Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Design
2.2. Functional Trait Measurements
2.3. Estimation of Community-Weighted Mean Values
2.4. Data Analyses
3. Results
3.1. WES and Wood Trait Covariation Across Sites
3.2. Tissue Fractions and Wood Density
3.3. Aridity and Wood Trait Gradients


4. Discussion
| Variable | Model | Slope Parameter 1 | Pseudo-R2 | d.f. | logLik | AICc | ΔAICc | wi | |
|---|---|---|---|---|---|---|---|---|---|
| 1-AI | (1-AI) 2 | ||||||||
| WD | Linear | −0.48 | - | 0.03 | 3 | 172.73 | −339.30 | 30.16 | 0.00 |
| Quadratic | −150.00 | 78.78 | 0.26 | 4 | 188.88 | −369.40 | 0.00 | 1.00 | |
| Bark | Linear | 1.24 | - | 0.48 | 3 | 255.85 | −505.50 | 3.18 | 0.17 |
| Quadratic | 33.30 | −16.89 | 0.50 | 4 | 258.51 | −508.70 | 0.00 | 0.83 | |
| Fiber | Linear | −129.70 | - | 0.10 | 3 | −430.61 | 867.40 | 0.00 | 0.64 |
| Quadratic | 4178.00 | −2269.00 | 0.11 | 4 | −430.10 | 867.50 | 1.13 | 0.36 | |
| 2 Average | 1432.47 | −822.85 | - | - | - | - | - | - | |
| Lumen | Linear | 32.57 | - | 0.02 | 3 | −372.53 | 751.30 | 0.63 | 0.42 |
| Quadratic | −4344.00 | 2305.00 | 0.04 | 4 | −371.14 | 750.60 | 0.00 | 0.58 | |
| 2 Average | −2498.73 | 1333.35 | - | - | - | - | - | - | |
| Parenchyma | Linear | −17.56 | - | 0.02 | 3 | −292.65 | 591.50 | 6.60 | 0.04 |
| Quadratic | 3925.00 | −2077.00 | 0.09 | 4 | −288.28 | 584.90 | 0.00 | 0.96 | |
| non-vessels | Linear | −6.02 | - | 0.01 | 3 | −229.60 | 465.40 | 1.68 | 0.30 |
| Quadratic | −1563.00 | 820.40 | 0.04 | 4 | −227.69 | 463.70 | 0.00 | 0.70 | |
| 2 Average | −1093.57 | 572.87 | - | - | - | - | - | - | |
| MVD | Linear | −103.40 | - | 0.10 | 3 | −403.37 | 812.90 | 29.36 | 0.00 |
| Quadratic | 17,890.00 | −9476.00 | 0.31 | 4 | −387.62 | 783.60 | 0.00 | 1.00 | |
| VD | Linear | 2.42 | - | 0.21 | 3 | 99.48 | −192.80 | 65.89 | 0.00 |
| Quadratic | −370.40 | 196.40 | 0.55 | 4 | 133.50 | −258.60 | 0.00 | 1.00 | |
| PC1 | Linear | 2.45 | - | 0.01 | 3 | −88.09 | 182.40 | 0.00 | 0.50 |
| Quadratic | 362.00 | −189.40 | 0.03 | 4 | −87.02 | 182.40 | 0.00 | 0.50 | |
| 2 Average | 182.08 | −94.62 | - | - | - | - | - | - | |
| PC2 | Linear | −14.32 | - | 0.39 | 3 | −58.95 | 124.10 | 47.78 | 0.00 |
| Quadratic | 1224.00 | −652.20 | 0.60 | 4 | −33.99 | 76.30 | 0.00 | 1.00 | |
4.1. Implications for the Wood Economics Spectrum
4.2. Anatomical Mechanisms Underlying Non-Linear Responses
4.3. Community-Level Functional Strategies
4.4. Implications for Plant Economics Theory
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez-Navarro, M.A.; Serra-Diaz, J.M.; Serra-Diaz, J.M.; Svenning, J.C.; Esteve-Selma, M.Á.; Hernández-Bastida, J.; Lloret, F. Extreme Drought Reduces Climatic Disequilibrium in Dryland Plant Communities. Oikos 2021, 130, 680–690. [Google Scholar] [CrossRef]
- Abel, C.; Maestre, F.T.; Berdugo, M.; Tagesson, T.; Abdi, A.M.; Horion, S.; Fensholt, R. Vegetation Resistance to Increasing Aridity When Crossing Thresholds Depends on Local Environmental Conditions in Global Drylands. Commun. Earth Environ. 2024, 5, 379. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.; Swenson, N.; Zanne, A. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 461–471. [Google Scholar] [CrossRef]
- Carvajal, D.E.; Loayza, A.P.; Rios, R.S.; Delpiano, C.A.; Squeo, F.A. A hyper-arid environment shapes an inverse pattern of the fast–slow plant economics spectrum for above-, but not below-ground resource acquisition strategies. J. Ecol. 2019, 107, 1079–1092. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Ren, Z.; Li, C.; Fu, B.; Wang, S.; Zhou, W.; Stringer, L.C. Belowground Soil and Vegetation Components Change across the Aridity Threshold in Grasslands. Environ. Res. Lett. 2023, 18, 094014. [Google Scholar] [CrossRef]
- Fajardo, A.; Piper, F.I.; García-Cervigón, A.I. The Intraspecific Relationship between Wood Density, Vessel Diameter and Other Traits across Environmental Gradients. Funct. Ecol. 2022, 36, 1585–1598. [Google Scholar] [CrossRef]
- Lourenço, J.; Enquist, B.J.; von Arx, G.; Sonsin-Oliveira, J.; Morino, K.; Thomaz, L.D.; Milanez, C.R.D. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. New Phytol. 2022, 234, 50–63. [Google Scholar] [CrossRef]
- Osunkoya, O.; Sheng, T.; Mahmud, N.; Damit, N. Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island. Austral Ecol. 2007, 32, 191–201. [Google Scholar] [CrossRef]
- Martínez-Cabrera, H.I.; Schenk, H.J.; Cevallos-Ferriz, S.R.S.; Jones, C. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. Am. J. Bot. 2011, 98, 915–922. [Google Scholar] [CrossRef]
- Plavcová, L. Functional Biology of Wood: From Structure to Function. Habilitation Thesis, University of Hradec Králové, Hradec Králové, Czech Republic, 2023. [Google Scholar]
- Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Tyree, M.T. Hydraulic Limits on Tree Performance: Transpiration, Carbon Gain and Growth of Trees. Trees 2003, 17, 95–100. [Google Scholar] [CrossRef]
- Poorter, L.; McNeil, A.; Hurtado, V.-H.; Prins, H.H.T.; Putz, F.E. Bark traits and life-history strategies of tropical dry- and moist forest trees. Funct. Ecol. 2013, 28, 232–242. [Google Scholar] [CrossRef]
- Sperry, J.S.; Meinzer, F.C.; McCulloh, K.A. Safety and Efficiency Conflicts in Hydraulic Architecture: Scaling from Tissues to Trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef]
- Carlquist, S. Further Concepts in Ecological Wood Anatomy, with Comments on Recent Work in Wood Anatomy and Evolution. Aliso 1980, 9, 499–553. [Google Scholar] [CrossRef]
- Ewers, F.W.; Ewers, J.M.; Jacobsen, A.L.; López-Portillo, J. Vessel redundancy: Modeling safety in numbers. IAWA J. 2007, 28, 373–388. [Google Scholar] [CrossRef]
- Ziemińska, K.; Westoby, M.; Wright, I.J. Broad anatomical variation within a narrow wood density range—A study of twig wood across 69 Australian angiosperms. PLoS ONE 2015, 10, e0124892. [Google Scholar] [CrossRef]
- Yang, S.; Sterck, F.J.; Sass-Klaassen, U.; Cornelissen, J.H.C.; van Logtestijn, R.S.P.; Hefting, M.; Goudzwaard, L.; Zuo, J.; Poorter, L. Stem trait spectra underpin multiple functions of temperate tree species. Front. Plant Sci. 2022, 13, 769551. [Google Scholar] [CrossRef] [PubMed]
- Ziemińska, K.; Butler, D.W.; Gleason, S.M.; Wright, I.J.; Westoby, M. Fiber wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 2013, 5, plt046. [Google Scholar] [CrossRef]
- Carvajal, D.E.; Loayza, A.P.; Squeo, F.A. Functional Diversity and Spatial Association Analyses at Different Spatial Scales Reveal No Changes in Community Assembly Processes along an Aridity Gradient in the Atacama Desert. Sci. Rep. 2023, 13, 19905. [Google Scholar] [CrossRef] [PubMed]
- Mooney, H.A.; Dunn, E.L. Photosynthetic systems of Mediterranean-climate shrubs and trees of California and Chile. Am. Nat. 1970, 104, 447–453. [Google Scholar] [CrossRef]
- Ackerly, D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 2004, 74, 25–44. [Google Scholar] [CrossRef]
- Melián, E.; Gatica, G.; Pucheta, E. Compromisos de rasgos del leño en plantas del desierto: Un modelo triangular para comprender las variaciones intra e interespecíficas a lo largo de un gradiente de aridez. Austral Ecol. 2023, 49, e13370. [Google Scholar] [CrossRef]
- Wilson, B. Shrub stems: Form and function. In Plant Stems: Physiology and Functional Morphology; Gartner, B.L., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 91–102. [Google Scholar] [CrossRef]
- Götmark, K.; Götmark, E.; Jensen, A. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front. Plant Sci. 2016, 7, 1095. [Google Scholar] [CrossRef]
- Serra-Maluquer, X.; Gazol, A.; Anderegg, W.R.L.; Martínez-Vilalta, J.; Mencuccini, M.; Camarero, J.J. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Glob. Chang. Biol. 2022, 28, 3871–3882. [Google Scholar] [CrossRef]
- Venegas-González, A.; Chagas, M.P.; Anholetto Júnior, C.R.; Alvares, C.A.; Roig, F.A.; Tomazello Filho, M. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil. Theor Appl Climatol. 2015, 123, 233–245. [Google Scholar] [CrossRef]
- Santini, L.; Craven, D.; Daigard, R.; Rodríguez, O.; Quintilhan, M.T.; Gibson-Carpintero, S.; Aravena Torres, C.; Roig, F.A.; Muñoz, A.A.; Venegas-González, A. La sequía extrema desencadena cambios paralelos en rasgos anatómicos y fisiológicos de la madera en la línea arbolera superior de los Andes mediterráneos. Ecol. Eng. 2024, 200, 107186. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, H.; Peng, L.; Tao, Y.; Zhou, X.; Yin, B.; Fan, Z.; Zhang, J. Intraspecific Variability of Xylem Hydraulic Traits of Calligonum Mongolicum Growing in the Desert of Northern Xinjiang, China. Plants 2024, 13, 3005. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate Change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef] [PubMed]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. (Eds.) World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; Available online: http://wad.jrc.ec.europa.eu (accessed on 1 January 2024).
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Delpiano, C.A.; Prieto, I.; Loayza, A.P.; Carvajal, D.E.; Squeo, F.A. Different responses of leaf and root traits to changes in soil nutrient availability do not converge into a community-level plant economics spectrum. Plant Soil 2020, 450, 463–478. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Yeung, E.C.T.; Stasolla, C.; Sumner, M.J.; Huang, B.Q. (Eds.) Plant Microtechniques and Protocols, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- De Bello, F.; Carmona, C.P.; Dias, A.T.; Götzenberger, L.; Moretti, M.; Berg, M.P. Handbook of Trait-Based Ecology: From Theory to R Tools; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Oksanen, J. Vegan: Ecological Diversity. 2016. Available online: https://vegandevs.github.io/vegan/ (accessed on 1 January 2025).
- Tollefson, M. The base, stats, and graphics packages. In R 4 Quick Syntax Reference; Apress: Berkeley, CA, USA, 2022; pp. 15–30. [Google Scholar] [CrossRef]
- Bartoń, K.; MuMIn: Multi-Model Inference. R Package Version 1.48.11. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 1 January 2025).
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 January 2024).
- Morales, J.P.; Squeo, F.A.; Tracol, Y.; Armas, C.; Gutiérrez, J.R. Resource economics and coordination among above- and below-ground functional traits of three dominant shrubs from the Chilean coastal desert. J. Plant Ecol. 2015, 8, 70–78. [Google Scholar] [CrossRef][Green Version]
- Martínez-Cabrera, H.I.; Jones, C.; Espino, S.; Schenk, H.J. Wood Anatomy and Wood Density in Shrubs: Responses to Varying Aridity along Transcontinental Transects. Am. J. Bot. 2009, 96, 1388–1398. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Percolla, M.I.; De Guzman, M.E.; Traugh, C.A.; Tobin, M.F. Trade-Offs among Transport, Support, and Storage in Xylem from Shrubs in a Semiarid Chaparral Environment Tested with Structural Equation Modeling. Proc. Natl. Acad. Sci. USA 2021, 118, e2104336118. [Google Scholar] [CrossRef]
- Rosell, J.A. Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure. Integr. Comp. Biol. 2019, 59, 535–547. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L. Conflicting Demands on Angiosperm Xylem: Tradeoffs among Storage, Transport and Biomechanics. Plant Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Navarro, M.; Oyama, K.; García-Oliva, F.; Torres-Miranda, A.; de la Riva, E.G.; Terrazas, T. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AoB Plants 2021, 13, plab066. [Google Scholar] [CrossRef] [PubMed]
- Santini, N.S.; Cleverly, J.; Faux, R.; Lestrange, C.; Rumman, R.; Eamus, D. Xylem Traits and Water-Use Efficiency of Woody Species Co-Occurring in the Ti Tree Basin Arid Zone. Trees-Struct. Funct. 2016, 30, 295–303. [Google Scholar] [CrossRef]
- Li, X.; Blackman, C.J.; Choat, B.; Duursma, R.A.; Rymer, P.D.; Medlyn, B.E.; Tissue, D.T. Tree Hydraulic Traits Are Coordinated and Strongly Linked to Climate-of-Origin across a Rainfall Gradient. Plant Cell Environ. 2018, 41, 646–660. [Google Scholar] [CrossRef]
- Nolan, R.H.; Fairweather, K.A.; Tarin, T.; Santini, N.S.; Cleverly, J.; Faux, R.; Eamus, D. Divergence in Plant Water-Use Strategies in Semiarid Woody Species. Funct. Plant Biol. 2017, 44, 1134–1146. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios, R.S.; Silva Rojas, B.; Carvajal, D.E.; Loayza, A.P. Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants 2025, 14, 2709. https://doi.org/10.3390/plants14172709
Rios RS, Silva Rojas B, Carvajal DE, Loayza AP. Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants. 2025; 14(17):2709. https://doi.org/10.3390/plants14172709
Chicago/Turabian StyleRios, Rodrigo S., Bárbara Silva Rojas, Danny E. Carvajal, and Andrea P. Loayza. 2025. "Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments" Plants 14, no. 17: 2709. https://doi.org/10.3390/plants14172709
APA StyleRios, R. S., Silva Rojas, B., Carvajal, D. E., & Loayza, A. P. (2025). Hydraulic Safety Mechanisms Override Traditional Wood Economics in Hyper-Arid Environments. Plants, 14(17), 2709. https://doi.org/10.3390/plants14172709

