mombin L. | ||||
| Vateria indica L. | Stem bark | Ethanol | 12 h | [90] |
| Azadirachta indica A.Juss. | Stem bark | Methanol | 6 h | [91] |
| Populus spp. | Bark | n-Hexane, Dichlormethane, Ethyl acetate, Methanol, Water | 24 h | [44] |
| T. ivorensis | Bark | Petroleum ether, Chloroform, Ethyl acetate, Ethanol | 118 min 125 min 110 min 115 min | [53] |
| Pinus densiflora Siebold & Zucc. | Bark | Ethanol, Methanol, Isopropanol, Acetonitrile, Acetone, Water | 9 h | [10] |
| Ulmus wallichiana Planch. | Bark | Petroleum ether, Chloroform, Ethyl acetate, Methanol | - | [92] |
| Phellodendron spp. | Bark | Ethanol (70% v/v), HCl/Methanol (1:100 v/v), HCl/Ethanol (1:100 v/v), HCl/Water (1:100 v/v) | 3 h | [93] |
| Morus nigra L. | Leaves, Bark | Ethanol (70% v/v) | 7 days | [86] |
| Plant Species | Plant Material | Solvent | Experimental Parameters | References |
|---|---|---|---|---|
| Saraca asoca Willd. | Bark | MeOH 50%, 70%, 90% | Material/solvent ratio = 1:10, 1:20, 1:30 Extraction time: 10, 20, 30 min Power: Fixed (not specified) | [60] |
| Quercus rubra L. | Bark | EtOH 70%, Water | Material/solvent ratio = 1:20 Extraction time: 30 min (aqueous extract); 18 min (ethanolic extract) Power: 850 W (aqueous extract); 650 W (ethanolic extract) | [1] |
| Quercus cerris L. | Bark | EtOH 70%, Water | Material/solvent ratio = 1:20 Extraction times: 10, 20, 30 min Power: 200, 500, 1000 W | [13] |
| Z. jujuba | Bark | MeOH | Material/solvent ratio = 1:50 Extraction time: 4 min Power: 100 W | [35] |
| Fagus sylvatica L. | Bark | EtOH 50%, 80%, Water | Material/solvent ratio = 1:10 Extraction time: 2, 3, 4 min Power: 300, 450, 600, 800 W | [51] |
| Q. rubra, Q. cerris, Quercus robur L., Quercus petraea Liebl., Quercus dalechampii Ten., Quercus polycarpa Schur | Bark | EtOH 80% | Material/solvent ratio = 1:250 Extraction time: from 30 s to 5 min Power: 700 W | [31] |
| Pinus koraiensis Siebold & Zucc. | Cone bark | EtOH 50%, Water | Material/solvent ratio = 1:10 Extraction time: 6 min (water extract); 4 min (ethanol extract) Power: 200 W | [4] |
| Albizia myriophylla Benth. | Bark | EtOH 60–100% | Material/solvent ratio = 1:20–1:40 Extraction time: 20–40 min Power: 400–900 W | [96] |
| Ziziphus joazeiro Mart. | Bark | Ethyl acetate | Material/solvent ratio = 1:100 Extraction time: 10–20 min Power: 300 W | [97] |
| Populus tremula L., Pinus sylvestris Thunb. | Bark | Water | Material/solvent ratio = 1:5 Extraction time = 5–30 min Power: not specified Temperature: 70–150 °C | [95] |
| Larix decidua Mill. | Bark | Choline chloride: Acetic acid (1:2) | Material/solvent ratio = 1:10 Extraction time: 30 min Power: 200 W | [70] |
| Q. dalechampii, Quercus frainetto Ten. | Bark | EtOH 70%, Water | Material/solvent ratio = 1:20 Extraction time: 18 min (ethanolic extract); 30 min (water extract) Power: 650 W (ethanolic extract); 850 W (water extract) | [30] |
| P. sylvestris, Pinus nigra Aiton | Bark | EtOH 50% | Material/solvent ratio = 1:10 Extraction time: 4 min Power: 300 W | [11] |
| P. abies | Bark | EtOH 50% | Material/solvent ratio = 1:10 Extraction time: 4 min Power: 300 W | [52] |
| P. abies | Bark | Water, EtOH 50%, EtOH100% | Material/solvent ratio = 1:12.5 Extraction time: 18 min Power: 200 W | [48] |
| S. alba | Bark | EtOH 70%, Water | Material/solvent ratio = 1:20 Extraction time: 18 min (ethanolic extract); 30 min (water extract) Power: 650 W (ethanolic extract); 850 W (water extract) | [8] |
| Pinus brutia Ten. | Bark | EtOH | Material/solvent ratio: 1:10 Extraction time: 10 min Power: 900 W | [34] |
| Streblus asper Lour. | Bark | EtOH | Material/solvent ratio = 1:10 Extraction time: 20 min Power: 350 W | [98] |
| Plant Species | Plant Material | Solvent | Experimental Parameters | References |
|---|---|---|---|---|
| P. abies | Bark | EtOH 50% EtOH 70% | Material/solvent ratio = 1:10 Extraction time: 30, 45, 60 min Temperature: 40, 50, and 60 °C Frequency: 35 kHz | [37] |
| S. alba | Bark Leaves | MeOH 70% | Material/solvent ratio = 1:30 Extraction time: 30 min Temperature: 40 °C | [99] |
| Bark | Water EtOH 50% | Material/solvent ratio = 1:40 Extraction time: 15 min Temperature: 70 °C Frequency: 40 kHz | [8] | |
| Q. rubra | Bark | Water EtOH 50% | Material/solvent ratio = 1:40 Extraction time: 15 min Temperature: 70 °C | [1] |
| Uncaria tomentosa Willd. ex Schult.) DC. | Leaves Bark Stems Wood | MTBE:MeOH = 90:10 MeOH | Material/solvent ratio = 1:20 Extraction time: 30 min Temperature: 25 °C | [49] |
| Z. jujuba | Bark | MeOH | Material/solvent ratio = 1:50 Extraction time: 20, 30, 40, 50, 60 min Temperature: 25 °C Frequency: 35 kHz | [35] |
| Semialarium mexicanum Mennega | Root bark | Petroleum ether, EtOH, Water | Material/solvent ratio = 1:10 Extraction time: 30 min Temperature: 30 °C Frequency: 25 kHz | [100] |
| Salix spp. | Bark Leaves | Water | Material/solvent ratio = 1:100 Extraction time: 30 min Temperature: 25 °C Frequency: 40 kHz | [14] |
| Q. dalechampii Q. frainetto | Bark | EtOH 70% Water | Material/solvent ratio = 1:40 Extraction time: 15 min Temperature: 70 °C Frequency: 40 kHz | [30] |
| P. sylvestris P. nigra | Bark | EtOH 70% | Material/solvent ratio = 1:10 Extraction time: 30 min Temperature: 30 °C Frequency: 40 kHz | [11] |
| Pouteria cambodiana Baehni | Bark | EtOH 50% EtOH 60% EtOH 70% | Material/solvent ratio = 1:20 Extraction time: ND Temperature: 40, 50, 60 °C Frequency: 20 kHz | [46] |
| Stryphnodendron adstringens (Mart.) Coville | Bark | EtOH 65% EtOH 80% EtOH 95% | Material/solvent ratio = 1:250, 1:166.67, 1:125 Extraction time: 15, 30, 45 min Temperature: ND Frequency: 40 kHz | [61] |
| P. abies | Bark | EtOH 70% | Material/solvent ratio = ND Extraction time: 30 min Temperature: 65 °C Frequency: 40 kHz | [52] |
| Bark | EtOH EtOH 50% Water | Material/solvent ratio = 1:12.5 Extraction time: 30 min Temperature: ND Power: 200 W | [48] | |
| Abies nephrolepis Maxim. | Bark Leaves | EtOH 10–90% | Material/solvent ratio = 1:10–1:30 Extraction time: 30–50 min Temperature: 20–60 °C Frequency: 45, 80, 100 kHz | [66] |
| Berberis vulgaris L. | Root bark | Glycerol 10% Glycerol 50% Glycerol 90% | Material/solvent ratio = 1:50 Extraction time: ND Temperature: 20, 50, 80 °C Power: 144, 432, 720 W | [101] |
| Pinus pinaster Aiton | Needle Bark | Levulinic acid: formic acid = 70:30 | Material/solvent ratio = 1:4–1:20 Extraction time: 1–2 h Temperature: 30–60 °C Frequency: 37 kHz, amplitude 20–80% | [36] |
| Ilex rotunda Thunb. | Bark | MeOH 30–100% | Material/solvent ratio = 1:20 Extraction time: 10–50 min Temperature: 20–80 °C Frequency: 40 kHz | [102] |
| Cinchona spp. | Bark | MeOH:NaOH 0.1 M = 49:1 | Material/solvent ratio = 1:200 Extraction time: 20 min Temperature: ND | [103] |
| P. brutia | Bark | Water Ethyl acetate | Material/solvent ratio = 1:5 Extraction time: 20, 40, 60 min Temperature: 40, 70, 100 °C | [34] |
| Frangula alnus Mill. | Bark | MeOH 80% | Material/solvent ratio = 1:30 Extraction time: 15 min Temperature: ND | [104] |
| Endopleura uchi Cuatrec. | Bark | EtOH 50% | Material/solvent ratio = 1:100 Extraction time: 30 min Temperature: ND | [105] |
| Plant Species | Plant Material | Co-Solvents | Experimental Parameters | References |
|---|---|---|---|---|
| P. abies | Bark | Ethanol | Pressure: 100 bar Temperature: 40 °C Static time: 150 min Dynamic time: 105 min Flow rates: 6 mL/min (static phase); 10:1 mL/min (dynamic phase) | [28] |
| Bark | - | Pressure: 150 bar Temperature: 40 °C Flow rate: 1 L/min | [48] | |
| Bulnesia sarmientoi Lorentz ex Griseb. | Bark | - | Pressure: 0–150 bar (20 min), 150–250 bar (20 min), 250–300 bar (10 min), 300–350 bar (10 min), 350 bar (2 h) Temperature: 40 °C | [110] |
| P. sylvestris | Bark | Ethanol | Pressure: 10.0 MPa (45 min), 20.0 MPa (45 min), 30.0 MPa (45 min) at 40 °C Temperature: 62.5 °C (45 min), 85 °C (45 min) at 30.0 MPa | [29] |
| Cinnamomum cassia (L.) J.Presl | Bark | - | Pressure: 600–650 bar Temperature: 45 °C | [58] |
| Chamaecyparis obtusa Endl. | Bark | - | Pressure: 350 bar Temperatures: 40 °C, 50 °C, 60 °C Flow rate: 145 mL/min | [71] |
| Oplopanax horridus Miq. | Root bark | - | Pressure: 360 bar Temperature: 40 °C Static time: 3 h | [72] |
| Sclerocarya birrea Hochst. | Stem bark | Ethanol | Pressure: 200 bar Temperature: 50 °C Flow rate: 23 g/min | [33] |
| Ulmus davidiana Planch. | Branch (with barks) | Ethanol | Pressure: 400 bar Temperature: 50 °C | [111] |
| Extraction Method | Advantages/Disadvantages | Extraction Efficiency | Technical Complexity | Scale-Up Feasibility | Costs |
|---|---|---|---|---|---|
| Infusion/ Decoction | Advantages |
|
| - |
|
| Disadvantages |
| - |
|
| |
| Maceration | Advantages |
|
|
|
|
| Disadvantages |
| - |
|
| |
| Soxhlet | Advantages |
|
|
| - |
| Disadvantages |
|
|
|
| |
| MAE | Advantages |
| - |
|
|
| Disadvantages |
|
|
|
| |
| UAE | Advantages |
|
|
|
|
| Disadvantages |
| - |
|
| |
| SFE | Advantages |
| - | - |
|
| Disadvantages |
|
|
|
| |
| Ionic liquids | Advantages |
| - |
| - |
| Disadvantages |
|
|
|
| |
| Enzymatic | Advantages |
| - |
| - |
| Disadvantages |
| - |
|
| |
| Deep eutectic solvent | Advantages | - | |||
| Disadvantages |
| Species | Extraction Method | Phytochemical Profile | References |
|---|---|---|---|
| Picea spp. | UAE | Sinapic acid, Vanilic acid, Quercetin, Taxifolin | [126] |
| Decoction/Infusion | |||
| Maceration | Astringin, Piceid, Isorhapontin, Pieaceatannol, Resveratrol, Isorhapontigenin | [127] | |
| SFE combined with UAE/MAE/Maceration | Abietic acid, Dehydroabietic acid, methyl abietate, Piceasides (A-H), Isorhapontin, Piceid, Astringin, Flavonoids (e.g., Taxifolin, Quercetin, Isorhamnetin, Catechin, Quercetin), Ferulic acid, Quinic acid | [48] | |
| UAE | Catechin, Epicatechin, α-pinene, β-pinene, Camphene, 3-carene, α-Phellandrene, Limonene, Sabinene, Myrcene, Tricyclene | [52] | |
| MAE | |||
| DES | Polyphenols | [128] | |
| Pinus spp. | MAE | Quinic acid, p-Hydroxy benzoic acid hexoside, Sucrose, Taxifolin, Catechin/Epicatechin, Proanthocyanidins | [95] |
| SFE with EtOH co-solvent | Unsaturated fatty acids, Sterol esters, Resin acids, Abietic acid, Dehydroabietic acid | [29] | |
| Maceration | Caffeic, Ferulic, Cinnamic, chlorogenic, Vanillic, Dihidroxybenzoic, Ellagic acids, Catechin/Epicatechin, Gallocatechin, Naringenin, Quercetin, Apigenin, Taxifolin, Resveratrol | [39] | |
| UAE | Catechin, Taxifolin | [34] | |
| MAE | |||
| Quercus spp. | UAE | Polyphenols, Tannins, Gallic acid, Catechin, Taxifolin, Vanillic acid, Caffeic acid | [1,30] |
| MAE | |||
| Maceration | Flavonoids, Hydroxycinnamic acids, Proanthocyanidins | [27] | |
| Decoction | |||
| UAE | Gallic, Caffeic, Ellagic, Protocatechuic, Vanillic acids, Catechin/Epicatechin, Epigallocatechin | [129] | |
| Soxhlet | Friedelin | [130] | |
| SFE with EtOH co-solvent | |||
| DES | Fatty acids, Small alcohols and acids, Aromatic compounds, Sugars, Terpenoids | [131] | |
| Salix spp. | UAE | Salicin, Chlorogenic acid, Gallic acid, p-Hydroxybenzoic acid, Syringic acid, p-Coumaric acid, trans-Cinnamic acid, Epicatechin, Rutin, Quercetin, Naringenin | [14] |
| Maceration | Piceol, Picein, Catechin, Eriodictyol Naringenin, Salicylic acid, Glicosides of Quercetin, Naringenin, Eriodictyol and Procyanidins | [12] | |
| SFE | Salicin, Saligenin, Salicortin, Catechin, Quercetin, Naringenin, Ferulic, Sinapic, p-Coumaric, Syringic, Protocatechuic, p-Hydroxybenzoic, Caffeic acids. | [63] | |
| MAE | Phenolics, Flavonoids, Tannins | [8] | |
| DES | Gallic acid, Chlorogenic acid, Vanillic acid, Syringic acid, p-Coumaric acid, Sinapic acid, Cinnamic acid, Epicatechin, Rutin, Quercetin, Naringenin | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisca, A.; Tanase, C. Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review. Plants 2025, 14, 2929. https://doi.org/10.3390/plants14182929
Nisca A, Tanase C. Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review. Plants. 2025; 14(18):2929. https://doi.org/10.3390/plants14182929
Chicago/Turabian StyleNisca, Adrian, and Corneliu Tanase. 2025. "Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review" Plants 14, no. 18: 2929. https://doi.org/10.3390/plants14182929
APA StyleNisca, A., & Tanase, C. (2025). Approaches to Extracting Bioactive Compounds from Bark of Various Plants: A Brief Review. Plants, 14(18), 2929. https://doi.org/10.3390/plants14182929

