Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages
Abstract
:1. Introduction
1.1. Major and Minor Fruit-Based Fermented Beverages
2. Composition and Functional Potential of Fruit-Based Fermented Beverages
3. Probiotic and Prebiotic Fruit-Based Fermented Beverages
4. Methods Used to Increase the Extraction Yield of Bioactive Compounds
4.1. Maceration and Decoction
4.2. Supercritical Fluid Extraction (SFE)
4.3. Microwave-Assisted Extraction (MAE)
4.4. Ultrasound Assisted Extraction (UAE)
4.5. Enzyme Assisted Extraction (EAE)
4.6. Pulsed Electric Field (PEF)
4.7. High Pressure Homogenization (HPH)
5. Fermentation Types to Enhance the Functionality Potential
5.1. Alcoholic Fermentation
5.2. Acetic Fermentation
5.3. Lactic Fermentation
5.4. Symbiotic Fermentation
6. Future Trends and Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laureys, D.; De Vuyst, L. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl. Environ. Microbiol. 2014, 80, 2564–2572. [Google Scholar] [CrossRef] [Green Version]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S.; Bhatbhage, P.K. Supercritical Fluid Extraction: A Review. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Vaughn, K.; Clausen, E.; King, J.; Howard, L. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour. Technol. 2008, 99, 7835–7841. [Google Scholar] [CrossRef]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Extraction|Microwave-Assisted Extraction, Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 67–77. [Google Scholar] [CrossRef]
- Gomez, L.; Tiwari, B.K.; Garcia-Vaquero, M. Emerging extraction techniques: Microwave-assisted extraction. In Sustainable Seaweed Technologies, 1st ed.; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–224. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-based extract obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crop. Prod. 2017, 95, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Maran, J.P.; Priya, N. Ultrasound-assisted extraction of polysaccharides from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Microwave assisted extraction of pectin from waste Citrullus lanatus fruits rinds. Carbohydr. Polym. 2014, 101, 786–791. [Google Scholar] [CrossRef]
- Maran, J.P.; Manikandan, S.; Nivetha, V.C.; Dinesh, R. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 2017, 10, 1145–1157. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Zhao, Y.Z.; Yang, Y.; Zhang, H.; Ding, C.; Hu, C.; Zhou, L.; Zhang, Z.; Yuan, S.; Chen, Y.; et al. Microwave-assisted extraction, physicochemical characterization and bioactivity of polysaccharides from Camptotheca acuminata fruits. Int. J. Biol. Macromol. 2019, 133, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Perez-Grijalva, B.; Herrera-Sotero, M.; Mora-Escobedo, R.; Zebadua-Garcia, J.C.; Silva-Hernandez, E.; Oliart-Ros, R.; Perez-Cruz, C.; Guzman-Geronimo, R. Effect of microwave and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT 2018, 87, 47–53. [Google Scholar] [CrossRef]
- Siguemoto, E.S.; Gut, J.A.W.; Martinez, A.; Rodrigo, D. Inactivation kinetics of Escherichia coli O157:H7 and Listeria monocytogenes in apple juice by microwave and conventional thermal processing. IFSET 2018, 45, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Casassa, L.F.; Sari, S.E.; Bolcato, E.A.; Fanzone, M.L. Microwave-Assisted Extraction Applied to Merlot Grapes with Contrasting Maturity Levels: Effects on Phenolic Chemistry and Wine Color. Fermentation 2019, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Wai-Lee Kung, F. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2011, 30, 37–44. [Google Scholar] [CrossRef]
- Gong, H.; Qi, L.; Yang, Z. Optimization of enzyme-assisted extraction of anthocyanins from blackberry (Rubus fruticosus L.) juice using response surface methodology. Afr. J. Pharm. Pharmacol. 2014, 8, 841–848. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Yin, X.; Zhao, Y. Enzyme assisted extraction of polysaccharides from the fruit of Cornus officinalis. Carbohydr. Polym. 2013, 98, 607–610. [Google Scholar] [CrossRef]
- Gani, G.; Naik, H.R.; Jan, N.; Bashir, O.; Hussain, S.Z.; Rather, A.H.; Reshi, M.; Amin, T. Physicochemical and antioxidant properties of pear juice prepared through pectinase enzyme-assisted extraction from William Bartlett variety. J. Food Meas. Charact. 2021, 15, 743–757. [Google Scholar] [CrossRef]
- Claus, H.; Mojsov, K. Enzymes for wine fermentation: Current and perspective applications. Fermentation 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Ayed, L.; M’hir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020, 2020, 5790432. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhang, M.; Mujumdar, A.S.; Gao, Z. Recent research process of fermented plant extract: A review. Trends Food Sci. Technol. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.B.; Vandenberghe, L.P.S.; Soccol, C.R. Microbiological, biochemical, and functional aspects of sugary kefir fermentation—A review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Cousin, F.J.; Le Guellec, R.; Schlusselhuber, M.; Dalmasso, M.; Laplace, J.-M.; Cretenet, M. Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms 2017, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.S.; Panda, S.K. Ethnic and industrial probiotic foods and beverages: Efficacy and acceptance. Cur. Opin. Food Sci. 2020, 32, 29–36. [Google Scholar] [CrossRef]
- Anal, A.K. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: A review. Fermentation 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Žuntar, I.; Petric, Z.; Bursać Kovačević, D.; Putnik, P. Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods 2020, 9, 947. [Google Scholar] [CrossRef]
- Rizo, J.; Guillén, D.; Farrés, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in traditional vegetable fermented foods and beverages. Crit. Rev. Food Sci. Nut. 2020, 60, 791–809. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasut, C.; Sivamaruthi, B.S.; Makhamrueang, N.; Peerajan, S.; Kesika, P. A survey of consumer’ opinion about consumption and health benefits of fermented plant beverages in Thailand. Food Sci. Technol. 2018, 38, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of special beer processes and potential health benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Jimborean, M.A.; Salanță, L.C.; Trusek, A.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Farcaș, A.; Ilieș, M.; Pașca, S.; et al. Drinking behavior, taste preferences and special beer perception among Romanian university students: A qualitative assessment research. Int. J. Environ. Res. Public Health 2021, 18, 3307. [Google Scholar] [CrossRef]
- Mangindaan, D.; Khoiruddin, K.; Wenten, I.G. Beverage dealcoholization processes: Past, present, and future. Trends Food Sci. Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejon, R.M.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography-mass spectrometry method. Food Res. Int. 2011, 44, 259–268. [Google Scholar] [CrossRef]
- Yalçin, O.; Tekgündüz, C.; Öztürk, M.M.; Tekgündüz, E. Investigation of the traditional organic vinegars by UV-VIS spectroscopy and rheology techniques. Spectrochim. Acta A 2021, 246, 118987. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission, 1987. Draft European Regional Standard for Vinegar. Rome, Italy. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-706-15%252Fal87_19e.pdf (accessed on 10 October 2021).
- Mohamad, N.E.; Yeap, S.K.; Lim, K.L.; Yusof, H.M.; Beh, B.K.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Jamaluddin, A.; Long, K.; et al. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chin. Med. 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roda, A.; Lucini, L.; Torchio, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Wang, X.; Tian, C.; Li, X.; Zhang, B.; Song, X.; Zhang, J. Characterization of organic acids and phenolic compounds of cereal vinegars and fruit vinegars in China. J. Food Process. Pres. 2017, 41, e12937. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Mantzouridou, F.; Daftsiou, E.; Malo, C.; Hatzidimitiou, E.; Nenadis, N.; Tsimidou, M.Z. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. J. Funct. Food. 2014, 8, 161–168. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, S.C.; Shen, Y.; Yang, D.J. Comparison of various preparation methods for determination of organic acids in fruit vinegars with a simple ion-exclusion liquid chromatography. Food Anal. Method. 2011, 4, 531–539. [Google Scholar] [CrossRef]
- Özen, M.; Özdemir, N.; Filiz, B.E.; Budak, N.H.; Kök-Taș, T. Sour Cherry (Prunus cerasus L.) Vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chem. 2020, 309, 125664. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Effects of fermentation time and ph on soursop (Annona muricata) vinegar production towards its chemical compositions. Sains Malays. 2017, 46, 1505–1512. [Google Scholar] [CrossRef]
- Coelho, E.; Geenisheva, Z.; Oliveira, J.M.; Teixeira, J.A.; Domingue, L. Vinegar production from fruit concentrates: Effect on volatile composition and antioxidant activity. J. Food Sci. Technol. Mys. 2017, 54, 4112–4122. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.T.; Ho, C.W.; Alvin, L.J.W.; Iazim, A.; Fazry, S.; Lim, S.J. Chemical changes and optimisation of acetous fermentation time and mother of vinegar concentration in the production of vinegar-like fermented papaya beverage. Sains Malays. 2018, 47, 2017–2026. [Google Scholar] [CrossRef]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic effects of vinegar: A review. Cur. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Sengun, I.; Turp, G.Y.; Cicek, S.N.; Avci, T.; Ozturk, B.; Kilic, G. Assessment of the effect of marination with organic fruit vinegars on safety and quality of beef. Int. J. Food Microbiol. 2021, 336, 108904. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Ducruet, J.; Rebenaque, P.; Diserens, S.; Kosinska-Cagnazzo, A.; Heritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Fanari, M.; Forteschi, M.; Sanna, M.; Piu, P.P.; Porcu, M.C.; D’hallewin, G.; Secchi, N.; Zinellu, M.; Pretti, L. Pilot plant production of craft fruit beer using Ohmic-treated fruit puree. J. Food Process. Pres. 2020, 44, 44. [Google Scholar] [CrossRef]
- Prasad, M.P. In-vitro evaluation of antioxidant properties of fermented fruit beer samples. Int. J. Sci. Res. 2014, 3, 1545–1550. [Google Scholar]
- Martinez, A.; Vegara, S.; Marti, N.; Valero, M.; Saura, D. Physicochemical characterization of special persimmon fruit beers using bohemian pilsner malt as a base. J. Inst. Brew. 2017, 123, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruits beer. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- De Roos, J.; De Vuyst, L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. J. Sci. Food Agric. 2018, 99, 25–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witrick, K.; Pitts, E.R.; O’Keefe, F.S. Analysis of Lambic beer volatiles during aging using gas chromatography-mass spectrometry (GCMS) and gas chromatography-olfactometry (GCO). Beverages 2020, 6, 31. [Google Scholar] [CrossRef]
- De Roos, J.; De Vuyst, L. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 2018, 49, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Verachtert, H.; Derdelinckx, G. Belgian acidic beers, Daily reminiscences of the Past. Cerevisiae 2014, 38, 121–128. [Google Scholar] [CrossRef]
- Sugrue, M.; Dando, R. Cross-modal influence of color from product and packaging alters perceived flavour of cider. J. Inst. Brew. 2018, 124, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple fermented products: An overview of technology properties and health effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Techakanon, C.; Thitithanakul, S. Impact of the ripening stage of wax apples on chemical profiles of juice and cider. ACS Omega 2018, 3, 6710–6718. [Google Scholar] [CrossRef] [Green Version]
- AICV European Cider Trends 2020 Report. Available online: https://aicv.org/en/news/aicv-european-cider-trends-2020-now-published (accessed on 15 July 2021).
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef]
- Villar, A.; Vadillo, J.; Santos, I.; Gorritxategi, E.; Mabe, J.; Arnaiz, A.; Fernandez, L.A. Cider fermentation process monitoring by Vis-Nir sensor system and chemometrics. Food Chem. 2017, 221, 100–106. [Google Scholar] [CrossRef]
- Jarvis, B. Cider (Cyder; Hard Cider). In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 437–443. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Qiu, Y.; Guo, H.; Ju, H.; Wang, Y.; Yuan, Y.; Yue, T. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co- and sequential fermentation. Food Chem. 2020, 306, 125623. [Google Scholar] [CrossRef]
- Magalhães, F.; Krogerus, K.; Vidgren, V.; Snadell, M.; Gibson, B.R. Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae×Saccharomyces eubayanus hybrids. J. Ind. Microbiol. Biotechnol. 2017, 44, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Akubor, P. Characterization of fruit wines from baobab (Adansonia digitata), pineapple (Ananas sativus) and carrot (Daucus carota) tropical fruits. Asian J. Biotechnol. Bioresour. Technol. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Swami, S.B.; Thakor, N.; Divate, A.D. Fruit wine production: A review. J. Food Res. Techn. 2014, 2, 93–100. [Google Scholar]
- Klarić, D.A.; Klarići, I.; Mornar, A.; Velić, N.; Velić, D. Assessment of bioactive phenolic compounds and antioxidant activity of blackberry wines. Foods 2020, 9, 1623. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Liu, Y.W.; Jia, J.Q.; Sivakumar, T.R.; Fan, T.; Gui, Z.Z. Optimization of fermentation process for preparation of mulberry fruit wine by response surface methodology. Afr. J. Microbiol. Res. 2013, 7, 227–236. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Uchechukwu, N.; Obidiegwu, J.; Akpor, O.B. Evaluation of the efficiency of yeast isolates from palmwine in diverse fruit wine production. Afr. J. Food Sci. 2010, 4, 764–774. [Google Scholar]
- Pino, J.; Oscar, Q. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ugbogu, O.; Ugbogu, E.A.; Stephen, E.C. Production of mixed fruit (pawpaw, banana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine. Springer Plus 2015, 4, 683. [Google Scholar] [CrossRef] [Green Version]
- Duarte, W.F.; Dias, D.R.; de Melo Pereira, G.V.; Gervasio, I.M.; Schwan, R.F. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 2009, 36, 557–569. [Google Scholar] [CrossRef]
- Jayabalan, R.; Waisundara, V.Y. 12—Kombucha as a Functional Beverage; Grumezescu, A.M., Holban, A.M., Eds.; Functional and Medicinal Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 413–446. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Taillandier, P. Understanding Kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Zubaidah, E.; Dewantari, F.J.; Novitasari, F.R.; Srianta, I.; Blanc, P.J. Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatal. Agric. 2018, 13, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Sharifudin, S.A.; Ho, W.Y.; Yeap, S.K.; Abdullah, R.; Koh, S.P. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. LWT 2021, 151, 112060. [Google Scholar] [CrossRef]
- Akbarirad, H.; Assadi, M.M.; Pourahmad, R.; Khaneghah, A.M. Employing of the different fruit juices substrates in vinegar Kombucha preparation. Curr. Nut. Food Sci. 2017, 13, 13. [Google Scholar] [CrossRef]
- Rahmani, R.; Beaufort, S.; Villarreal-Soto, S.A.; Taillandier, P.; Bouajila, J.; Debouba, M. Kombucha fermentation of African mustard (Brassica tournefortii) leaves: Chemical composition and bioactivity. Food Biosci. 2019, 30, 100414. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Cabral, B.D.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Herrera, S.M.; González-Laredo, R.F.; Moreno-Jiménez, M.R.; Córdova-Moreno, I.T.S. Chemical and sensory evaluation of a functional beverage obtained from infusions of oak leaves (Quercus resinosa) inoculated with the Kombucha consortium under different processing conditions. Nutrafoods 2014, 13, 169–178. [Google Scholar] [CrossRef]
- Zofia, N.-Ł.; Aleksandra, Z.; Tomasz, B.; Martyna, Z.-D.; Magdalena, Z.; Zofia, H.-B.; Tomasz, W. Effect of Fermentation Time on Antioxidant and Anti-Ageing Properties of Green Coffee Kombucha Ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef] [PubMed]
- Watawana, M.; Jayawardena, N.; Waisundara, V. Enhancement of the functional properties of coffee through fermentation by “tea fungus” ( Kombucha). J. Food Process. Preserv. 2015, 39, 2596–2603. [Google Scholar] [CrossRef]
- Bueno, F.; Chouljenko, A.; Sathivel, S. Development of coffee kombucha containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal simulations and DNA microbial analysis. LWT 2021, 142, 110980. [Google Scholar] [CrossRef]
- Aspiyanto, S.; Iskandar, J.M.; Melanie, H.; Maryati, Y.; Lotulung, P.D. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound. In Proceedings of the International Symposium on Applied Chemistry (ISAC), Jakarta, Indonesia, 23–24 October 2017; Volume 1803. [Google Scholar] [CrossRef]
- Malbaša, R.; Vitas, J.; Lončar, E.; Kravić, S. Influence of fermentation temperature on the content of fatty acids in low energy milk-based kombucha products. Acta Period. Technol. 2011, 42, 81–90. [Google Scholar] [CrossRef]
- Malbaša, R.; Lončar, E.; Djurić, M. Comparison of the products of Kombucha fermentation on sucrose and molasses. Food Chem. 2008, 106, 1039–1045. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W. An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr. 2011, 51, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Perez-Armendariz, B.; Cardoso-Ugarte, G.A. Traditional fermented beverages in Mexico: Biotechnological, nutritional, and functional approaches. Int. Food Res. J. 2020, 136, 109307. [Google Scholar] [CrossRef] [PubMed]
- Motlhanka, K.; Zhou, N.; Lebani, K. Microbial and chemical diversity of traditional non-cereal based alcoholic beverages of Sub-Saharan Africa. Beverages 2018, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.R. Probiotic fruit and vegetable juices-recent advances and future perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Russel, W.; Duthie, G. Plant secondary metabolites and gut health: The case for phenolic acids. Proc. Nutr. Soc. 2011, 70, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Štochmal’ova, A.; Sirotkin, A.; Kadasi, A.; Alexa, R. Physiological and medical effects of plant flavonoid quercetin. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 1915–1926. [Google Scholar]
- Das, A.M.; Goud, V.V.; Das, C. Phenolic compounds as functional ingredients in beverages. In Value-Added Ingredients and Enrichments of Beverages; Grumuzescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 14, pp. 285–323. [Google Scholar] [CrossRef]
- Ji-Yong, S.; Xiao-Bo, Z.; Xiao-Wei, H.; Jie-Wen, Z.; Yanxiao, L.; Limin, H.; Jianchun, Z. Rapid detecting total acid content and classifying different types of vinegar based on near infrared spectroscopy and least-squares support vector machine. Food Chem. 2013, 138, 192–199. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, V.; Kumar, S.; Majid, I.; Aggarwal, P.; Suri, S. 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: Recent developments. Toxin Rev. 2020, 1–17. [Google Scholar] [CrossRef]
- Theobald, A.; Müller, A.; Anklam, E. Determination of 5-hydroxymethylfurfural in vinegar sam-ples by HPLC. J. Agr. Food Chem. 1998, 46, 1850–1854. [Google Scholar] [CrossRef]
- Bounihi, A.; Bitam, A.; Bouazza, A.; Yargui, L.; Koceir, E.A. Fruit vinegars attenuate cardiac injury via anti inflammatory and antiadiposity action in high-fat diet-induced obese rats. Pharm. Biol. 2017, 55, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, A.; Bitam, A.; Amiali, M.; Bounihi, A.; Yargui, L.; Koceir, E.A. Effect of fruit vinegar on liver damage and oxidative stress in high-fat-fed rats. Pharm. Biol 2016, 54, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; McDonald, J.; Chandrasekara, A.; Zhong, Y. Phytochemicals of foods, beverages and fruit vinegars: Chemistry and health effects. Asia Pac. J. Clin. Nutr. 2008, 17, 380–382. [Google Scholar] [PubMed]
- Danielewski, M.; Matuszewska, A.; Nowak, B.; Kucharska, A.Z.; Sozanski, T. The Effects of natural iridoids and anthocyanins on selected parameters of liver and cardiovascular system functions. Oxid. Med. Cell. Longev. 2020, 2735790. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piorecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemical: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Milani, C.; Savoy de Giori, G.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Santos, F.; Wegkamp, A.; De Vos, W.; Smid, E.; Hugenholyz, J. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl. Environ. Microbiol. 2018, 74, 3291–3294. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.S.; Sukumaran, S.; Sen, S.S.; Park, S.C. Use of a potential probiotic, Lactobacillus casei L4, in the Preparation of fermented coconut water beverage. Front. Microbiol. 2018, 9, 1976. [Google Scholar] [CrossRef]
- Klopotek, Y.; Otto, K.; Böhm, V. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, an antioxidant capacity. J. Agr. Food Chem. 2005, 53, 5640–5646. [Google Scholar] [CrossRef]
- AdebayoTayo, B.; Akpeji, S. Probiotic viability, physicochemical and sensory properties of probiotic pineapple juice. Fermentation 2016, 2, 20. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Sackey, A.S.; Wu, M.; Xiao, L. Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT 2018, 92, 61–66. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A.; Alberti, A.; Zielinski, A.A.F. A new approach to the use of apple pomace in cider making for the recovery of phenolic compounds. LWT 2020, 126, 109316. [Google Scholar] [CrossRef]
- Benvenutti, L.; Bortolini, D.G.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Effect of addition of phenolic compounds recovered from apple pomace over cider quality. LWT 2019, 100, 348–354. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Structure, Organoleptic Properties, quantification methods, and stability of phenolic compounds in beer-a review. Food Rev. Int. 2009, 26, 1–84. [Google Scholar] [CrossRef]
- Li, Z.C.; Chi, L.Z.; Zhu, J.K.; Zhang, Y.Y.; Wang, Q.J.; He, P.G.; Fang, Y.Z. Simultaneous determination of active ingredients in blueberry wine by CE-AD. Chin. Chem. Lett. 2011, 22, 1237–1240. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Xie, P.; Zhang, L.; Li, Y.; Zhou, J. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chem. 2019, 275, 299–308. [Google Scholar] [CrossRef]
- Mudnic, I.; Budimir, D.; Modun, D.; Gunjaca, G.; Mekinić, I.G.; Sskroza, D.; Katalinic, V.; Ljubenkov, I.; Boban, M. Antioxidant and vasodilatory effects of blackberry and grape wines. J. Med. Food 2012, 15, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Dini, I. An overview of functional beverages. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 11, pp. 1–40. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.; Jing, S.-J.; Chae, S.-E. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [Green Version]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Nazhand, A.; Souto, E.B.; Lucarini, M.; Souto, S.B.; Durazzo, A.; Santini, A. Ready to use therapeutical beverages: Focus on functional beverages containing probiotics, prebiotics and synbiotics. Beverages 2020, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Raman, M.; Ambalam, P.; Doble, M. 9-Probiotics, prebiotics, and fibers nutritive and functional beverages. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 12, pp. 315–367. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Cantatore, V.; Polo, A.; Celano, G.; Martinovic, A.; Cavoski, I.; Gobbetii, M. Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int. J. Food Microbiol. 2020, 323, 108591. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerda-Bernad, D.; Pastor, J.J.; Frutos, M.J. Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.; Fan, L.; Zhen, Q.; Chen, Q.; Zhao, L. Antioxidant properties of a vegetable-fruit beverage fermented with two Lactobacillus plantarum series. Food Sci. Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Güney, D.; Güngörmüşler, M. Development and Comparative Evaluation of a Novel Fermented Juice Mixture with Probiotic Strains of Lactic Acid Bacteria and Bifidobacteria. Prebiotics Antimicrob. Proteins 2021, 13, 495–505. [Google Scholar] [CrossRef]
- Lamsal, B.P. Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J. Sci. Food Agric. 2012, 92, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.; Delattre, C.; Urdaci, M.C.; Schmitter, J.M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. LWT 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Rodrigues, S. Prebiotic in fruit juice: Processing challanges, advances, and perspective. Curr. Opin. Food Sci. 2018, 22, 55–61. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The emerging side of functional foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Costabile, A.; Walton, G.E.; Tzoetzis, G.; Vulevic, J.; Charalampopoulos, D.; Gibson, G.R. Effects of orange juice formulation on prebiotic functionality using an in vitro colonic model system. PLoS ONE 2015, 10, e0121955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C.G.; Gobbetti, M.; Di Cagno, R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Barrai, L.M.; Herman, D.; Bi, X.; Cheatham, R.; Randolph, R.K. Phytonutrient intake by adults in the USA in relation to fruit and vegetable consumption. J. Acad. Nutr. Diet. 2012, 112, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Negi, B.; Kaur, R.; Dey, G. Protective effects of a novel sea buckthorn wine on oxidative stress and hypercholesterolemia. Food Funct. 2013, 4, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Gallie, D.R. L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica 2013, 2013, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownawell, A.; Caers, W.; Gibson, G.R.; Kendall, C.W.C.; Lewis, K.D.; Ringel, Y.; Slavin, J.L. Prebiotics and the health benefits of fiber:current regulatory status, future research, and goals. J. Nutr. 2012, 142, 962–974. [Google Scholar] [CrossRef] [Green Version]
- White, J.; Hekmat, S. Development of probiotic fruit juices using Lactobacillus rhamnosus GR-1 Fortified with short chain and long chain inulin fiber. Fermentation 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Ghafari, S.; Ansari, S. Microbial viability, physico-chemical properties and sensory evaluation of pineapple juice enriched with Lactobacillus casei, Lactobacillus rhamnosus and inulin during refrigerated storage. J. Food Meas. Charact. 2018, 12, 2927–2935. [Google Scholar] [CrossRef]
- Khezri, S.; Mahmoudi, R.; Dehghan, P. Fig juice fortified with inulin and Lactobacillus delbrueckii: A promising functional food. Appl. Food Biotechnol. 2018, 5, 97–106. [Google Scholar] [CrossRef]
- Blanco-Morales, V.; Lopez-Garcia, G.; Cilla, A.; Garcia-Llatas, G.; Barbera, R.; Lagarda, M.J.; Sanchez-Siles, L.M.; Alegria, A. The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: Adaptation of the harmonized INFOGEST digestion method. Food Funct. 2018, 9, 2080–2089. [Google Scholar] [CrossRef]
- Lopez-Garcia, G.; Cilla, A.; Barberá, R.; Martinez, S.G.; Martorell, P.; Alegria, A. Effect of plant sterol and galactooligosaccharides enriched beverages on oxidative stress and longevity in Caenorhabditis elegans. J. Funct. Foods 2020, 65, 1037472. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Karimi, M.; Davoodi, M.; Jahanbani, R.; Asl, A.F.A. Effect of fructooligosaccharide fortification on quality characteristic of some fruit juice beverages (apple & orange juice). Intl. J. Farm. Alli. Sci. 2014, 3, 141–146. [Google Scholar]
- Almeida, F.D.L.; Gomes, W.F.; Cavalcante, R.S.; Tiwari, B.K.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res. Int. 2017, 102, 282–290. [Google Scholar] [CrossRef]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, M.; Gobbetti, M. Synthesis of gamma-aminoburyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- de Sá, L.Z.M.; Castro, P.F.; Lino, F.M.; Bernardes, M.J.; Viegas, J.C.; Dinis, T.C.; Santana, M.J.; Romao, W.; Vaz, B.G.; Lião, L.M.; et al. Antioxidant potential and vasodilatory activity of fermented beverages of jabuticaba berry (Myrciaria jaboticaba). J. Funct. Foods 2014, 8, 169–179. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatal. Agric. Biotechnol. 2019, 17, 347–351. [Google Scholar] [CrossRef]
- Yonekura, S.; Okamoto, Y.; Okawa, T.; Hisamitsu, M.; Chazono, H.; Kobayashi, K.; Sakurai, D.; Horiguchi, S.; Hanazawa, T. Effects of daily intake of Lactobacillus paracasei strain KW3110 on Japanese cedar pollinosis. Allergy Asthma Proc. 2009, 30, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Hütt, P.; Koll, P.; Stsepetova, J.; Alvarez, B.; Mändar, R.; Andersen, K.K.; Marcotte, H.; Hammarström, L.; Mikelsaar, M. Safety and persistence of orally administered human Lactobacillus sp. strains in healthy adults. Benef. Microbes 2011, 2, 79–90. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Rodino, S.; Butu, M. 3-Herbal extracts-new trends in functional and medicine beverages. In Functional and Medicine Beverages; Grumuzescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 11, pp. 73–108. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Tonutti, I.; Liddle, P. Aromatic plants in alcoholic beverages. A review. Flavour Fragr. J. 2010, 25, 341–350. [Google Scholar] [CrossRef]
- Gonzalez-Manzano, S.; Rivas-Gonzalo, J.C.; Santos-Buelge, C. Extraction of flavan-3-ols from grape seed and skin into wine using simulated maceration. Anal. Chim. Acta. 2004, 153, 283–289. [Google Scholar] [CrossRef]
- Lou, X.; Guo, X.; Wang, K.; Wu, C.; Jin, Y.; Lin, Y.; Xu, H.; Habba, M.; Yuan, L. Phenolic profiles and antioxidant activity of Crataegus pinnatifida fruit infusion and decoction and influence of in vitro gastrointestinal digestion on their digestive recovery. LWT 2021, 135, 110171. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B.; Manikandan, S. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. Technol. 2014, 51, 1938–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, W.-H.; Chen, C.C.; Chung, R.-S. HPLC comparison of supercritical fluid extraction and solvent extraction of coumarins from the peel of Citrus maxima fruit. Phytochem. Anal. 2005, 16, 459–462. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Fornari, T.; Jaime, L.; Vázquez, E.; Amador, B.; Nieto, J.A.; Yuste, M.; Mercader, M.; Reglero, G. Supercritical CO2 extraction applied toward the production of a functional beverage from wine. J. Supercrit. Fluid. 2012, 61, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.K.; Bargas, M.A.; Arruda, H.S.; Vardanega, R.; Pastore, G.M.; Meireles, M.A.A. Supercritical CO2 processing of a functional beverage containing apple juice and aqueous extract of Pfaffia glomerata roots: Fructooligosaccharides chemical stability after non-thermal and thermal treatments. Molecules 2020, 25, 3911. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Lee, W.Y.; Choi, Y.H. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology. J. Sep. Sci. 2013, 36, 3107–3114. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotechnol. 2016, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S.; Imran, M.; Mushtaq, Z.; Ahmad, M.H.; Arshad, M.S.; Holmes, M.; Maycock, J.; Nisar, M.F.; Khan, M.K. Retention and stability of bioctive compounds in functional peaches beverage using pasteurization, microwave and ultrasound technologies. Food Sci. Biotechnol. 2020, 29, 1381–1388. [Google Scholar] [CrossRef]
- Reddy, V.B.; Moniruzzaman, M.; Madhavi, V.; Jaafar, J. Chapter 8-Recent improvements in the extraction, cleanup and quantification of bioactive flavonoids. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 66, pp. 197–223. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, Y.; Liu, S.Q. Effects of pectinase treatment on the physicochemical and oenological properties of red dragon fruit wine fermented with Torulaspora delbrueckii. LWT 2020, 132, 109929. [Google Scholar] [CrossRef]
- Dinkova, R.; Heffels, P.; Shikov, V.; Weber, F.; Schieber, A.; Mihalev, K. Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juice. Food Res. Int. 2014, 65, 35–41. [Google Scholar] [CrossRef]
- Kim, B.H.M.; Park, S.K. Enhancement of volatile aromatic compounds in black raspberry wines via enzymatic treatment: Volatiles in black raspberry wine via enzymatic treatment. J. Inst. Brew. 2017, 132, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Huang, K.; Lyu, C.; Wang, J. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review. Food Control 2016, 61, 28–38. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Salameh, D.; Vorobiev, E.; Maroun, R.G.; Louka, N. Control of the sugar/ethanol conversion rate during moderate pulsed electric field-assisted fermentation of Hanseniaspora sp. strain to produce low-alcohol cider. Innov. Food Sci. Emerg. 2020, 59, 102258. [Google Scholar] [CrossRef]
- Mota, M.J.; Lopes, R.P.; Koubaa, M.; Roohinejad, S.; Barba, F.J.; Delgadilo, I.; Saraiva, J.A. Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies. Crit. Rev. Biotechnol. 2017, 38, 122–140. [Google Scholar] [CrossRef]
- Siddeeg, A.; Zeng, X.-A.; Rahaman, A.; Manzoor, M.F.; Ahmed, Z.; Ammar, A.-F. Effect of pulsed electric field pretreatment of date palm fruits on free amino acids, bioactive components, and physicochemical characteristics of the alcoholic beverage. J. Food Sci. 2019, 84, 3156–3162. [Google Scholar] [CrossRef] [PubMed]
- Delsart, C.; Cholet, C.; Ghidossi, R.; Grimi, N.; Gontier, E.; Geny, L.; Vorobiev, E.; Mietton-Peuchot, M. Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food Bioproc. Technol. 2013, 7, 424–436. [Google Scholar] [CrossRef]
- Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojčin, M.; Putnik, P.; Kovačević, D.B. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J. Food Process. Eng. 2018, 41, e12638. [Google Scholar] [CrossRef]
- Yi, J.; Kebede, B.T.; Kristiani, K.; Grauwet, T.; van Loey, A.; Hendrickx, M. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization. Food Chem. 2017, 249, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Loira, I.; Vejarano, R.; Bañuelos, M.A.; Sanz, P.D.; Otero, L.; Suarez-Lepe, J.A. Grape processing by high hydrostatic pressure: Effect on microbial populations, phenol extraction and wine quality. Food Bioproc. Technol. 2014, 8, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic fermented fruit or vegetable juices: Past, present and future. Beverages 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Jincy, G.M.; Rastogi, N.K. High pressure procesing for food fermentation. In Novel Food Fermentation Technologies; Springer: Berlin/Heidelberg, Germany, 2016; pp. 57–83. [Google Scholar] [CrossRef]
- Maza, M.A.; Martinez, J.M.; Hernandez-Orte, P.; Cebrian, G.; Sanchez-Gimeno, A.C.; Alvarez, I.; Raso, J. Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food Bioprod. Process. 2019, 116, 249–257. [Google Scholar] [CrossRef]
- Xu, L.-F.; Tang, Z.-S.; Wen, Q.-H.; Zeng, X.-A.; Brennan, C.; Niu, D. Effects of pulsed electric fields pretreatment on the quality of jujube wine. Int. J. Food Sci. Technol. 2019, 54, 3109–3117. [Google Scholar] [CrossRef]
- Kaur, M.; Sahota, P.; Sharma, N.; Kaur, K.; Sood, B. Enzymatic production of debittered Kinnow juice and beverage. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1180–1186. [Google Scholar] [CrossRef]
- Guo, J.; Yan, Y.; Wang, M.; Wu, Y.; Liu, S.-Q.; Chen, D.; Lu, Y. Effects of enzymatic hydrolysis on the chemical constituents in jujube alcoholic beverage fermented with Torulaspora delbrueckii. LWT 2018, 97, 617–623. [Google Scholar] [CrossRef]
- Toy, J.Y.H.; Lu, Y.; Huang, D.; Matsumura, K.; Liu, S.Q. Enzymatic treatment, unfermented and fermented fruit-based products: Current state of knowledge. Crit. Rev. Food. Sci. Nutr. 2020, 1–22. [Google Scholar] [CrossRef]
- Belda, I.; Conchilo, L.B.; Ruiz, J.; Navascues, E.; Marquina, D.; Santos, A. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 2016, 223, 1–8. [Google Scholar] [CrossRef]
- Ferreira Rosas, L.; Alves Macedo, J.; Lima Ribeiro, M.; Alves Macedo, G. Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Res. Int. 2013, 51, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chang, X.; Liu, X.; Shen, Z. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chem. 2016, 212, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.T.K.; Curet, S.; Augusto, P.E.D.; Boillereaux, L. Multiphysics modeling of microwave processing for enzyme inactivation in fruit juices. J. Food Technol. 2019, 263, 366–379. [Google Scholar] [CrossRef]
- Mendes-Oliveira, G.; Deering, A.J.; San Martin-Gonzalez, F.M.; Campanella, O.H. Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiol. 2020, 87, 103382. [Google Scholar] [CrossRef]
- Salazar-Gonzalez, C.; San Martin-Gonzalez, F.M.; Lopez-Malo, A.; Sosa-Morales, M.E. Recent studies related to microwave processing of fluid foods. Food Bioproc. Technol. 2012, 5, 31–46. [Google Scholar] [CrossRef]
- Swamy, G.J.; Muthukumarappan, K.; Asokapandian, S. Chapter 23—Ultrasound for fruit juice preservation; fruit juices- extraction, composition. In Quality and Analysis; Academic Press: Cambridge, MA, USA, 2018; pp. 451–462. [Google Scholar] [CrossRef]
- Zhai, X.; Wang, X.; Wang, X.; Zhang, H.; Ji, Y.; Ren, D.; Lu, J. An efficient method using ultrasound to accelerate aging in crabapple (Malus asiatica) vinegar produced from fresh fruit and its influencing mechanism investigation. Ultrason. Sonochem. 2021, 72, 105464. [Google Scholar] [CrossRef]
- Wang, J.; Xie, B.; Sun, Z. Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage. LWT 2020, 137, 110438. [Google Scholar] [CrossRef]
- Paniwnyk, L. Applications of ultrasound in processing of liquid foods: A review. Ultrason. Sonochem. 2017, 38, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.G.; Fonteles, T.D.; Tiberio de Jesus, A.L.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, J.T.; Silva, E.K.; Ranadheera, S.; Moraes, J.; Raices, R.; Silva, M.C.; Ferreira, M.S.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason. Sonochem. 2019, 55, 157–164. [Google Scholar] [CrossRef]
- Zhou, L.; Guan, Y.; Bi, J.; Liu, X.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Change of the rheological properties of mango juice by high pressure homogenization. LWT 2017, 82, 121–130. [Google Scholar] [CrossRef]
- Bansal, V.; Jabeen, K.; Rao, P.S.; Prasad, P.; Yadav, S.K. Effect of high pressure processing (HPP) on microbial safety, physicochemical properties, and bioactive compounds of whay-based sweet lime (whey-lime) beverage. J. Food Meas. Charact. 2018, 13, 454–465. [Google Scholar] [CrossRef]
- Nayak, P.K.; Rayaguru, K.; Krishnan, R.K. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 2016, 97, 1404–1411. [Google Scholar] [CrossRef]
- Morata, A.; Guamis, B. Use of UHPH to obtain juices with better nutritional quality and healthier wines with low levels of SO2. Front. Nutr. 2020, 7, 241. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Martinez-Monteagudo, S.I.; Gupta, R. Principles and application of high pressure-based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Canonico, L.; Oro, L.; Comitini, F. 14-Footprint of nonconventional yeasts and their contribution in alcoholic fermentation. In Biotechnological Progress and Beverage Consumption; Grumuzescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 19, pp. 435–465. [Google Scholar] [CrossRef]
- Benito, S.; Palomero, F.; Morata, A.; Calderon, F.; Suarez-Lepe, J.A. New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. Int. J. Food Sci. Technol. 2013, 47, 2101–2108. [Google Scholar] [CrossRef]
- Mas, A.; Guillamon, J.M.; Torija, M.J.; Beltran, G.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, C. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. BioMed Res. Int. 2014, 1–7. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, I.; Gil-Izquierdo, A.; Troncoso, A.M.; Cantos-Villar, E.; Garcia-Parrilla, C. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 2011, 126, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pachón, M.-S.; Medina, S.; Herrero-Martin, G.; Cerrillo, I.; Berna, G.; Escudero-Lopez, B.; Ferreres, F.; Martin, F.; Garcia-Parrilla, M.C.; Gil-Izquierdo, A. Alcoholic fermentation induces melatonin synthesis in orange juice. J. Pineal Res. 2014, 56, 31–38. [Google Scholar] [CrossRef]
- Feng, X.; Wang, M.; Zhao, Y.; Han, P.; Dai, Y. Melatonin from different fruit sources, functional roles, and analytical methods. Trends Food Sci. Technol. 2014, 37, 21–31. [Google Scholar] [CrossRef]
- Cerrillo, I.; Escudero-Lopez, B.; Hornero-Mendez, D.; Martin, F.; Fernandez-Pachon, M.-S. Effect of alcoholic fermentation on the carotenoid composition and provitamin a content of orange juice. J. Agric. Food Chem. 2014, 62, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero-Lopez, B.; Cerrillo, I.; Herrero-Martin, G.; Hornero-Mendez, D.; Gil-Izquierdo, A.; Medina, S.; Ferreres, F.; Berna, G.; Martin, F.; Fernandez-Pachon, M.-S. Fermented orange juice: Source of higher carotenoid and flavanone contents. J. Agric. Food Chem. 2012, 61, 8773–8782. [Google Scholar] [CrossRef]
- Sengun, I.Y. Acetic Acid Bacteria. In Fundamentals Food Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Yamada, Y. Systematics of Acetic Acid Bacteria. In Acetic Acid Bacteria Ecology and Physiology; Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A., Eds.; Springer: Tokyo, Japan, 2016; pp. 1–50. [Google Scholar]
- Gomes, R.J.; de Fatima, B.M.; de Freitas, R.M.; Castro-Gomez, R.J.H.; Spinosa, W.A. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 2018, 56, 139–151. [Google Scholar] [CrossRef]
- Giuffré, A.M.; Zappia, C.; Capocasale, M.; Poiana, M.; Sidari, R.; Di Donna, L.; Bartella, L.; Sindona, G.; Corradini, G.; Giudici, P.; et al. Vinegar production to valorise Citrus bergamia by-products. Eur. Food Res. Technol. 2018, 245, 667–675. [Google Scholar] [CrossRef]
- Malo, P.; Urquhart, E.A. Fermented foods: Use of starter cultures. In Encyclopedia of Food and Health, 2nd ed.; Carl Batt, C., Pradip, P., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 681–685. [Google Scholar] [CrossRef]
- Muñoz, R.; Moreno-Arribas, V.M.; de las Rivas, B. Chapter 8-Lactic Acid Bacteria. In Molecular Wine Microbiology; Santiago, A.C., Munoz, R., Gonzalez Garcia, R., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 191–226. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Zarei, M.; Hussin, A.S.M. Effects of metabolite changes during lacto-fermentation on the biological activity and consumer acceptability for dragon fruit juice. LWT 2020, 121, 108992. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Hussin, A.S.M. Metabolomics profiling of fermented cantaloupe juice and the potential application to extend the shelf life of cantaloupe juice for six months at 8 °C. Food Control 2021, 120, 107555. [Google Scholar] [CrossRef]
- Ceci, C.; Lacal, P.M.; Tentori, L.; De Martino, M.G.; Miano, R.; Graziani, G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018, 10, 1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Chen, W.; Chen, H.; Zhang, G.; Chen, W. Comparative evaluation of the antioxidant capacities, organic acids, and volatiles of papaya juices fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Watanabe, T.; Toyama, H.; Morinaga, Y. Significance of microbial symbiotic coexistence in traditional fermentation. J. Biosci. Bioeng. 2013, 116, 533–539. [Google Scholar] [CrossRef]
- Stadie, J.; Gulitz, A.; Ehrmann, M.; Vogel, R. Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol. 2013, 35, 92–98. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3711–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabokbar, N.; Moosabi-Nasab, M.; Khodaiyan, F. Preparation and characterization of an apple juice and whey based novel beverage fermented using kefir grains. Food Sci. Biotechnol. 2015, 24, 2095–2104. [Google Scholar] [CrossRef]
- Kazakos, S.; Mantzourani, I.; Nouska, C.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S.; Varzakas, T.S. Production of low-alcohol fruit beverages through fermentation of pomegranate and orange juices with kefir grains. Curr. Res. Nutr. Food Sci. 2016, 4, 19–26. [Google Scholar] [CrossRef]
- Bellut, K.; Krogerus, K.; Arendt, E.K. Lachancea fermentati strains isolated from Kombucha: Fundamental insights, and practical application in low alcohol beer brewing. Front. Microbiol. 2020, 11, 764. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, D.; Misra, S.; Mohapatra, S.; Sahu, P.S. Prebiotics and synbiotics: Recent concepts in nutrition. Food Biosci. 2018, 26, 152–160. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.M.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products –characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–29. [Google Scholar] [CrossRef]
- Ferrentino, G.; Asaduzzaman, M.D.; Scampicchio, M.M. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Crit. Rev. Food Sci. Nutr. 2018, 58, 386–404. [Google Scholar] [CrossRef]
- Campos, D.A.; Gomez-Garcia, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of fruit industrial by-products-a case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
Beverage | Phenolic Compounds (μg/mL) | References | |||||||
---|---|---|---|---|---|---|---|---|---|
Phenolic Acids | Flavonoids | ||||||||
Gallic Acid | Caffeic Acid | Ferulic Acid | p-Coumaric Acid | Chlorogenic Acid | Catechin | Rutin | Quercetin | ||
Fermented mulberry juice | 15 | 98.3 | 187.5 | 2.4 | 91.6 | 163.5 | 194.7 | 300.8 | [112] |
Wax apple cider | 11.5 | 62.1 | 69.1 | 0.14 | 64.6 | 110.1 | 41.3 | 61.1 | [61] |
Cider with added apple pomace | 3.9 | 3–3.7 | 2–4.2 | 1–1.5 | 8.3–22.5 | 24.4 | 1.8–3.3 | 2.1 | [63,113,114] |
Amber ale beer enriched with goji berries | 0.01–5.9 | 1.3 | 4.6–13.3 | 1.19–3.7 | 0.01–7.8 | 0.8–6.9 | 23.1 | 320–1400 | [50,115] |
Blackberry wine | 4.5–118 | 1.2–10.1 | 1.3 | 0.3–4 | 1.2–8.3 | 9–45 | 35.1 | 34.9 | [70,116,117,118] |
Prebiotic Added | Recommended Dose for Fortifying | Beverage Type | Content of Prebiotic and Probiotic Compound | References |
---|---|---|---|---|
Inulin | 3% w/w for infant formulas and 5% w/w for common beverages 5 g in Europe 9–10 g in Korea 1.25 g/portion in Southeast Asia | L. rhamnosus probiotic orange juice fortified with long chain inulin | L. rhamnosus 5.9 × 107 CFU/mL; long chain inulin 4 g/100 mL | [137,138,139,140] |
Pineapple juice enriched with L. casei or L. rhamnosus and inulin | L. casei (108 CFU/mL) or L. rhamnosus (108 CFU/mL); inulin 2 g/100 mL | |||
Fig juice fortified with inulin and L. delbrueckii | L. delbrueckii ˃106 CFU/g; inulin 2 g/100 mL | |||
GOS | Max 5% w/w in beverage | PS-enriched milk-based fruit beverage with 5 g GOS/250 mL | GOS 2 g/100 mL | [141,142] |
FOS | 5 g in Europe 1.25 g/portion in Southeast Asia 3% w/w for infant formulas and 5% w/w for common beverages | FOS-fortified apple juice | FOS 15.5 g/100 mL | [137,143,144] |
FOS-enriched mixed fruit beverage | FOS 0.7 g/100 mL | |||
Prebiotic orange juice | FOS 7 g/100 mL |
Type of Beverage | Fermentation Type | Chemical Compound/Class of Compounds of Interest | Concentration of Compounds of Interest | Daily Recommended Dose of Compound of Interest | Impact on Health | References |
---|---|---|---|---|---|---|
Grape-based fermented beverage | Lactic | Polyphenols (grape must), γ-amino butyric acid L. plantarum DSM19463 | γ-amino butyric acid 10 g/20 mL; Log 10.0 ufc/g L. plantarum | γ-amino butyric acid: 10 g | Anti-hypertensive activity; anti-inflammation and fibroblast cell proliferation, activities that promote the healing process of wounds | [145] |
Fermented jabuticaba berry beverage (12% ABV) | Alcoholic | Phenolic compounds (rutin, quercetin, anthocyanins, coumarins, gallic acid) | Gallic acid 3 mg/mL; phenolics and coumarins 68.9 mg/mL | Quercetin: 13.4–22.8 mg—men; 11.1–17.7 mg—women | Antioxidant, vasorelaxation, and cardiovascular protection | [134,146] |
Pomegranate fermented juice | Lactic | Phenolic compounds (ellagic acid) L. plantarum | Ellagic acid 6.4–7.1 mg/L; L. plantarum: 6 Log CFU/mL | Ellagic acid: 17.9 mg—men; 27.6 mg women (USA) | Antioxidant and anti-inflammatory proprieties, inhibits growth of tumor cells | [133,134] |
Sea buckthorn wine | Alcoholic | Rutin, myricetin, quercetin, vitamin C | Ascorbic acid 176.8 mg/L; rutin 68.4 mg/L; myricetin 40.3 mg/L; quercetin 1.04 mg/L | Quercetin: 13.4–22.8 mg—men; 11.1–17.7 mg women Vitamin C: 90 mg—men, 75 mg—women | Protective effects against oxidative stress and hypercholesterolemia; anti-inflammatory, myocardial protecting, vasodilator and hepatoprotective activities | [134,135,136] |
Symbiotic fermented Cornelian cherry beverage (0.2–0.7% ABV) | Alcoholic and lactic | Fibers, phenols, L. paracasei K5, lactic acid | Wheat bran-50% dietary fiber (used as a prebiotic and cell immobilization carrier for Lactobacillus) L. paracasei 9.74 Log CFU/mL, lactic acid 167.8 mg/100 mL | 1010–3 × 1012 CFU L. paracasei | Antimicrobial activity against various pathogens; anti-inflammatory, antimalarial, antidiabetic activities | [147,148,149] |
Symbiotic fruit based kombucha beverage | Acetic, lactic and alcoholic | Organic acids, vitamins, phenols, minerals, probiotics, carbohydrates, amino acids, bacteriocins | Acetic acid 0.016–39 g/L, gluconic acid 0.18 g/L, vitamin B1 0.74 mg/mL, vitamin B2 0.08 mg/mL, vitamin B6 0.52 mg/mL, vitamin B12 0.84 mg/mL, vitamin C 25,000 mg/mL Cu, Fe, Mn, Ni, Zn 0.1 to 0.4 μg/mL Total phenolic content 178–264 mg GAE/L Flavonoid content 2307.14 mg QE/L | Vitamin C: 90 mg—men, 75 mg—women | Antimicrobial, antioxidant, anti-inflammatory activities, anticarcinogenic potential | [77,78,136,150] |
Methods | Type | Advantages | Disadvantages | References |
---|---|---|---|---|
Pulsed electric field (PEF) | Non-thermal | Reduction of the quantity of SO2 used Reduced degradation of nutritional and sensorial characteristics Controlled sugar/ethanol conversion in fermentation Improved extraction of compounds of interest Alternative to pasteurization Inactivation of microorganisms | Corrosion and migration of electrode materials Metallic taste Degradation of some compounds (cyanidin-3-O-glucoside and cyanidin-3-O-sophoroside) | [168,169,170,171,172,173,178,179] |
Enzyme assisted extraction (EAE) | Non-thermal | Improved yeast growth by releasing nutrients Enhanced aroma of the beverage Increased yield of fermentation Improved clarification process and biological activity | Susceptible to substrate or product inhibition The product may cause an allergic reaction High cost for isolation and purification Difficult recovery for subsequent reuse Higher temperatures (˃40 °C) and pH over 7.4 lead to denaturation | [19,161,165,167,180,181,182,183,184] |
Microwave assisted extraction (MAE) | Thermal | Increased total anthocyanin content Enzyme inactivation Inactivation of microorganisms Increased juice stability | Only certain microwave frequencies can be used because they can interfere with radio frequencies Non-uniform temperature distribution resulting in hot and cold spots Longer extraction step and poor extraction yield | [11,12,13,162,185,186,187,188] |
Ultrasound assisted extraction (UAE) | Non-thermal | Increased content of bioactive compounds Prevention of browning Shortened aging process Inactivation of microorganisms | Degradation of ascorbic acid Decreased content of minerals Increased ultrasonic intensities may cause physical-chemical degradation | [112,164,189,190,191,192,193,194] |
High pressure homogenization (HPH) | Non-thermal | Improved yield of extraction Increased shelf life Inactivation of microorganisms Changed rheological characteristics Improved overall aspect of beverages, especially color | Pressures exceeding 1200 MPa are needed to inactivate bacterial spores Most products must be stored and transported under refrigeration Cladosporium spores may survive in low-acid HPH products. High processing costs | [174,175,176,177,195,196,197,198,199,200] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keșa, A.-L.; Pop, C.R.; Mudura, E.; Salanță, L.C.; Pasqualone, A.; Dărab, C.; Burja-Udrea, C.; Zhao, H.; Coldea, T.E. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. Plants 2021, 10, 2263. https://doi.org/10.3390/plants10112263
Keșa A-L, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. Plants. 2021; 10(11):2263. https://doi.org/10.3390/plants10112263
Chicago/Turabian StyleKeșa, Ancuța-Liliana, Carmen Rodica Pop, Elena Mudura, Liana Claudia Salanță, Antonella Pasqualone, Cosmin Dărab, Cristina Burja-Udrea, Haifeng Zhao, and Teodora Emilia Coldea. 2021. "Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages" Plants 10, no. 11: 2263. https://doi.org/10.3390/plants10112263
APA StyleKeșa, A.-L., Pop, C. R., Mudura, E., Salanță, L. C., Pasqualone, A., Dărab, C., Burja-Udrea, C., Zhao, H., & Coldea, T. E. (2021). Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. Plants, 10(11), 2263. https://doi.org/10.3390/plants10112263