Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Variations in the Substrate Quality of T. chinensis Litter
2.2. Physicochemical Properties of Surface Soil
2.3. Ecological Stoichiometric Analysis of T. chinensis Litter and Surface Soil
2.3.1. Ecological Stoichiometric Ratios of C, N, and P in T. chinensis Litter
2.3.2. Ecological Stoichiometric Ratios of C, N, and P in Surface Soil
2.4. Changes in the Enzyme Activities in the Surface Soil
2.5. Relationships Between Indices of T. chinensis Litter Decomposition and Indices of Surface Soil Physicochemical and Enzyme Activities
2.5.1. Correlation Analysis
2.5.2. Analysis of the Structural Equation Modeling Results
3. Discussion
3.1. Characteristics of the Variation in the Substrate Quality of T. chinensis Litter
3.2. Effects of T. chinensis Litter Decomposition on the Physicochemical Properties of the Surface Soil
3.3. Effects of T. chinensis Litter Decomposition on Enzyme Activity in Surface Soil
4. Materials and Methods
4.1. Experimental Pool Setting in the Simulation
4.2. Collection and Treatment of T. chinensis Litter Samples
4.3. Experimental Setting
4.4. Indicator Measurement
4.5. Data Processing
- library(lavaan)
- model < - ‘
- # measurement model (latent and observed variables)
- Latent1 = ~item1 + item2 + item3
- Latent2 = ~item4 + item5 + item6
- # structural model (relationship between latent variables)
- Latent1~latent2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mamidala, H.P.; Ganguly, D.; Purvaja, R.; Singh, G.; Das, S.; Rao, M.N.; Ys, A.K.; Arumugam, K.; Ramesh, R. Interspecific variations in leaf litter decomposition and nutrient release from tropical mangroves. J. Environ. Econ. Manag. 2023, 328, 116902. [Google Scholar] [CrossRef] [PubMed]
- Jourgholami, M.; Sohrabi, H.; Venanzi, R.; Tavankar, F.; Picchio, R. Hydrologic responses of undecomposed litter mulch on compacted soil: Litter water holding capacity, runoff, and sediment. Catena 2022, 210, 105875. [Google Scholar] [CrossRef]
- Zhai, J.X.; Anderson, J.T.; Yan, G.X.; Cong, L.; Wu, Y.N.; Dai, L.Y.; Liu, J.K.; Zhang, Z.M. Decomposition and nutrient dynamics responses of plant litter to interactive effects of flooding and salinity in Yellow River Delta wetland in Northeastern China. Ecol. Indic. 2021, 120, 106943. [Google Scholar] [CrossRef]
- Stavi, I. On-site use of plant litter and yard waste as mulch in gardening and landscaping systems. Sustainability 2020, 12, 7521. [Google Scholar] [CrossRef]
- Volik, O.; Petrone, R.M.; Price, J.S. Soil respiration and litter decomposition along a salinity gradient in a saline boreal fen in the Athabasca Oil Sands Region. Geoderma 2021, 395, 115070. [Google Scholar] [CrossRef]
- Zhai, J.X.; Yan, G.X.; Cong, L.; Wu, Y.N.; Dai, L.Y.; Zhang, Z.M.; Zhang, M.X. Assessing the effects of salinity and inundation on halophytes litter breakdown in Yellow River Delta wetland. Ecol. Indic. 2020, 115, 106405. [Google Scholar] [CrossRef]
- Yang, H.J.; Xia, J.B.; Cui, Q.; Liu, J.T.; Wei, S.C.; Feng, L.; Dong, K.K. Effects of different Tamarix chinensis-grass patterns on the soil quality of coastal saline soil in the Yellow River Delta, China. Sci. Total Environ. 2021, 772, 145501. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.X.; Wang, S.Q.; Liu, X.J.; Sun, H.Y. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. Geoderma 2022, 422, 115954. [Google Scholar] [CrossRef]
- Feng, L.; Xia, J.B.; Liu, J.T.; Song, A.Y.; Chen, Y.P.; Zhao, X.M. Effects of mosaic biological soil crusts on vascular plant establishment in a coastal saline land of the Yellow River Delta, China. J. Plant Ecol. 2021, 14, 781–792. [Google Scholar] [CrossRef]
- Sun, J.; Xia, J.B.; Zhao, X.M.; Gao, F.L.; Zhao, W.L.; Xing, X.S.; Dong, M.M.; Chu, J.M. Enrichment of soil nutrients and salt ions with different salinities under Tamarix chinensis shrubs in the Yellow River Delta. Catena 2023, 232, 107433. [Google Scholar] [CrossRef]
- Xia, J.B.; Lang, Y.; Zhao, Q.K.; Liu, P.; Su, L. Photosynthetic characteristics of Tamarix chinensis under different groundwater depths in freshwater habitats. Sci. Total Environ. 2021, 761, 143221. [Google Scholar] [CrossRef]
- Xia, J.B.; Zhao, X.M.; Ren, J.Y.; Lang, Y.; Qu, F.Z.; Xu, H. Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions. Environ. Exp. Bot. 2017, 138, 173–183. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, Y.P.; Chen, G.C. Litter production and litter elemental composition in two rehabilitated Kandelia obovata mangrove forests in Jiulongjiang Estuary, China. Mar. Environ. Res. 2013, 83, 63–72. [Google Scholar] [CrossRef]
- Hoeber, S.; Fransson, P.; Weih, M.; Manzoni, S. Leaf litter quality coupled to Salix variety drives litter decomposition more than stand diversity or climate. Plant Soil 2020, 453, 313–328. [Google Scholar] [CrossRef]
- Yuan, P.; Han, H.; Zhao, H.M.; Li, C.J. Effects of bare versus sand burial on the decomposition and nutrient release of apophyges in extremely arid zones. Arid Zone Res. 2024, 41, 293–300. [Google Scholar]
- Ge, L.W.; Lv, R.H.; Li, L.; Zhang, H.T.; Zhou, Z.L.; Liang, J.Y. Litter decomposition of three types of forestsin south slope in saline environment. J. Northeast For. Univ. 2016, 44, 39–43+47. [Google Scholar]
- Li, Y.T.; Wei, H.X.; Wang, L.L.; Wang, X.; Du, Z.Y.; Gao, J.; Wang, Z.M.; Zhang, J.; Dong, Q.Q. Effects of litter input changes on soil organic carbon and its fractions in Tamarix chinensis plantation in the Yellow River Delta. J. Northeast For. Univ. 2024, 52, 64–70. [Google Scholar]
- Rawat, M.; Arunachalam, K.; Arunachalam, A.; Alatalo, J.M.; Pandey, R. Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the Indian Himalayas region. Ecol. Indic. 2020, 119, 106827. [Google Scholar] [CrossRef]
- Gao, P.Z.; Zhu, J.J.; Yan, Q.L.; Yang, K. The amelioration of degraded larch (Larix olgensis) soil depends on the proportion of Aralia elata litter in larch-A. elata agroforestry systems. J. For. Res. 2023, 34, 1065–1076. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Zhang, L.M.; Yuan, Y.S.; Jia, X.; Cheng, H.; Huangfu, C.H. Effects of soil moisture content and litter quality on decomposition of Carex thunbergii fine roots and leaf litter. Res. Environ. Sci. 2021, 34, 707–714. [Google Scholar]
- Ding, X.J.; Xie, G.L.; Jing, R.Y.; Ma, F.Y.; Liu, F.C.; Ma, H.L. Decomposition characteristics of litters in different mixed forest of Robinia pseudoacacia in Yellow River Delta. J. Soil Water Conserv. 2016, 30, 249–253. [Google Scholar]
- Steinke, T.D.; Charles, L.M. In vitro rates of decomposition of leaves of the Bruguiera gymnorrhiza as affected by the temperature and salinity. S. Afr. J. Bot. 1986, 52, 39–42. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Cao, X.W.; Zhou, Y.N.; Zhe, L.; Yang, Y.Z.; Zhao, D.L.; Li, Y.Q.; Xu, Z.C.; Zhang, C.S. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. J. Environ. Econ. Manag. 2023, 345, 118574. [Google Scholar] [CrossRef]
- Liu, C.H.; Wang, B.R.; Zhu, Y.Z.; Qu, T.T.; Xue, Z.J.; Li, X.Y.; Zhou, Z.C.; An, S.S. Eco-enzymatic stoichiometry and microbial non-homeostatic regulation depend on relative resource availability during litter decomposition. Ecol. Indic. 2022, 145, 109729. [Google Scholar] [CrossRef]
- Naidoo, G. Salt secretion in the mangrove Avicennia marina: Effects of hypersalinity. Physiol. Plant. 2025, 177, 70105. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.Z.; Lu, S.Y.; Liu, S.; Li, Z.R.; Hong, J.X.; Zhou, J.X.; Peng, X.W. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. J. For. Res. 2020, 31, 1949–1957. [Google Scholar] [CrossRef]
- Rostamizad, P.; Hosseini, V.; Samani, K.M. Effects of Persian turpentine tree litter and slope aspect on soil chemical properties in a Zagros forest, Iran. J. For. Res. 2020, 31, 1583–1588. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, J.B.; Yang, H.J.; Liu, J.T.; Shao, P.S. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef]
- Ao, D.; He, W.T.; Feng, C.L.; Chen, Y.J.; Wang, B.R.; Li, H.J.; An, S.S. Distribution characteristics of soil microbial biomass and extracellular enzyme activity in a typical glacial sub-basin on the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2024, 44, 1700–1716. [Google Scholar]
- Ruzek, M.; Tahovska, K.; Guggenberger, G.; Oulehle, F. Litter decomposition in European coniferous and broadleaf forests under experimentally elevated acidity and nitrogen addition. Plant Soil 2021, 463, 471–485. [Google Scholar] [CrossRef]
- Wang, J.S.; Pang, L.X.; Zhang, A.J.; Yang, X.N.; Liang, X.; Zhang, H.T. Study on the amelioration effect of forest litters on cohesive yellow loam soil in southern China. For Ecol. Sci. 2024, 39, 197–206. [Google Scholar]
- Sakar, F.S.; Güleryüz, G. Nitrogen mineralization in the oldest climax communities in the eastern Mediterranean region. J. For. Res. 2024, 35, 30. [Google Scholar] [CrossRef]
- Pereira, D.G.C.; Portugal, A.F.; Giustolin, T.A.; Maia, V.M.; Megda, M.X.V.; Kondo, M.K. Litter decomposition and nutrient release in different land use systems in the Brazilian semi-arid region. Catena 2023, 231, 107345. [Google Scholar] [CrossRef]
- Maxwell, T.L.; Augusto, L.; Bon, L.; Courbineau, A.; Altinalmazis-Kondylis, A.; Milin, S.; Bakker, M.R.; Jactel, H.; Fanin, N. Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biol. Biochem. 2020, 148, 107864. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, M.M.; Zhao, N.; Feng, F.J.; Zhao, M. Season-dependence of soil extracellular enzyme activities in a Pinus koraiensis forest on Changbai Mountain. J. For. Res. 2021, 32, 1713–1722. [Google Scholar] [CrossRef]
- Zhao, X.L.; Xie, P.L.; Zhang, X.Q.; Ou, Z.Y.; Ma, H.X.; Suo, C.; Ma, J.Q.; Wan, P. Characteristics of different aged plantations of Ormosia hosiei with regards to soil microbial biomass and enzymatic activities. J. For. Res. 2024, 35, 119. [Google Scholar] [CrossRef]
- Jing, X.K.; Zhang, Q.W.; Chen, S.H.; Shi, Y.L.; Zheng, L.; Liu, D.H.; Xu, M.X. Combined effects of soil colloid and soil extracellular enzymes on nitrogen loss from sloping farmland. Geoderma 2024, 450, 117041. [Google Scholar] [CrossRef]
- Ren, H.; Tang, Q.; Han, C.C.; Xun, S.H.; Zheng, C.S.; Mao, X.H. Effects of salt stress on root ions and enzymes and microbial population in rhizosphere soil of black locust (Robinia pseudoacacia L.). Shandong Agric. Sci. 2018, 50, 38–44. [Google Scholar]
- Men, X.X.; Bao, Y.; Wu, M.H.; Liao, C.; Cheng, X.L. Soil enzyme activities responded differently to short-term litter input manipulation under coniferous and broad-leaved forests in the subalpine area of Southwest China. For. Ecol. Manag. 2023, 546, 121360. [Google Scholar] [CrossRef]
- Dong, H.Z.; Xin, C.S.; Li, W.J. Soil salinity grading of cotton field in coastal saline area. Shandong Agric. Sci. 2012, 44, 36–39. [Google Scholar]
- Wang, Y.H.; Zhou, J.G.; Wang, Y.H. Production and decomposition and water-holding capacity of litter in Pinus massoniana forests in the Tieshanping of Chongqing. Res. Soil Water Conserv. 2021, 28, 98–104. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Kong, L.; Li, S.; Lun, P.; Gao, F.; Cao, Q.; Xia, J. Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils. Plants 2025, 14, 2674. https://doi.org/10.3390/plants14172674
Lu Y, Kong L, Li S, Lun P, Gao F, Cao Q, Xia J. Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils. Plants. 2025; 14(17):2674. https://doi.org/10.3390/plants14172674
Chicago/Turabian StyleLu, Yue, Lingtai Kong, Shihui Li, Pan Lun, Fanglei Gao, Qiqi Cao, and Jiangbao Xia. 2025. "Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils" Plants 14, no. 17: 2674. https://doi.org/10.3390/plants14172674
APA StyleLu, Y., Kong, L., Li, S., Lun, P., Gao, F., Cao, Q., & Xia, J. (2025). Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils. Plants, 14(17), 2674. https://doi.org/10.3390/plants14172674