Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry
Abstract
:1. Introduction
2. Research Methodology
3. Nutritional Values of the Botanical Parts of Morus sp.
3.1. Mulberry Fruits
3.2. Morus Leaves
3.3. Mulberry Twig and Root Bark
4. Phytochemical Composition of the Botanical Parts of Morus sp.
4.1. Mulberry Fruits
4.2. Mulberry Leaves
4.3. Mulberry Twig and Root Bark
5. Health Benefits and Effects
5.1. Antioxidant Potential
5.2. Anticancer Activity
5.3. Antidiabetic Therapy
5.4. Immunomodulatory Effect
6. Applications of Mulberry in the Food Industry
Application No. | Species/Part | Sample Type | Results/Mechanism | Ref. |
---|---|---|---|---|
US 11,090,349 B2 | Morus alba L.; Morus alba var. multicaulis L.; Morus nigra; Morus australis Poir. | Raw material, dry leaves | Inhibits α-glucosidase. It has the ability to control blood glucose levels and reduce melanin production for the treatment of conditions caused by pigmentation, such as freckles, chloasma, striae gravidarum, sensitive plaque and melanoma. | [191] |
AU 2019201188 B2 | M. alba root bark; acacia barks; Uncaria gambir, leaves; Curcuma longa L. | Mixture extract | The compound mixture, demonstrated beneficial synergistic effects with improved anti-inflammatory and anti-nociceptive efficacy, but also the attenuation of joint stiffness. | [192] |
US 10,588,927 B2 | Mulberry (M. alba) and poria cocos peel | Mixed extract | Used either as a food product or as a pharmaceutical composition with the aim of preventing or treating degenerative neurological diseases, having the ability to improve memory and protection on neurons. | [97] |
US 2020/0360457 A1 | M. alba and M. nigra root | Macerate extract | As an active ingredient, at least one extract from the root of the plant is used, according to the invention. It is rich in moracenine A, moracenin B, kuwanon C, wittiorumin F and mulberrofuran T, also used in cosmetic composition and a pharmaceutical or nutraceutical composition. | [193] |
US 2020/0178585 A1 | Morus sp. fruits | Savory concentrate/seasoning, with vegetable fat. | Used as a cooking aid in the preparation of starch-rich food. | [194] |
US 2020/0197429 A1 | Astragalus root; phlorizin; M. alba root bark; olive leaf and bitter melon. | Standardized extracts | Dietary supplement with the aim of controlling postprandial blood sugar. | [181] |
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gr, A.; Yankanchi, G.M.; Gowda, M. Chemical Composition and Pharmacological Functions and Principles of Mulberry: A Review. Int. J. Appl. Res. 2017, 3, 251–254. [Google Scholar]
- Khalifa, I.; Zhu, W.; Li, K. Polyphenols of Mulberry Fruits as Multifaceted Compounds: Compositions, Metabolism, Health Benefits, and Stability—A Structural Review. J. Funct. Foods 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Investigation of Saccharomyces Cerevisiae in Fermented Mulberry Juice|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Investigation-Of-Saccharomyces-Cerevisiae-In-Juice-Minh-Thi/68008c51f29a627450a7785dfdc4a9e1c09bdcf2 (accessed on 16 September 2021).
- Wei, H.; Liu, S.; Liao, Y.; Ma, C.; Wang, D.; Tong, J.; Feng, J.; Yi, T.; Zhu, L. A Systematic Review of the Medicinal Potential of Mulberry in Treating Diabetes Mellitus. Am. J. Chin. Med. 2018, 46, 1743–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, H.; Venkataramegowda, S. Murthy Antioxidant and Medicinal Properties of Mulberry (Morus sp.): A Review. World J. Pharm. Res. 2014, 3, 320–343. [Google Scholar]
- Turan, I.; Demir, S.; Kilinc, K.; Burnaz, N.A.; Yaman, S.O.; Akbulut, K.; Mentese, A.; Aliyazicioglu, Y.; Deger, O. Antiproliferative and Apoptotic Effect of Morus nigra Extract on Human Prostate Cancer Cells. Saudi Pharm. J. 2017, 25, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moise, A.; Marghitas, L.; Bobis, O.; Copaciu, F.; Dezmirean, D. Morus spp. Material Conservation and Characterization and Its Importance for Romanian Sericulture and GCEARS-PSP Development—A Review. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2018, 75, 57. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Bao, T.; Gowd, V. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress. Oxid. Med. Cell. Longev. 2017, 2017, 1594963. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, R.; Kour, H. Polyploidy in Agriculture: With Special Reference to Mulberry. J. Pharmacogn. Phytochem. 2019, 8, 1795–1808. [Google Scholar]
- Shafiei, D.; Prof, B. Cytogenetic Characterization of a Triploid Mulberry (Morus spp.) Cultivar Suvarna-2. Ann. Plant Sci. 2018, 7, 2156–2159. [Google Scholar] [CrossRef] [Green Version]
- Lucia, K.; Grygorieva, O.; Eva, I.; Terentjeva, M.; Brindza, J. Biological Properties of Black Mulberry-Derived Food Products (Morus nigra L.). J. Berry Res. 2016, 6, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Rafati, M.; Khorasani, N.; Moattar, F.; Shirvany, A.; Moraghebi, F.; Hosseinzadeh, S. Phytoremediation Potential of Populus Alba and Morus alba for Cadmium, Chromuim and Nickel Absorption from Polluted Soil. Int. J. Environ. Res. 2011, 5, 961–970. [Google Scholar] [CrossRef]
- Rohela, G.K.; Muttanna, P.S.; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An Ideal Plant for Sustainable Development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Begum, N.; Kiran, B.R.; Purushothama, R. Mulberry Cultivation Practices and Diseases: An Overview. Int. J. Curr. Eng. Sci. Res. 2018, 5, 61–68. [Google Scholar]
- Hutasoit, R.; Ginting, S.; Sirait, J.; Tarigan, A. Productivity and Chemical Composition of Several Mulberry Species (Morus spp.) Agains Spacing Plant, and Cutting Age. Int. J. Trop. Vet. Biomed. Res. 2016, 1, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, P.; Velayudhan, S.; Gowda, M.S.; Kumar, J.; Sivaprasad, V. Soil Fertility Status of Mulberry (Morus alba L.) Soils under Bivoltine Sericultural Areas of North, South and Eastern Regions of Karnataka. Int. J. Adv. Res. 2018, 6, 132–140. [Google Scholar] [CrossRef] [Green Version]
- CABI. Morus nigra. Available online: https://www.cabi.org/isc/datasheet/34830 (accessed on 23 June 2021).
- Heuzé, V.; Tran, G.; Lebas, F. Dud Negru (Morus nigra). Available online: https://www.feedipedia.org/node/122 (accessed on 23 June 2021).
- Hutasoit, R.; Ginting, S.P.; Tarigan, A. Effect of Cutting Interval on Yield, Nutrient Composition and Digestibility Several Species of Mulberry. In Proceedings of the International Seminar on Livestock Production and Veterinary Technology, Bali, Indonesia, 10 August 2016; Indonesian Center for Animal Research and Development (ICARD): Kota Bogor, Indonesia, 2016; pp. 476–485. [Google Scholar]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical Composition of White (Morus Alba), Red (Morus Rubra) and Black (Morus Nigra) Mulberry Fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Mohiuddin, E.; Usmanghani, K.; Akram, M.; Asif, M.; Naveed, A.; Shah, P.; Uzair, M. Morus nigra-LA. J. Med. Plant Res. 2011, 5, 5197–5199. [Google Scholar]
- Nguyen, P.M.; Niemeyer, E.D. Effects of Nitrogen Fertilization on the Phenolic Composition and Antioxidant Properties of Basil (Ocimum basilicum L.). J. Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Minh, N.P.; Dao, D.T.A. Investigation of Saccharomyces Cerevisiae in Fermented Mulberry Juice. Middle East J. Sci. Res. 2013, 17, 814–820. [Google Scholar]
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; Guimarães, R.d.C.A.; Freitas, K.d.C. Nutraceutical and Medicinal Potential of the Morus Species in Metabolic Dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef] [Green Version]
- Okatan, V. Phenolic Compounds and Phytochemicals in Fruits of Black Mulberry (L.) Genotypes from the Aegean Region in Turkey. Folia Hortic. 2018, 30, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Aboulfadl, M.; Hashem, H.; Assous, M.T.M. Improvement the Nutritional Value of Especial Biscuits (Children School Meal) by Using Some Fruits and Vegetables. J. Appl. Sci. Res. 2013, 9, 5679–5691. [Google Scholar]
- Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D.; Piechocka, J.; Szulc, P.; Dziedziński, M. Antioxidant Potential of Various Solvent Extract from Morus alba Fruits and Its Major Polyphenols Composition. Ciênc. Rural 2019, 50. [Google Scholar] [CrossRef] [Green Version]
- Skender, A.; Kurtovic, M.; Becirspahic, D. Some Physicochemical Characteristics of Black and White Mulberry Genotypes from Bosnia and Herzegovina. Genetika 2019, 51, 1089–1101. [Google Scholar] [CrossRef]
- Bobis, O.; Dezmirean, D.S.; Mărghitaș, L.A.; Bonta, V.; Urcan, A.; Pașca, C.; Moise, A.R. Morus sp. for Revigorating Silkworm Breeding in Romania and Promoting Health Benefits of Leaves and Fruits. Sci. Pap.—Ser. B Hortic. 2018, LXI, 211–215. [Google Scholar]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)Phenolic Compounds and Antioxidant Activity of White (Morus alba) and Black (Morus nigra) Mulberry Leaves: Their Potential for New Products Rich in Phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Paunović, S.M.; Mašković, P.; Milinković, M. Determination of Primary Metabolites, Vitamins and Minerals in Black Mulberry (Morus nigra) Berries Depending on Altitude. Erwerbs-Obstbau 2020, 62, 355–360. [Google Scholar] [CrossRef]
- Ercisli, S.; Tosun, M.; Duralija, B.; Voća, S.; Sengul, M.; Turan, M. Phytochemical Content of Some Black (Morus nigra L.) and Purple (Morus rubra L.) Mulberry Genotypes. Food Technol. Biotechnol. 2010, 48, 102–106. [Google Scholar]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of Iron Absorption: Ascorbic Acid and Other Organic Acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.-J. Chemical Properties in Fruits of Mulberry Species from the Xinjiang Province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Elmacı, Y.; Altuğ, T. Flavour Evaluation of Three Black Mulberry (Morus nigra) Cultivars Using GC/MS, Chemical and Sensory Data. J. Sci. Food Agric. 2002, 82, 632–635. [Google Scholar] [CrossRef]
- Perez, R.; Regueiro, J.; Alonso, E.; Pastrana, L.; Simal-Gandara, J. Influence of Alcoholic Fermentation Process on Antioxidant Activity and Phenolic Levels from Mulberries (Morus nigra L.). LWT—Food Sci. Technol. 2011, 44, 1793–1801. [Google Scholar] [CrossRef]
- Kadam, R.; Dhumal, N.; Khyade, V. The Mulberry, Morus alba (L.): The Medicinal Herbal Source for Human Health. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2941–2964. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Chan, K.W.; Sarfraz, R.A.; Uddin, M.K. Proximate Composition and Antioxidant Potential of Leaves from Three Varieties of Mulberry (Morus sp.): A Comparative Study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salcedo, E.M.; Amorós, A.; Hernández, F.; Martínez, J.J. Physicochemical Properties of White (Morus alba) and Black (Morus nigra) Mulberry Leaves, a New Food Supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Peng, Y.; He, J.; Xiao, D.; Chen, C.; Li, F.; Huang, R.; Yin, Y. Dietary Mulberry Leaf Powder Affects Growth Performance, Carcass Traits and Meat Quality in Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1934–1945. [Google Scholar] [CrossRef]
- Fan, L.; Peng, Y.; Wu, D.; Hu, J.; Shi, X.; Yang, G.; Li, X. Morus nigra L. Leaves Improve the Meat Quality in Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.-J.; Wang, B.; Jiang, C.-S.; Xie, B.-G.; Liu, A.-H.; Li, S.-W.; Guo, Y.-W.; Li, J.; Mao, S.-C. Rearranged Diels-Alder Adducts and Prenylated Flavonoids as Potential PTP1B Inhibitors from Morus nigra. J. Nat. Prod. 2021, 84, 2303–2311. [Google Scholar] [CrossRef]
- Zoofishan, Z.; Hohmann, J.; Hunyadi, A. Phenolic Antioxidants of Morus nigra Roots, and Antitumor Potential of Morusin. Phytochem. Rev. 2018, 17, 1031–1045. [Google Scholar] [CrossRef]
- Kay, C.; Cassidy, A. Encyclopedia of Human Nutrition: Phytochemicals: Classification and Occurrence; Academic Press: Cambridge, MA, USA, 2013; pp. 490–497. ISBN 978-0-12-375083-9. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- De Pádua Lúcio, K.; Rabelo, A.C.S.; Araújo, C.M.; Brandão, G.C.; de Souza, G.H.B.; da Silva, R.G.; de Souza, D.M.S.; Talvani, A.; Bezerra, F.S.; Cruz Calsavara, A.J.; et al. Anti-Inflammatory and Antioxidant Properties of Black Mulberry (Morus nigra L.) in a Model of LPS-Induced Sepsis. Oxid. Med. Cell. Longev. 2018, 2018, e5048031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttisansanee, U.; Charoenkiatkul, S.; Jongruaysup, B.; Tabtimsri, S.; Siriwan, D.; Temviriyanukul, P. Mulberry Fruit Cultivar “Chiang Mai” Prevents Beta-Amyloid Toxicity in PC12 Neuronal Cells and in a Drosophila Model of Alzheimer’s Disease. Molecules 2020, 25, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negro, C.; Aprile, A.; De Bellis, L.; Miceli, A. Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Pu, J.; Liu, D.; Yu, W.; Shao, Y.; Yang, G.; Xiang, Z.; He, N. Anti-Inflammatory and Antinociceptive Properties of Flavonoids from the Fruits of Black Mulberry (Morus nigra L.). PLoS ONE 2016, 11, e0153080. [Google Scholar] [CrossRef]
- Hooshmand, S.; Mahdinezhad, M.R.; Taraz Jamshidi, S.; Soukhtanloo, M.; Mirzavi, F.; Iranshahi, M.; Hasanpour, M.; Ghorbani, A. Morus nigra L. Extract Prolongs Survival of Rats with Hepatocellular Carcinoma. Phytother. Res. PTR 2021, 35, 3365–3376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bao, T.; Chen, W. Comparison of the Protective Effect of Black and White Mulberry against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Damage. Food Chem. 2018, 243, 65–73. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect of Cellulase and Lactobacillus Casei on Ensiling Characteristics, Chemical Composition, Antioxidant Activity, and Digestibility of Mulberry Leaf Silage. J. Dairy Sci. 2019, 102, 9919–9931. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Zhang, X.; Jin, Q.; Li, J. Phenolic Profiles, Antioxidant Activities, and Neuroprotective Properties of Mulberry (Morus Atropurpurea Roxb.) Fruit Extracts from Different Ripening Stages. J. Food Sci. 2016, 81, C2439–C2446. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Guo, Z.; Sun, B.; Zhao, Y. Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC-FT-ICR MS/MS. J. Agric. Food Chem. 2017, 65, 6211–6221. [Google Scholar] [CrossRef]
- Przeor, M.; Flaczyk, E.; Kmiecik, D.; Buchowski, M.S.; Staniek, H.; Tomczak-Graczyk, A.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Foksowicz-Flaczyk, J. Functional Properties and Antioxidant Activity of Morus alba L. Leaves Var. Zolwinska Wielkolistna (WML-P)-The Effect of Controlled Conditioning Process. Antioxidants 2020, 9, 668. [Google Scholar] [CrossRef]
- Kim, M.; Nam, D.-G.; Ju, W.-T.; Choe, J.-S.; Choi, A.-J. Response Surface Methodology for Optimization of Process Parameters and Antioxidant Properties of Mulberry (Morus alba L.) Leaves by Extrusion. Molecules 2020, 25, 5231. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Ayvaz, H.; Ruginǎ, D.; Leopold, L.; Stǎnilǎ, A.; Socaciu, C.; Tăbăran, F.; Luput, L.; Mada, D.C.; Pintea, A.; et al. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential. Plant Foods Hum. Nutr. Dordr. Neth. 2017, 72, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, G.-I.; Almajano, M.P. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shebis, Y.; Iluz, D.; Kinel-Tahan, Y.; Dubinsky, Z.; Yehoshua, Y. Natural Antioxidants: Function and Sources. Food Nutr. Sci. 2013, 4, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Ahlawat, T.; Patel, N.L.; Agnihotri, R.; Patel, C.R.; Tandel, Y. Black Mulberry (Morus nigra); Narendra Publishing House: Delhi, India, 2016; pp. 195–212. ISBN 978-93-86110-09-1. [Google Scholar]
- Liu, P.; Li, W.; Hu, Z.; Qin, X.; Liu, G. Isolation, Purification, Identification, and Stability of Anthocyanins from Lycium Ruthenicum Murr. LWT 2020, 126, 109334. [Google Scholar] [CrossRef]
- Zeng, Q.-W.; Zhang, C.; Chen, H.-Y.; Ding, T.-L.; Zhao, A.-C.; Xiang, Z.-H.; He, N.-J. Introduction trial of medicine mulberry (Morus nigra) in Chongqing. China J. Chin. Mater. Med. 2016, 41, 1450–1455. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Kostić, E.; Arsić, B.; Mitić, M.; Dimitrijević, D.; Marinkovic, E.P. Optimization of the Solid-Liquid Extraction Process of Phenolic Compounds from Mulberry Fruit. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Peiretti, P.G. Identification of Polyphenolic Compounds in Edible Wild Fruits Grown in the North-West of Italy by Means of HPLC-DAD-ESI HRMS. Plant Foods Hum. Nutr. Dordr. Neth. 2020, 75, 420–426. [Google Scholar] [CrossRef]
- Mascarello, A.; Orbem Menegatti, A.C.; Calcaterra, A.; Martins, P.G.A.; Chiaradia-Delatorre, L.D.; D’Acquarica, I.; Ferrari, F.; Pau, V.; Sanna, A.; De Logu, A.; et al. Naturally Occurring Diels-Alder-Type Adducts from Morus nigra as Potent Inhibitors of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase B. Eur. J. Med. Chem. 2018, 144, 277–288. [Google Scholar] [CrossRef]
- Figueredo, K.C.; Guex, C.G.; Reginato, F.Z.; da Silva, A.R.H.; Cassanego, G.B.; Lhamas, C.L.; Boligon, A.A.; Lopes, G.H.H.; de Freitas Bauermann, L. Safety Assessment of Morus nigra L. Leaves: Acute and Subacute Oral Toxicity Studies in Wistar Rats. J. Ethnopharmacol. 2018, 224, 290–296. [Google Scholar] [CrossRef]
- Dalmagro, A.; Camargo, A.; Filho, H.; Valcanaia, M.; Jesus, P.; Zeni, A. Seasonal Variation in the Antioxidant Phytocompounds Production from the Morus nigra Leaves. Ind. Crops Prod. 2018, 123, 323–330. [Google Scholar] [CrossRef]
- D’Urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; de Vos, R.C.H. Identification of Bioactive Phytochemicals in Mulberries. Metabolites 2019, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Pawlowska, A.M.; Oleszek, W.; Braca, A. Quali-Quantitative Analyses of Flavonoids of Morus nigra L. and Morus alba L. (Moraceae) Fruits. J. Agric. Food Chem. 2008, 56, 3377–3380. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.; Niu, W.; Ding, Y.; Zhang, R.; Shang, X.; Shang, Z. Analysis and Characterisation of Anthocyanins in Mulberry Fruit. Czech J. Food Sci. 2009, 28, 117–126. [Google Scholar] [CrossRef]
- Qi, X.; Shuai, Q.; Chen, H.; Fan, L.; Zeng, Q.; He, N. Cloning and Expression Analyses of the Anthocyanin Biosynthetic Genes in Mulberry Plants. Mol. Genet. Genom. MGG 2014, 289, 783–793. [Google Scholar] [CrossRef]
- Zelová, H.; Hanáková, Z.; Čermáková, Z.; Šmejkal, K.; Dalĺ Acqua, S.; Babula, P.; Cvačka, J.; Hošek, J. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus alba and Morus nigra. J. Nat. Prod. 2014, 77, 1297–1303. [Google Scholar] [CrossRef]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and Quantification of Phenolic Acids and Flavonol Glycosides in Tunisian Morus Species by HPLC-DAD and HPLC–MS. J. Funct. Foods 2012, 1, 367–374. [Google Scholar] [CrossRef]
- Chen, H.-D.; Ding, Y.; Yang, S.-P.; Li, X.-C.; Wang, X.-J.; Zhang, H.-Y.; Ferreira, D.; Yue, J.-M. ChemInform Abstract: Morusalbanol A, a Neuro-Protective Diels-Alder Adduct with an Unprecedented Architecture from Morus alba. Tetrahedron 2012, 68, 6054–6058. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, J.; Ma, L.; Wen, D.; Chen, F.; Li, J. Identification of Polyphenols in Mulberry (Genus Morus) Cultivars by Liquid Chromatography with Time-of-Flight Mass Spectrometer. J. Food Compos. Anal. 2017, 63, 55–64. [Google Scholar] [CrossRef]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin Composition of Different Wild and Cultivated Berry Species. LWT—Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)Phenolic Fingerprint and Chemometric Analysis of White (Morus alba L.) and Black (Morus nigra L.) Mulberry Leaves by Using a Non-Targeted UHPLC–MS Approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef]
- Miljkovic, V.; Nikolic, L.; Radulović, N.; Arsic, B.; Nikolić, G.; Kostic, D.; Bojanic, Z.; Zvezdanović, J. Flavonoids in Mulberry Fruit. Identification of Nonanthocyanin Phenolics in Some Mulberry Fruit Species (Morus alba L., Morus rubra L. and Morus nigra L.). Agro Food Ind. Hi-Tech 2015, 26, 38–42. [Google Scholar]
- Özgen, M.; Serce, S.; Kaya, C. Phytochemical and Antioxidant Properties of Anthocyanin-Rich Morus nigra and Morus rubra Fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar] [CrossRef]
- Flaczyk, E.; Kobus-Cisowska, J.; Przeor, M.; Korczak, J.; Remiszewski, M.; Korbas, E.; Buchowski, M. Chemical Characterization and Antioxidative Properties of Polish Variety of Morus alba L. Leaf Aqueous Extracts from the Laboratory and Pilot-Scale Processes. Agric. Sci. 2013, 4, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Dalmagro, A.P.; Camargo, A.; Zeni, A.L.B. Morus nigra and Its Major Phenolic, Syringic Acid, Have Antidepressant-like and Neuroprotective Effects in Mice. Metab. Brain Dis. 2017, 32, 1963–1973. [Google Scholar] [CrossRef]
- Dalmagro, A.P.; Camargo, A.; Severo Rodrigues, A.L.; Zeni, A.L.B. Involvement of PI3K/Akt/GSK-3β Signaling Pathway in the Antidepressant-like and Neuroprotective Effects of Morus nigra and Its Major Phenolic, Syringic Acid. Chem. Biol. Interact. 2019, 314, 108843. [Google Scholar] [CrossRef]
- Kim, J.-H.; Doh, E.-J.; Lee, G. Quantitative Comparison of the Marker Compounds in Different Medicinal Parts of Morus alba L. Using High-Performance Liquid Chromatography-Diode Array Detector with Chemometric Analysis. Molecules 2020, 25, 5592. [Google Scholar] [CrossRef]
- Choi, D.W.; Cho, S.W.; Lee, S.-G.; Choi, C.Y. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. Int. J. Mol. Sci. 2020, 21, 6541. [Google Scholar] [CrossRef]
- Chung, H.; Kim, J.; Kim, J.; Kwon, O. Acute Intake of Mulberry Leaf Aqueous Extract Affects Postprandial Glucose Response after Maltose Loading: Randomized Double-Blind Placebo-Controlled Pilot Study. J. Funct. Foods 2013, 5, 1502–1506. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Shiwaku, K.; Katsube, T.; Kitajima, K.; Anuurad, E.; Yamasaki, M.; Yamane, Y. Mulberry (Morus alba L.) Leaves and Their Major Flavonol Quercetin 3-(6-Malonylglucoside) Attenuate Atherosclerotic Lesion Development in LDL Receptor-Deficient Mice. J. Nutr. 2005, 135, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, X.; Zheng, H.; Liu, Q.; Zhang, H.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Morusin Induces Apoptosis and Autophagy via JNK, ERK and PI3K/Akt Signaling in Human Lung Carcinoma Cells. Chem. Biol. Interact. 2020, 331, 109279. [Google Scholar] [CrossRef]
- Jung, J.-W.; Park, J.-H.; Lee, Y.-G.; Seo, K.-H.; Oh, E.-J.; Lee, D.-Y.; Lim, D.-W.; Han, D.; Baek, N.-I. Three New Isoprenylated Flavonoids from the Root Bark of Morus alba. Molecules 2016, 21, 1112. [Google Scholar] [CrossRef]
- Nomura, T.; Fukai, T.; Katayanagi, M. Studies on the Constituents of the Cultivated Mulberry Tree. III. Isolation of Four New Flavones, Kuwanon A, B, C and Oxydihydromorusin from the Root Bark of Morus alba L. Chem. Pharm. Bull. 1978, 26, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Ruan, J.; Huang, P.; Sun, F.; Zheng, D.; Zhang, Y.; Wang, T. The Structure–Activity Relationship Review of the Main Bioactive Constituents of Morus Genus Plants. J. Nat. Med. 2020, 74, 331–340. [Google Scholar] [CrossRef]
- Ha, M.T.; Seong, S.H.; Nguyen, T.D.; Cho, W.-K.; Ah, K.J.; Ma, J.Y.; Woo, M.H.; Choi, J.S.; Min, B.S. Chalcone Derivatives from the Root Bark of Morus alba L. Act as Inhibitors of PTP1B and α-Glucosidase. Phytochemistry 2018, 155, 114–125. [Google Scholar] [CrossRef]
- Kuk, E.B.; Jo, A.R.; Oh, S.I.; Sohn, H.S.; Seong, S.H.; Roy, A.; Choi, J.S.; Jung, H.A. Anti-Alzheimer’s Disease Activity of Compounds from the Root Bark of Morus alba L. Arch. Pharm. Res. 2017, 40, 338–349. [Google Scholar] [CrossRef]
- Choi, S.Z.; Sohn, M.W.; Go, H.S.; Ryu, J.Y.; Jeong, J.S.; Choi, S.H.; Kim, E.J.; Cho, Y.W.; Kim, S.Y. Composition Containing Mixed Extract of Mulberry and Poria Cocos Peel. U.S. Patent 10,588,927, 2020. [Google Scholar]
- Inyai, C.; Komaikul, J.; Kitisripanya, T.; Tanaka, H.; Sritularak, B.; Putalun, W. Development of a Rapid Immunochromatographic Strip Test for the Detection of Mulberroside A. Phytochem. Anal. 2015, 26, 423–427. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.H.; Jo, Y.-Y.; Kim, S.-W.; Kim, H.-B.; Kweon, H.; Ju, W.-T. Characterization of Mulberry Root Bark Extracts (Morus alba L.) Based on the Extraction Temperature and Solvent. Int. J. Ind. Entomol. 2020, 41, 36–44. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021, 26, 4212. [Google Scholar] [CrossRef]
- Zoofishan, Z.; Kúsz, N.; Csorba, A.; Tóth, G.; Hajagos-Tóth, J.; Kothencz, A.; Gáspár, R.; Hunyadi, A. Antispasmodic Activity of Prenylated Phenolic Compounds from the Root Bark of Morus nigra. Molecules 2019, 24, 2497. [Google Scholar] [CrossRef] [Green Version]
- Khalid, N.; Fawad, S.A.; Ahmed, I. Antimicrobial Activity, Phytochemical Profile and Trace Minerals of Black Mulberry (Morus nigra L.) Fresh juice. Pak. J. Bot. 2011, 43, 91–96. [Google Scholar]
- Zeni, A.L.B.; Moreira, T.D.; Dalmagro, A.P.; Camargo, A.; Bini, L.A.; Simionatto, E.L.; Scharf, D.R. Evaluation of Phenolic Compounds and Lipid-Lowering Effect of Morus nigra Leaves Extract. An. Acad. Bras. Ciênc. 2017, 89, 2805–2815. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids Extracted from Mulberry (Morus alba L.) Leaf Improve Skeletal Muscle Mitochondrial Function by Activating AMPK in Type 2 Diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Cheng, K.-W.; Zhu, Q.; Wang, X.-C.; Lin, Z.-X.; Wang, M. Tyrosinase Inhibitory Constituents from the Roots of Morus nigra: A Structure-Activity Relationship Study. J. Agric. Food Chem. 2010, 58, 5368–5373. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, M.; Nie, W.-J.; Yang, X.-R.; Zeng, X.-C. Effects of the Ethanol Extract of Black Mulberry (Morus nigra L.) Fruit on Experimental Atherosclerosis in Rats. J. Ethnopharmacol. 2017, 200, 228–235. [Google Scholar] [CrossRef]
- Fahimi, Z.; Jahromy, M.H. Effects of Blackberry (Morus nigra) Fruit Juice on Levodopa-Induced Dyskinesia in a Mice Model of Parkinson’s Disease. J. Exp. Pharmacol. 2018, 10, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. IJCB 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. IJBS 2008, 4, 89–96. [Google Scholar]
- Cavalu, S.; Damian, G. Rotational Correlation Times of 3-Carbamoyl-2,2,5,5-Tetramethyl-3-Pyrrolin-1-Yloxy Spin Label with Respect to Heme and Nonheme Proteins. Biomacromolecules 2003, 4, 1630–1635. [Google Scholar] [CrossRef]
- Seal, T.; Chaudhuri, K. Effect of Solvent Extraction System on the Antioxidant Activity of Some Selected Wild Leafy Vegetables of Meghalaya State in India. Int. Res. J. Nat. Appl. Sci. 2015, 2, 69–83. [Google Scholar]
- Araujo, C.M.; Lúcio, K.d.P.; Silva, M.E.; Isoldi, M.C.; de Souza, G.H.B.; Brandão, G.C.; Schulz, R.; Costa, D.C. Morus nigra Leaf Extract Improves Glycemic Response and Redox Profile in the Liver of Diabetic Rats. Food Funct. 2015, 6, 3490–3499. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, M.; Liu, X. Insight into the Conformational and Functional Properties of Myofibrillar Protein Modified by Mulberry Polyphenols. Food Chem. 2020, 308, 125592. [Google Scholar] [CrossRef]
- Li, E.; Yang, S.; Zou, Y.; Cheng, W.; Li, B.; Hu, T.; Li, Q.; Wang, W.; Liao, S.; Pang, D. Purification, Characterization, Prebiotic Preparations and Antioxidant Activity of Oligosaccharides from Mulberries. Molecules 2019, 24, 2329. [Google Scholar] [CrossRef] [Green Version]
- Pannakal, S.T.; Eilstein, J.; Prasad, A.; Ekhar, P.; Shetty, S.; Peng, Z.; Bordier, E.; Boudah, S.; Paillat, L.; Marrot, L.; et al. Comprehensive Characterization of Naturally Occurring Antioxidants from the Twigs of Mulberry (Morus alba) Using on-Line High-Performance Liquid Chromatography Coupled with Chemical Detection and High-Resolution Mass Spectrometry. Phytochem. Anal. PCA 2021. [Google Scholar] [CrossRef]
- Radojković, M.M.; Zeković, Z.P.; Dojčinović, B.P.; Stojanović, Z.S.; Cvetanović, A.D.; Manojlović, D.D. Characterization of Morus Species in Respect to Micro, Macro, and Toxic Elements. Acta Period. Technol. 2014, 45, 229–237. [Google Scholar] [CrossRef]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant Activity of Mulberry Fruit Extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- Hassimotto, N.; Genovese, M.; Lajolo, F. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
- Turgut, N.H.; Mert, D.G.; Kara, H.; Egilmez, H.R.; Arslanbas, E.; Tepe, B.; Gungor, H.; Yilmaz, N.; Tuncel, N.B. Effect of Black Mulberry (Morus nigra) Extract Treatment on Cognitive Impairment and Oxidative Stress Status of d-Galactose-Induced Aging Mice. Pharm. Biol. 2016, 54, 1052–1064. [Google Scholar] [CrossRef]
- Batra, P.; Sharma, A.K. Anti-Cancer Potential of Flavonoids: Recent Trends and Future Perspectives. 3 Biotech 2013, 3, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol Content and Antioxidant Properties of Underutilized Fruits. J. Food Sci. Technol. 2015, 52, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Farzaei, M.H.; Rahimi, R.; Nikfar, S.; Abdollahi, M. Effect of Resveratrol on Cognitive and Memory Performance and Mood: A Meta-Analysis of 225 Patients. Pharmacol. Res. 2018, 128, 338–344. [Google Scholar] [CrossRef]
- Marinella, M.A. Indomethacin and Resveratrol as Potential Treatment Adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract. 2020, 74, e13535. [Google Scholar] [CrossRef]
- Wen, P.; Hu, T.; Linhardt, R.; Liao, S.; Wu, H.; Zou, Y. Mulberry: A Review of Bioactive Compounds and Advanced Processing Technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin Extraction from Plant Tissues: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3072–3083. [Google Scholar] [CrossRef]
- Wild, C.; Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention; International Agency for Research on Cancer: Lyon, France, 2020. Available online: http://publications.iarc.fr/586 (accessed on 30 December 2021). Licence: CC BY-NC-ND3.0 IGO.
- Chang, B.-Y.; Koo, B.-S.; Kim, S.-Y. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021, 10, 1966. [Google Scholar] [CrossRef]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional Constituents of Mulberry and Their Potential Applications in Food and Pharmaceuticals: A Review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Lim, S.H.; Choi, C.-I. Pharmacological Properties of Morus nigra L. (Black Mulberry) as A Promising Nutraceutical Resource. Nutrients 2019, 11, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujtaba, S.F.; Masih, A.P.; Alqasmi, I.; Alsulimani, A.; Khan, F.H.; Haque, S. Oxidative-Stress-Induced Cellular Toxicity and Glycoxidation of Biomolecules by Cosmetic Products under Sunlight Exposure. Antioxidants 2021, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Bharani, S.E.R.; Asad, M.; Dhamanigi, S.S.; Chandrakala, G.K. Immunomodulatory Activity of Methanolic Extract of Morus alba Linn. (Mulberry) Leaves. Pak. J. Pharm. Sci. 2010, 23, 63–68. [Google Scholar]
- Cho, E.; Chung, E.Y.; Jang, H.-Y.; Hong, O.-Y.; Chae, H.S.; Jeong, Y.-J.; Kim, S.-Y.; Kim, B.-S.; Yoo, D.J.; Kim, J.-S.; et al. Anti-Cancer Effect of Cyanidin-3-Glucoside from Mulberry via Caspase-3 Cleavage and DNA Fragmentation in Vitro and in Vivo. Anticancer Agents Med. Chem. 2017, 17, 1519–1525. [Google Scholar] [CrossRef]
- Chon, S.-U.; Kim, Y.-M.; Park, Y.-J.; Heo, B.-G.; Park, Y.-S.; Gorinstein, S. Antioxidant and Antiproliferative Effects of Methanol Extracts from Raw and Fermented Parts of Mulberry Plant (Morus alba L.). Eur. Food Res. Technol. 2009, 230, 231–237. [Google Scholar] [CrossRef]
- Shu, Y.-H.; Yuan, H.-H.; Xu, M.-T.; Hong, Y.-T.; Gao, C.-C.; Wu, Z.-P.; Han, H.-T.; Sun, X.; Gao, R.-L.; Yang, S.-F.; et al. A Novel Diels-Alder Adduct of Mulberry Leaves Exerts Anticancer Effect through Autophagy-Mediated Cell Death. Acta Pharmacol. Sin. 2021, 42, 780–790. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Dong, L.; Liu, C.; Sun, Z.; Gao, L.; Wang, X. Morusin Suppresses Breast Cancer Cell Growth in Vitro and in Vivo through C/EBPβ and PPARγ Mediated Lipoapoptosis. J. Exp. Clin. Cancer Res. CR 2015, 34, 137. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Guo, H.; Yang, L.; Dong, L.; Lin, C.; Zhang, J.; Lin, P.; Wang, X. Morusin Inhibits Human Cervical Cancer Stem Cell Growth and Migration through Attenuation of NF-ΚB Activity and Apoptosis Induction. Mol. Cell. Biochem. 2013, 379, 7–18. [Google Scholar] [CrossRef]
- Gao, L.; Wang, L.; Sun, Z.; Li, H.; Wang, Q.; Yi, C.; Wang, X. Morusin Shows Potent Antitumor Activity for Human Hepatocellular Carcinoma in Vitro and in Vivo through Apoptosis Induction and Angiogenesis Inhibition. Drug Des. Dev. Ther. 2017, 11, 1789–1802. [Google Scholar] [CrossRef] [Green Version]
- Chahwala, V.; Arora, R. Cardiovascular Manifestations of Insulin Resistance. Am. J. Ther. 2009, 16, e14–e28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, W.; Zhang, X.; Zhao, H.; Wang, Y. Antioxidant Activity and the Potential for Cholesterol-Lowering of Phenolic Extract of Morus alba, Morus Multicaulis, and Morus Laevigata Leaves from Yunnan (China). J. Food Biochem. 2017, 41, e12339. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hooshmand, S. Protective Effects of Morus nigra and Its Phytochemicals against Hepatotoxicity: A Review of Preclinical Studies. Pharmacology 2021, 106, 233–243. [Google Scholar] [CrossRef]
- Sheng, Y.; Zheng, S.; Ma, T.; Zhang, C.; Ou, X.; He, X.; Xu, W.; Huang, K. Mulberry Leaf Alleviates Streptozotocin-Induced Diabetic Rats by Attenuating NEFA Signaling and Modulating Intestinal Microflora. Sci. Rep. 2017, 7, 12041. [Google Scholar] [CrossRef] [PubMed]
- Volpato, G.T.; Calderon, I.M.P.; Sinzato, S.; Campos, K.E.; Rudge, M.V.C.; Damasceno, D.C. Effect of Morus nigra Aqueous Extract Treatment on the Maternal-Fetal Outcome, Oxidative Stress Status and Lipid Profile of Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2011, 138, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, Y.; Zheng, S.; Zhang, C.; Zhao, C.; He, X.; Xu, W.; Huang, K. Mulberry Leaf Tea Alleviates Diabetic Nephropathy by Inhibiting PKC Signaling and Modulating Intestinal Flora. J. Funct. Foods 2018, 46, 118–127. [Google Scholar] [CrossRef]
- Ge, Q.; Chen, L.; Tang, M.; Zhang, S.; Liu, L.; Gao, L.; Ma, S.; Kong, M.; Yao, Q.; Feng, F.; et al. Analysis of Mulberry Leaf Components in the Treatment of Diabetes Using Network Pharmacology. Eur. J. Pharmacol. 2018, 833, 50–62. [Google Scholar] [CrossRef]
- Hago, S.; Mahrous, E.A.; Moawad, M.; Abdel-Wahab, S.; Abdel-Sattar, E. Evaluation of Antidiabetic Activity of Morus nigra L. and Bauhinia variegata L. Leaves as Egyptian Remedies Used for the Treatment of Diabetes. Nat. Prod. Res. 2021, 35, 829–835. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic Effects of Morus alba Fruit Polysaccharides on High-Fat Diet- and Streptozotocin-Induced Type 2 Diabetes in Rats. J. Ethnopharmacol. 2017, 199, 119–127. [Google Scholar] [CrossRef]
- Ha, M.T.; Shrestha, S.; Tran, T.H.; Kim, J.A.; Woo, M.H.; Choi, J.S.; Min, B.S. Inhibition of PTP1B by Farnesylated 2-Arylbenzofurans Isolated from Morus alba Root Bark: Unraveling the Mechanism of Inhibition Based on in Vitro and in Silico Studies. Arch. Pharm. Res. 2020, 43, 961–975. [Google Scholar] [CrossRef]
- Dhillon, N.K.; Ahuja, S. Plants as Immunomodulators: A Review. J. Pharmacogn. Phytochem. 2019, 8, 364–368. [Google Scholar]
- Labro, M.-T. Immunomodulatory Effects of Antimicrobial Agents. Part I: Antibacterial and Antiviral Agents. Expert Rev. Anti Infect. Ther. 2012, 10, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Rao, A. Probiotics: A Potential Immunomodulator in COVID-19 Infection Management. Nutr. Res. 2021, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Giordo, R.; Zinellu, A.; Eid, A.H.; Pintus, G. Therapeutic Potential of Resveratrol in COVID-19-Associated Hemostatic Disorders. Molecules 2021, 26, 856. [Google Scholar] [CrossRef] [PubMed]
- Gyebi, G.A.; Adegunloye, A.P.; Ibrahim, I.M.; Ogunyemi, O.M.; Afolabi, S.O.; Ogunro, O.B. Prevention of SARS-CoV-2 Cell Entry: Insight from in Silico Interaction of Drug-like Alkaloids with Spike Glycoprotein, Human ACE2, and TMPRSS2. J. Biomol. Struct. Dyn. 2020, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Poiroux, G.; Barre, A.; Simplicien, M.; Pelofy, S.; Segui, B.; Van Damme, E.J.M.; Rougé, P.; Benoist, H. Morniga-G, a T/Tn-Specific Lectin, Induces Leukemic Cell Death via Caspase and DR5 Receptor-Dependent Pathways. Int. J. Mol. Sci. 2019, 20, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Damme, E.J.M.; Hause, B.; Hu, J.; Barre, A.; Rougé, P.; Proost, P.; Peumans, W.J. Two Distinct Jacalin-Related Lectins with a Different Specificity and Subcellular Location Are Major Vegetative Storage Proteins in the Bark of the Black Mulberry Tree. Plant Physiol. 2002, 130, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Youssef, F.S.; Labib, R.M.; Eldahshan, O.A.; Singab, A.N.B. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics. Chem. Biodivers. 2017, 14, e1700206. [Google Scholar] [CrossRef] [PubMed]
- Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Nash, R.J.; Lee, H.S.; Ryu, K.S. Polyhydroxylated Alkaloids Isolated from Mulberry Trees (Morusalba L.) and Silkworms (Bombyx mori L.). J. Agric. Food Chem. 2001, 49, 4208–4213. [Google Scholar] [CrossRef]
- Vochyánová, Z.; Pokorná, M.; Rotrekl, D.; Smékal, V.; Fictum, P.; Suchý, P.; Gajdziok, J.; Šmejkal, K.; Hošek, J. Prenylated Flavonoid Morusin Protects against TNBS-Induced Colitis in Rats. PLoS ONE 2017, 12, e0182464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, S.-Z.; Li, N.; Tuo, Z.-D.; Li, J.-L.; Xing, S.-S.; Li, B.-B.; Zhang, L.; Lee, H.-S.; Chen, J.-G.; Cui, L. Effects of Morus Root Bark Extract and Active Constituents on Blood Lipids in Hyperlipidemia Rats. J. Ethnopharmacol. 2016, 180, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Chen, J.; Yuan, Y.; Chen, J.; Sayed, M.D.M.; Luo, L.; Zhu, Y.; Li, S.; Bu, S. Cortex Mori Radicis Extract Attenuates Myocardial Damages in Diabetic Rats by Regulating ERS. Biomed. Pharmacother. 2017, 90, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, T.T.; Ozan, G.; Dundar, S.; Bozoglan, A.; Karaman, T.; Dildes, N.; Kaya, C.A.; Kaya, N.; Erdem, E. The Effects of Morus nigra on the Alveolar Bone Loss in Experimentally-Induced Periodontitis. Eur. Oral Res. 2019, 53, 99–105. [Google Scholar] [CrossRef]
- Gu, P.S.; Moon, M.; Choi, J.G.; Oh, M.S. Mulberry Fruit Ameliorates Parkinson’s-Disease-Related Pathology by Reducing α-Synuclein and Ubiquitin Levels in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine/Probenecid Model. J. Nutr. Biochem. 2017, 39, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Nesello, L.A.N.; Beleza, M.L.M.L.; Mariot, M.; Mariano, L.N.B.; de Souza, P.; Campos, A.; Cechinel-Filho, V.; Andrade, S.F.; da Silva, L.M. Gastroprotective Value of Berries: Evidences from Methanolic Extracts of Morus nigra and Rubus Niveus Fruits. Gastroenterol. Res. Pract. 2017, 2017, 7089697. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and Antibacterial Properties of Anthocyanins and Flavonols from Fruits of Black and Non-Black Mulberries. Molecules 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Mejía, E.; Roriz, C.L.; Heleno, S.A.; Calhelha, R.; Dias, M.I.; Pinela, J.; Rosales-Conrado, N.; León-González, M.E.; Ferreira, I.C.F.R.; Barros, L. Valorisation of Black Mulberry and Grape Seeds: Chemical Characterization and Bioactive Potential. Food Chem. 2021, 337, 127998. [Google Scholar] [CrossRef]
- Costa, J.P.L.; Brito, H.O.; Galvão-Moreira, L.V.; Brito, L.G.O.; Costa-Paiva, L.; Brito, L.M.O. Randomized Double-Blind Placebo-Controlled Trial of the Effect of Morus nigra L. (Black Mulberry) Leaf Powder on Symptoms and Quality of Life among Climacteric Women. Int. J. Gynaecol. Obstet. 2020, 148, 243–252. [Google Scholar] [CrossRef]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of Anti-Melanogenesis Constituents from Morus alba L. Leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Huang, T.; Huang, C.; Wu, C.; Jia, A.; Hu, X. Chiral Separation, Absolute Configuration, and Bioactivity of Two Pairs of Flavonoid Enantiomers from Morus nigra. Phytochemistry 2019, 163, 33–37. [Google Scholar] [CrossRef]
- Yao, J.; He, H.; Xue, J.; Wang, J.; Jin, H.; Wu, J.; Hu, J.; Wang, R.; Kuchta, K. Mori Ramulus (Chin.Ph.)-the Dried Twigs of Morus alba L./Part 1: Discovery of Two Novel Coumarin Glycosides from the Anti-Hyperuricemic Ethanol Extract. Molecules 2019, 24, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panth, N.; Paudel, K.R.; Gong, D.-S.; Oak, M.-H. Vascular Protection by Ethanol Extract of Morus alba Root Bark: Endothelium-Dependent Relaxation of Rat Aorta and Decrease of Smooth Muscle Cell Migration and Proliferation. Evid.-Based Complement. Altern. Med. ECAM 2018, 2018, 7905763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Q.; Gao, H.; Chen, H.; Fang, X.; Wu, W. Precooling and Ozone Treatments Affects Postharvest Quality of Black Mulberry (Morus nigra) Fruits. Food Chem. 2017, 221, 1947–1953. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.; Jiang, Q.; Xu, Y.; Zhou, X.; Zhang, N.; Sun, D.; Li, H.; Chen, L. Chemical Components of the Fruits of Morus nigra Linn.: Methyl Caffeate as a Potential Anticancer Agent by Targeting 3-Phosphoglycerate Dehydrogenase. J. Agric. Food Chem. 2021, 69, 12433–12444. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yang, J.; Ma, L.; Cai, J.; Li, J. Comparison of Polyphenol Profile and Inhibitory Activities Against Oxidation and α-Glucosidase in Mulberry (Genus Morus) Cultivars from China. J. Food Sci. 2015, 80, C2440–C2451. [Google Scholar] [CrossRef]
- Koyu, H.; Kazan, A.; Demir, S.; Haznedaroglu, M.Z.; Yesil-Celiktas, O. Optimization of Microwave Assisted Extraction of Morus nigra L. Fruits Maximizing Tyrosinase Inhibitory Activity with Isolation of Bioactive Constituents. Food Chem. 2018, 248, 183–191. [Google Scholar] [CrossRef]
- Vega, E.N.; Molina, A.K.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Stojković, D.; Soković, M.; et al. Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants 2021, 10, 1181. [Google Scholar] [CrossRef]
- Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.D.; Beekwilder, J.; Capanoglu, E. Processing Black Mulberry into Jam: Effects on Antioxidant Potential and in Vitro Bioaccessibility. J. Sci. Food Agric. 2017, 97, 3106–3113. [Google Scholar] [CrossRef]
- Kurt, A.; Bursa, K.; Toker, O.S. Gummy Candies Production with Natural Sugar Source: Effect of Molasses Types and Gelatin Ratios. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2021, 1082013221993566. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Apaliya, M.T. Statistical Interpretation of Chromatic Indicators in Correlation to Phytochemical Profile of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine Submitted to Non-Thermal Maturation Processes. Food Chem. 2018, 239, 470–477. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Tahir, H.E. Aroma Profile and Sensory Characteristics of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine Subjected to Non-Thermal Accelerating Aging Techniques. Food Chem. 2017, 232, 89–97. [Google Scholar] [CrossRef]
- Yilmaz, S.; Ergün, S.; Yigit, M.; Yilmaz, E.; Ahmadifar, E. Dietary Supplementation of Black Mulberry (Morus nigra) Syrup Improves the Growth Performance, Innate Immune Response, Antioxidant Status, Gene Expression Responses, and Disease Resistance of Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 107, 211–217. [Google Scholar] [CrossRef]
- Kuwahara, M.; Kim, H.-K.; Ozaki, M.; Nanba, T.; Chijiki, H.; Fukazawa, M.; Okubo, J.; Mineshita, Y.; Takahashi, M.; Shibata, S. Consumption of Biscuits with a Beverage of Mulberry or Barley Leaves in the Afternoon Prevents Dinner-Induced High, but Not Low, Increases in Blood Glucose among Young Adults. Nutrients 2020, 12, 1580. [Google Scholar] [CrossRef]
- Meng, Q.; Qi, X.; Chao, Y.; Chen, Q.; Cheng, P.; Yu, X.; Kuai, M.; Wu, J.; Li, W.; Zhang, Q.; et al. IRS1/PI3K/AKT Pathway Signal Involved in the Regulation of Glycolipid Metabolic Abnormalities by Mulberry (Morus alba L.) Leaf Extracts in 3T3-L1 Adipocytes. Chin. Med. 2020, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2019, 25, 84. [Google Scholar] [CrossRef] [Green Version]
- Tubaş, F.; Per, S.; Taşdemir, A.; Bayram, A.K.; Yıldırım, M.; Uzun, A.; Saraymen, R.; Gümüş, H.; Elmalı, F.; Per, H. Effects of Cornus mas L. and Morus rubra L. Extracts on Penicillin-Induced Epileptiform Activity: An Electrophysiological and Biochemical Study. Acta Neurobiol. Exp. 2017, 77, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gültekin-Özgüven, M.; Karadağ, A.; Duman, Ş.; Özkal, B.; Özçelik, B. Fortification of Dark Chocolate with Spray Dried Black Mulberry (Morus nigra) Waste Extract Encapsulated in Chitosan-Coated Liposomes and Bioaccessability Studies. Food Chem. 2016, 201, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Wu, C.-J.; Kuo, P.-C.; Chen, W.-Y.; Tzen, J.T.C. Quercetin 3-O-Malonylglucoside in the Leaves of Mulberry (Morus alba) Is a Functional Analog of Ghrelin. J. Food Biochem. 2020, 44, e13379. [Google Scholar] [CrossRef] [PubMed]
- Naowaboot, J.; Pannangpetch, P.; Kukongviriyapan, V.; Prawan, A.; Kukongviriyapan, U.; Itharat, A. Mulberry Leaf Extract Stimulates Glucose Uptake and GLUT4 Translocation in Rat Adipocytes. Am. J. Chin. Med. 2012, 40, 163–175. [Google Scholar] [CrossRef]
- Baston, O.; Pricop, E.M. Gem Din Dude (Morus) Şi Procedeu de Fabricaţie. 2021. Available online: https://inovaliment.ro/gem-din-dude-morus-si-procedeu-de-fabricatie/ (accessed on 3 December 2021).
- Li, D.; Zheng, X.; Duan, L.; Deng, S.; Ye, W.; Wang, A.; Xing, F.-W. Ethnobotanical Survey of Herbal Tea Plants from the Traditional Markets in Chaoshan, China. J. Ethnopharmacol. 2017, 205, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zou, Y. Plant Extract Obtained from Morus Plant Leaves, Compositions Containing Same, Method of Extraction and Uses Thereof. U.S. Patent 11,090,349, 17 August 2021. [Google Scholar]
- Brownell, L.A.; Chu, M.; Hong, M.-F.; Hyun, E.-J.; Jia, Q.; Jiao, P.; Kim, H.-J.; Kim, M.-R.; Kim, T.-W.; Lee, B.-S.; et al. Compositions and Methods for Joint Health. U.S. Patent 11,123,393, 21 September 2020. [Google Scholar]
- Duriot, L.C.; Salwinski, A.B.; Rangoni, L.I.H. Root Extracts from Plants of the Morus Genus and Uses of Same. U.S. Patent Application 16/753,912, 19 November 2020. [Google Scholar]
- Mellema, M.; Seuen-Ten-Hoorn, J.W.; Verhoef, P. Savoury Concentrate with Mulberry Fruit Extract. U.S. Patent Application 16/309,273, 11 June 2020. [Google Scholar]
- Grassi, D.; Necozione, S.; Desideri, G.; Abballe, S.; Mai, F.; De Feo, M.; Carducci, A.; Ferri, C. Acute and Long Term Effects of a Nutraceutical Combination on Lipid Profile, Glucose Metabolism and Vascular Function in Patients with Dyslipidaemia with and Without Cigarette Smoking. High Blood Press. Cardiovasc. Prev. 2021, 28, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Yimam, M.; Lee, Y.-C.; Wright, L.; Jiao, P.; Horm, T.; Hong, M.; Brownell, L.; Jia, Q. A Botanical Composition Mitigates Cartilage Degradations and Pain Sensitivity in Osteoarthritis Disease Model. J. Med. Food 2017, 20, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I. Estrogenic Extracts of Morus alba and Uses Thereof. U.S. Patent 7,815,949, 19 October 2010. [Google Scholar]
- Ku, Y.-L.; Liang, S.-T.; Lin, Y.-H.; Chen, L.-H.; Kuo, Y.-Y. Anti-Bacterial Use of Extract from Morus Australis Poir. and Compound Kuwanon h. U.S. Patent 8,071,142, 6 December 2010. [Google Scholar]
- Kim, J.-H.; Wang, M.; Simon, J.; Kim, A. Whitening Cosmetics Containing Morus alba Extracts. U.S. Patent Application 11/347,884, 28 September 2006. [Google Scholar]
Species | Organs | Total Polyphenols | Anthocyanins | Flavonoids | References |
---|---|---|---|---|---|
Morus nigra | fruits | 6.93 ± 0.58 mg GAE/g dw | 233.77 ± 24.02 µg/g dw | Not recorded | [49] |
485.5 ± 7.1 mg GAE/100 g fw | 206.1 ± 1.8 mg C3GE/100 g fw | Not recorded | [50] | ||
Not recorded | Not recorded | 20.8703 ± 0.9091 mg RE/g dw | [51] | ||
502.43 ± 5.10 mg GAE/100 g fw | 81.36 ± 2.05 mg C3GE/100 g fw | 219.12 ± 4.45 mg QE/100 g fw | [8] | ||
1422 mg GAE/100 g dw | Not recorded | 276 mg QE/100 g dw | [26] | ||
3.7 mg GAE/g fw | 11.3–20.3 mg C3GE/g fw | Not recorded | [52] | ||
6585 ± 146 mg GAE/kg fw | Not recorded | 1292 ± 52.7 mg QE/kg fw | [53] | ||
leaf | Not recorded | Not recorded | 68.32 mg RE/g dw | [54] | |
24.37 ± 2.14 GAE/100 g dw | Not recorded | Not recorded | [40] | ||
Morus atropurpurea Roxb. | fruits | 11.33 ± 0.7 mg GAE/g fw | 1177.36 ± 136.14 mg C3GE/100 g fw | 15.1 ± 1.22 mg RE/g fw | [55] |
Morus alba | fruits | 60.4 ± 3.1 mg GAE/100 g fw | 289.2 ± 0.9 mg C3GE/100 g fw | Not recorded | [50] |
181 mg GAE/100 g dw | Not recorded | 0.0816 mg QE/g dw | [26] | ||
663 ± 28.5 mg GAE/kg fw | Not recorded | 217 ± 18.2 mg QE/kg fw | [53] | ||
5.68 to 40.46 mg GAE/g dw | 0.51 to 28.61 mg/g dw | 0.65 to 3.70 mg QE/g dw | [56] | ||
534.2 ± 12.46 mg GAE/g dw | 15.5 ± 2.27 mg C3GE/g dw | 427.6 ± 15.94 mg CE/g dw | [57] | ||
leaf | 2.468 ± 0.05 mg GAE/g | Not recorded | Not recorded | [58] | |
51.43 ± 1.11 mg GAE/g dw | Not recorded | 43.75 ± 0.78 mg QE/g dw | [59] | ||
16.21 ± 1.34 mg GAE/g dw | Not recorded | 26.41 ± 1.14 mg RE/g | [40] | ||
Morus rubra | fruits | 1035 mg GAE/100 g dw | Not recorded | 219 QE/100 g dw | [26] |
leaf | Not recorded | Not recorded | 31.28 ± 2.12 mg RE/g | [40] |
Species | Organs | Type of Sample | Technique | Identified Components in Morus sp. | References |
---|---|---|---|---|---|
M. nigra | fruits | Lyophilized samples | HPLC-DAD-ESI HRMS | Anthocyanins: cyanidin-hexoside, cyanidin-pentosyl-hexoside, cyanidin-rhamnosyl-hexoside, cyanidin-sambubiosyl-rhamnoside, cyanidin-sambubiosyl-glucoside; delphinidin-pentoside, delphinidin-dirhamnosyl-hexoside, petunidin-pentoside, peonidin-hexoside Proanthocyanidin (condensed tannins): procyanidin trimer 1 Flavonols: kaempferol-rhamnoside, kaempferol-hexoside, kaempferol-malonyl-hexoside, kaempferol- rhamnosyl-hexoside, kaempferol-dihexoside; quercetin-rhamnoside, quercetin-hexoside, quercetin-malonyl-hexoside, quercetin-rhamnosyl-hexoside, quercetin-dirhamnosyl-hexoside, quercetin-rhamnosyl-dihexoside, rutin; myricetin-hexoside Flavone: apigenin-hexoside, apigenin-dihexoside Phenolic acid: chlorogenic acid | [68] |
Freeze-dried samples | LC-MS | Anthocyanins: cyanidin hexoside, cyanidin hexose-deoxyhexose; pelargonidin hexoside, pelargonidin hexose-deoxyhexose Flavonols: quercetin-3-O-rutinoside, quercetin-3-O-rutinoside-7-O-glucoside, quercetin-malonylhexoside, quercetin-hexoside, quercetin hexoside malonyl hexoside, quercetin hexose hexose, quercetin-hexose-hexose-deoxyhexose, kaempferol-3-O-rutinoside, kaempferol-3-O-rutinoside-7-O-glucoside, kaempferol-hexoside, kaempferol hexoside malonyl hexoside, kaempferol hexose-hexose deoxyhexose, kaempferol malonyl hexoside Flavononol: taxifolin hexoside; dihydrokaempferol-hexoside. | [72] | ||
Mulberry dry powder | UPLC-TUV/QDa | Anthocyanins: cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, pelargonidin-3-O-glucoside Flavonols: rutin, isoquercetin, morin, quercetin, kaempferol | [76] | ||
leaves | Ethanolic extract | HPLC-DAD | Anthocyanins: cyanidin; Flavonols: quercetin; kaempferol. Flavonols: catechin. Phenolic acid: caffeic acid; coumaric acid. | [70] | |
Aqueous extract | HPLC-PDA | Flavonols: quercetin, rutin Phenolic acid: syringic acid | [71] | ||
twigs | Powder | HPLC; LC-MS-MS; UV-spectra; IR-spectra | Prenylated flavonoids: morunigrols A, B, C, D; cudraflavone B; morusin; moracin C and P. Diels−Alder adducts: morunigrines A and B; | [44] | |
roots bark | Air-dried roots bark. | RP-MPLC; MS | Prenylated flavonoids: kuwanon L, G and H; cudraflavanonă A; morusin; chalcomoracin, norartocarpetin. Stilbenes: oxyresveratrol | [69] | |
Morus alba | fruits | Powder samples | HPLC-DAD | Flavonols: rutin; isoquercitrin; Flavanonol: taxifolin Prenylated flavonoids: morusin; Phenolic acid: chlorogenic acid; 4-hydroxycinnamic acid | [77] |
Freeze-dried sample | LC-MS | Flavonols: quercetin-3-O-rutinoside, quercetin-3-O-rutinoside-7-O-glucoside, quercetin-malonylhexoside, quercetin-hexoside, quercetin hexoside malonyl hexoside, quercetin hexose hexose, quercetin-hexose-hexose-deoxyhexose, kaempferol-3-O-rutinoside, kaempferol-3-O-rutinoside-7-O-glucoside, kaempferol-hexoside, kaempferol hexoside malonyl hexoside, kaempferol hexose-hexose deoxyhexose, kaempferol malonyl hexoside Flavanonol: taxifolin hexoside; dihydrokaempferol-hexoside. | [72] | ||
Dry powder | UPLC-TUV/QDa | Flavonols: rutoside, morin, isoquercetin, quercetin, kaempferol | [76] | ||
leaves | Powder sample | HPLC-DAD | Flavonols: isoquercitrin; rutin; quercitrin, astragalin (kaempferol-3-O-glucoside). Coumarin: skimmin Phenolic acid: chlorogenic acid | [77] | |
twigs | Powder samples | HPLC-DAD | Prenylated flavonoids: kuwanon G; morusin; Stilbenes: mulberroside A; oxyresveratrol Phenolic acid:4-hydroxycinnamic acid | [77] | |
root bark | Powder bark samples | HPLC-DAD | Flavanonol: taxifolin Prenylated flavonoids: kuwanon G; morusin; Stilbenes: mulberroside A; oxyresveratrol Phenolic acid: chlorogenic acid; | [77] | |
Dried root bark | MPLC | Prenylated flavonoid: kuwanon G Diels–Alder-type adducts: mulberrofuran G; albanol B | [78] |
Species | Organs | ABTS | DPPH | FRAP | References |
---|---|---|---|---|---|
Morus nigra | fruits | Not recorded | Not recorded | 21.33 ± 0.35 µmol TE/g dw | [49] |
600.31 µmol TE/L | 131.27 µmol TE/L | Not recorded | [114] | ||
5.842 ± 0.1155 mmol TE/L | 46.94 ± 1.68% | 0.4627 ± 0.0101 mmol TE/L | [115] | ||
6.43 mg VCE/g fw | 2.51 mg VCE/g fw | Not recorded | [53] | ||
leaf | 21.85 mg TE/g dw | 146.04 mg TE/g dw | 52.71 mg TE/g dw | [54] | |
9.89 ± 0.87 mM TE | Not recorded | Not recorded | [40] | ||
Morus atropur purea Roxb. | fruits | 4.11 ± 0.48 µg/mL (IC 50) | 10.08 ± 1.12 µg/mL (IC 50) | Not recorded | [55] |
Morus alba | fruits | 92.15 g TE/100 g dw | 10.70 g TE/100 g dw | Not recorded | [116] |
0.52 mg VCE/g fw | 0.21 mg VCE/g fw | Not recorded | [53] | ||
Not recorded | 5.85 to 40.73 mg TE/g dw | 1.33 to 82.87 mg TE/g dw | [56] | ||
19.37 ± 3.67 µg/mL (EC 50) | 38.31 ± 2.13 µg/mL (EC50) | 1.23 µM Fe2+ | [57] | ||
leaf | 23.63 ± 0.019 µM TE/g | 49.42 ± 0.005 µM TE/g | 0.0221 ± 0.042 µM Fe2+/mg | [58] | |
4.47 ± 0.20 mg/mL (IC 50) | 2.95 ± 0.66 mg/mL (IC 50) | Not recorded | [59] | ||
6.12 ± 0.53 mM TE | Not recorded | Not recorded | [40] | ||
twig | 92.15 g TE/100 g dw | 10.70 g TE/100 g dw | Not recorded | [116] |
Health Effect | Part | Species | Sample Type | Experimental Model | Main Outcomes | References |
---|---|---|---|---|---|---|
Anti-inflammatory effect | fruits | M. nigra | Aqueous extract | Male Wistar rats, periodontal soft tissues | Decreased MMP-8 and MMP-13 levels in periodontal tissue. Inhibited alveolar bone resorption by suppressing the expression of RANKL and OPG. | [162] |
Anti-Parkinson effect | M. nigra | Mulberry juice (cyanidin-3-glucoside, 137 mg/100 g) | LID in MPTP MPTP)-induced PD in male BALB/c mice | Mulberry juice (10–15 mL/kg) for one week may be effective for controlling LID in MPTP-induced PD. | [107] | |
M. alba | Lyophilized mulberry extract | MPTP/p model of early PD in male mice C57BL/6 | Improved PD-related, non-motor symptoms by inhibiting olfactory dysfunction and motor deficits. The protective effects against dopaminergic neuronal damage induced by MPTP/p in the substantia nigra and striatum. Inhibited the up-regulation of α-synuclein and ubiquitin. | [163] | ||
Cardiovascular effect/Antiatherosclerosis | M. nigra | Ethanolic extract | Rats, Sprague–Dawley | Significantly decreased the content of malondialdehyde and improved the anti-oxidative enzymatic activities, attenuated hepatic steatosis, reduced intima-media thickness and suppressed the development of arterial atherosclerosis by regulating lipid metabolism abnormalities, strengthening anti-oxidant activities and reducing atherosclerotic lesions. | [106] | |
Hepatoprotective effect | M. nigra | Aqueous extracts. | Human hepatocellular carcinoma (HepG2)-three concentrations (0.01, 0.1 and 1 mg/mL) and compared to silymarin | Black mulberries; phenolic compounds are beneficial for counteracting liver toxins. | [157] | |
Gastroprotective effect | M. nigra | Methanolic extract | Female Swiss mice | Effective defense of the gastric mucosa against the acidified methanol, only at 300 mg/kg (p.o.), reducing the ulcer area by 64.06%. | [164] | |
Antinociceptive effect | M. nigra and M. alba | Mulberry dry powder | Male Kunming mice, three main flavonoids tested (C3G, Ru and IQ) | Neither C3G, Ru nor IQ individually reduced the duration of both phases, while the mix (C3G, Ru and IQ) significantly reduced the duration of the secondary phase (inflammatory pain phase). | [165] | |
Antibacterial effect | M. nigra and M. alba | Mulberry dry powder of M. nigra, M. mongolica and M. alba ‘Zhenzhubai’ | E. coli, S. aureus, P. aeruginosa | M. nigra presented stronger inhibitory activity against S. aureus compared with E. coli in the MBC test. | [165] | |
Antimicrobial effect | seed | M. nigra | Hydroethanolic extracts lyophilized | Six Gram-negative bacteria, three Gram-positive bacteria and one yeast | Efficacy of mulberry extract was shown against S. aureus, resistant to methicillin with MIC values of 5 mg/mL. | [166] |
Cytotoxic effect | M. nigra | Hydroethanolic extracts lyophilized | Human tumor cell lines: MCF-7, HepG2 NCI-H460 and HeLa cells. Primary cellular line from porcine liver as normal cell line | The mulberry extract at concentration of 400 µg/mL was not effective against tumor and normal cells. | [166] | |
Treating climacteric symptoms | leaves | M. nigra | Leaves powder | 62 climacteric women | Climacteric symptoms and quality of life analysis (functional capacity, vitality, mental health and social aspect) were improved after administration of 250 mg of M. nigra leaves powder for 60 days. | [167] |
Antidepressant and neuroprotective effects | M. nigra | Aqueous extract | Ex vivo and in vitro model in male Swiss mice, gavage administration | Treatment with M. nigra (3 mg/kg) decreased the immobility time in the TST. M. nigra extract protect hippocampal and cerebrocortical slices against glutamate-induced damage via PI3K/Akt/GSK-3β pathway. | [86] | |
Anti-Melanogenesis effect | M. alba | Dried leaves | B16-F10 mouse skin melanoma cells | M. alba can be an excellent natural source for skin-whitening agents. Moracin J identified in the leaves, decreased melanin production and intracellular tyrosinase activity by modulating CREB and p38 signaling pathways in the cells of melanoma B16-F10 activated α-MSH. | [168] | |
α-Glucosidase inhibition and tyrosinase inhibitory | twigs | M. nigra | Dried powder | Ethanol extract portioned in 6 fractions | Among13 compounds isolated from the twigs, Nigranol B and sanggenol H exhibited powerful α-glucosidase inhibitory activities with IC50 values at 1.63 and 1.43 µM, respectively. | [169] |
Anti-hyperuricemic effect | M. alba | Mori ramulus refined extract (ZY1402-A) | Adult male SPF Kunming mice, intragastric administration | The extract significantly reduced the serum uric acid levels of SPF Kunming mice. | [170] | |
Antileukemic effect | bark | M. nigra | Bark meal | Parental Jurkat A3 leukemia cell line; FADD-deficient Jurkat Cells; caspase 9-deficient Jurkat cells; Caspase 8- and 10-doubly deficient Jurkat cells | Morniga-G activates T, B, and NK Lymphocytes and induces the cell death of Tn-positive leukemia lymphocytes. cells via concomitant O-glycosylation, caspase and TRAIL/DR5-dependent pathways. | [155] |
Vascular protective effect | M. alba | Ethanolic extract | Male rats (Sprague–Dawley) | Potent endothelium-dependent vasodilator through endothelial-dependent NO-cGMP pathway, including the activation of TEA sensitive K+ channels. White mulberry extract attenuated PDGF-BB induced VSMCs proliferation and migration. | [171] | |
Relaxant effect |
Product Foodstuff | Major Findings | Reference |
---|---|---|
Black mulberry food colorants | Three formulations of solid natural colorants based on black mulberry anthocyanins (cyanidin-3-O-glucoside and cyanidin-O-rhamnoside), obtained through the spray-drying technique, were developed. These natural additives have a good stability in time and a variation of anthocyanin content and color parameters during the 12 weeks of storage, at room and refrigerated temperatures. | [176] |
Mulberry gummy candies | Gummy candies obtained from 5, 7.5 and 10 g of mulberry molasses/100 g gelatin illustrate the potential for using molasses in a healthier development of confectionery products. These candies contain natural sugars, thus replacing sugar syrup or artificial sweeteners. | [178] |
Mulberry leaf powder drink | The effect on adults of consuming of biscuits with a beverage of powdered mulberry leaves in the afternoon on postprandial glucose levels at dinner was a significant reduction in postprandial increases in glucose. | [182] |
Mulberry leaf tea | The quercetin 3-O-malonylglucoside and kaempferol 3-O-malonylglucoside found in white mulberry leaves can be used as ingredients for a functional food to improve the health benefits, such as controlling blood glucose, preventing aging-related diseases and regulating glycolipid metabolic abnormalities. | [183,187,188] |
Black mulberry dietary syrup | Administered in different concentrations in the diet of fish, the syrup, increased activities of serum lysozyme, myeloperoxidase, superoxide dismutase and catalase, and increased the expression levels of immune-related genes in the spleen and antioxidant-related genes in the liver of fish fed. | [181] |
Rapeseed honey with mulberry leaves and fruits | The addition of dried leaves and freeze-dried fruits (4%, w/v) to rapeseed honey added value to the product by increasing the content of flavonoids and phenolic acids and antioxidant capacity. | [184] |
Black mulberry-aged wines | The non-thermal processing applied at wine maturation point can be a potential method of improving the maturation process by modifying the chromatic properties of the wine. | [179] |
In the volatile composition of the non-thermal, accelerated, aged wines, many volatile compounds were found that are grouped into nine chemical families: alcohols (32), esters (53), acids (14), volatile phenols (11), aldehydes (16), ketones (15), terpenes (11), lactones (11) and furans (3). | [180] | |
Black mulberry jam | Black mulberries were processed into jam on an industrialized scale. The total phenols, flavonoids, anthocyanins and antioxidant capacity was significantly decreased but % recovery of bioaccessible the natural compounds increased after jam processing. | [177] |
Dark chocolate with black mulberry | Dark chocolate was fortified with dry black mulberry waste extract, encapsulated in chitosan-coated liposomes. This formula was shown to protect the anthocyanin content and increase the bioavailability of these pigments in vitro. | [186] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. https://doi.org/10.3390/plants11020152
Memete AR, Timar AV, Vuscan AN, Miere F, Venter AC, Vicas SI. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants. 2022; 11(2):152. https://doi.org/10.3390/plants11020152
Chicago/Turabian StyleMemete, Adriana Ramona, Adrian Vasile Timar, Adrian Nicolae Vuscan, Florina Miere (Groza), Alina Cristiana Venter, and Simona Ioana Vicas. 2022. "Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry" Plants 11, no. 2: 152. https://doi.org/10.3390/plants11020152
APA StyleMemete, A. R., Timar, A. V., Vuscan, A. N., Miere, F., Venter, A. C., & Vicas, S. I. (2022). Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants, 11(2), 152. https://doi.org/10.3390/plants11020152