A GIS-Based Fuzzy Decision Making Model for Seismic Vulnerability Assessment in Areas with Incomplete Data
Abstract
:1. Introduction
2. The Study Area
3. Methods
3.1. AHP
3.2. Fuzzy Set Theory
3.3. TOPSIS Method
- (i)
- It has a sound logic that represents the rationale of human choice.
- (ii)
- It is intuitive and easy to understand; it can be modeled and solved by decision makers and managers using simple computer codes or Excel worksheets [47].
- (iii)
- It considers both the best and the worst alternatives simultaneously.
3.4. Proposed Method
4. Data Analysis and Results
5. Sensitivity Analysis
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lantada, N.; Irizarry, J.; Barbat, A.H.; Goula, X.; Roca, A.; Susagna, T.; Pujades, L.G. Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull. Earthq. Eng. 2010, 8, 201–229. [Google Scholar] [CrossRef]
- Rashed, T.; Weeks, J. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int. J. Geogr. Inf. Sci. 2003, 17, 547–576. [Google Scholar] [CrossRef]
- Iervolino, I.; Manfredi, G.; Polese, M.; Verderame, G.M.; Fabbrocino, G. Seismic risk of R.C. Building classes. Eng. Struct. 2007, 29, 813–820. [Google Scholar] [CrossRef]
- Barbat, A.H.; Carreño, M.L.; Pujades, L.G.; Lantada, N.; Cardona, O.D.; Marulanda, M.C. Seismic vulnerability and risk evaluation methods for urban areas. A review with application to a pilot area. Struct. Infrastruct. Eng. 2009, 6, 17–38. [Google Scholar] [CrossRef]
- Carreño, M.-L.; Cardona, O.; Barbat, A. Urban seismic risk evaluation: A holistic approach. Nat. Hazards 2007, 40, 137–172. [Google Scholar] [CrossRef]
- Montoya, L.; Masser, I. Management of natural hazard risk in Cartago, Costa Rica. Habitat Int. 2005, 29, 493–509. [Google Scholar] [CrossRef]
- Alam, M.S.N.; Tesfamariam, S.; Alam, M.S.N. Gis-based seismic damage estimation: Case study for the city of Kelowna, BC. Nat. Hazards Rev. 2013, 14, 66–78. [Google Scholar] [CrossRef]
- Hashemi, M.; Alesheikh, A.A. A GIS-based earthquake damage assessment and settlement methodology. Soil Dyn. Earthq. Eng. 2011, 31, 1607–1617. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Nedović-Budić, Z.; Alavi Razavi, A.; Norouzzadeh, M.; Hodhodkian, H. Interactive approach for GIS-based earthquake scenario development and resource estimation (karmania hazard model). Comput. Geosci. 2013, 51, 324–338. [Google Scholar] [CrossRef]
- HAZUS 99 Technical Manual; Federal Emergency Management Agency (FEMA): Washington, DC, USA, 1999.
- The Study on Seismic Micro Zoning of the Greater Tehran Area in the Islamic Republic of Iran; Final Report; Tehran Municipality, Japan International Cooperation Agency (JICA): Tehran, Iran, 2000.
- Karimzadeh, S.; Miyajima, M.; Hassanzadeh, R.; Amiraslanzadeh, R.; Kamel, B. A GIS-based seismic hazard, building vulnerability and human loss assessment for the earthquake scenario in Tabriz. Soil Dyn. Earthq. Eng. 2014, 66, 263–280. [Google Scholar] [CrossRef]
- Tang, A.; Wen, A. An intelligent simulation system for earthquake disaster assessment. Comput. Geosci. 2009, 35, 871–879. [Google Scholar] [CrossRef]
- Vicente, R.; Parodi, S.; Lagomarsino, S.; Varum, H.; Silva, J.A.R.M. Seismic vulnerability and risk assessment: Case study of the historic city centre of Coimbra, Portugal. Bull. Earthq. Eng. 2011, 9, 1067–1096. [Google Scholar] [CrossRef]
- Godfrey, A.; Ciurean, R.L.; van Westen, C.J.; Kingma, N.C.; Glade, T. Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach—An application in Nehoiu valley, Romania. Int. J. Disaster Risk Reduct. 2015, 13, 229–241. [Google Scholar] [CrossRef]
- Rezaie, F.; Panahi, M. Gis modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Nat. Hazards Earth Syst. Sci. 2015, 15, 461–474. [Google Scholar] [CrossRef]
- Armaş, I. Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Nat. Hazards 2012, 63, 1129–1156. [Google Scholar] [CrossRef]
- Hizbaron, D.R.; Baiquni, M.; Sartohadi, J.; Rijanta, R. Urban vulnerability in Bantul district, Indonesia—Towards safer and sustainable development. Sustainability 2012, 4, 2022. [Google Scholar] [CrossRef]
- Servi, M. Assessment of Vulnerability to Earthquake Hazards Using Spatial Multicriteria Analysis: Odunpazari, Eskisehir Case Study. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2004. [Google Scholar]
- Sinha, N.; Priyanka, N.; Joshi, P.K. Using spatial multi-criteria analysis and ranking tool (smart) in earthquake risk assessment: A case study of Delhi region, India. Geomat. Nat. Hazards Risk 2016, 7, 680–701. [Google Scholar] [CrossRef]
- Silavi, T.; Delavar, M.R.; Malek, M.R.; Kamalian, N.; Karimizand, K. An integrated strategy for GIS-based fuzzy improved earthquake vulnerability assessment. In Proceedings of the Second International Symposium in Geo-Information for Disaster Management, ISPRS, Goa, India, 25–26 September 2006; p. 6. [Google Scholar]
- Samadi Alinia, H.; Delavar, M.R. Tehran’s seismic vulnerability classification using granular computing approach. Appl. Geomat. 2011, 3, 229–240. [Google Scholar] [CrossRef]
- Moradi, M.; Delavar, M.R.; Moshiri, B. A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided owa operator: A case study of Tehran, Iran. Ann. GIS 2015, 21, 209–222. [Google Scholar] [CrossRef]
- Meshkini, A.; Habibi, K.; Alizadeh, H. Using fuzzy logic and GIS tools for seismic vulnerability of old fabric in Iranian cities (case study: Zanjan city). J. Intell. Fuzzy Syst. 2013, 25, 965–975. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications: A State-of-the-Art Survey; Springer: Berlin, Germany; New York, NY, USA, 1981. [Google Scholar]
- Kamelifar, M.J.; Rustei, S.; Ahadnejad, M.; Kamelifar, Z. The Assessment of road network vulnerability in formal and informal (slum) urban tissues to earthquake hazards with crisis management approach (Case study: Zone 1 Tabriz). J. Civ. Eng. Urban. 2013, 3, 380–385. [Google Scholar]
- Hosseinzade Delir, K.; Khodabakhah Charkhaloo, M. The study of efficiency of street networks in earthquake (case study of zones 1 and 5 of Tabriz detailed Pland). Geogr. Plan. 2015, 18, 153–174. [Google Scholar]
- Ambraseys, N.N.; Melville, C.P. A History of Persian Earthquakes; Cambridge University Press: Cambridge, UK, 1982 (Translated by Radeh, A.); Agah Publishers: Tehran, Iran, 1991. (In Persian) [Google Scholar]
- Karimzadeh, S.; Cakir, Z.; Osmanoğlu, B.; Schmalzle, G.; Miyajima, M.; Amiraslanzadeh, R.; Djamour, Y. Interseismic strain accumulation across the North Tabriz fault (NW Iran) deduced from InSAR time series. J. Geodyn. 2013, 66, 53–58. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Strasser, S.E.; Ozgur, C.; Schroeder, D.L. Selecting a business college major: An analysis of criteria and choice using the analytical hierarchy process. Am. J. Bus. 2002, 17, 47–56. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Malczewski, J. GIS and Multicriteria Decision Analysis; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Botero Fernández, V. Geo-Information for Measuring Vulnerability to Earthquake: A Fitness for Use Approach. Ph.D. Thesis, ITC, Enschede, The Netherlands, 2009. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Gis-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake Basin, Iran. Nat. Hazards 2013, 65, 2105–2128. [Google Scholar] [CrossRef]
- Kamp, U.; Owen, L.; Growley, B.; Khattak, G. Back analysis of landslide susceptibility zonation mapping for the 2005 kashmir earthquake: An assessment of the reliability of susceptibility zoning maps. Nat. Hazards 2010, 54, 1–25. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Sezer, E.A.; Gokceoglu, C.; Ayas, Z. A modified analytical hierarchy process (m-AHP) approach for decision support systems in natural hazard assessments. Comput. Geosci. 2013, 59, 1–8. [Google Scholar] [CrossRef]
- Erden, T.; Karaman, H. Analysis of earthquake parameters to generate hazard maps by integrating AHP and GIS for küçükçekmece region. Nat. Hazards Earth Syst. Sci. 2012, 12, 475–483. [Google Scholar] [CrossRef]
- Saaty, T.L. Eigenvector and logarithmic least squares. Eur. J. Oper. Res. 1990, 48, 156–160. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zimmermann, H.J. Fuzzy Set Theory—And Its Applications; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Chou, C.C. The canonical representation of multiplication operation on triangular fuzzy numbers. Comput. Math. Appl. 2003, 45, 1601–1610. [Google Scholar] [CrossRef]
- Chen, K.; Blong, R.; Jacobson, C. MCE-Risk: Integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environ. Model. Softw. 2001, 16, 387–397. [Google Scholar] [CrossRef]
- Chu, J.; Su, Y. The application of TOPSIS method in selecting fixed seismic shelter for evacuation in cities. Syst. Eng. Procedia 2012, 3, 391–397. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.-S. Robust spatial flood vulnerability assessment for Han River using fuzzy TOPSIS with α-cut level set. Expert Syst. Appl. 2014, 41, 644–654. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, G.H. Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecol. Model. 2011, 222, 313–321. [Google Scholar] [CrossRef]
- Peng, Y. Regional earthquake vulnerability assessment using a combination of MCDM methods. Ann. Oper. Res. 2015, 234, 95–110. [Google Scholar] [CrossRef]
- Caterino, N.; Iervolino, I.; Manfredi, G.; Cosenza, E. Comparative analysis of multi-criteria decision-making methods for seismic structural retrofitting. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 432–445. [Google Scholar] [CrossRef]
- Iranian Code of Practice for Seismic Resistance Design of Buildings (Standard No. 2800-3rd Ed.), 4th ed.; Building and Housing Research Center (BHRC): Tehran, Iran, 2014.
- Tehrani Zade, M.; Haj Najafi, L. Assessing Seismic Behavior of Eccentrically Braced Frames (EBFs) Due to Near-Field Ground Motions. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Matthies, H. Quantifying uncertainty: Modern computational representation of probability and applications. In Extreme Man-Made and Natural Hazards in Dynamics of Structures; Ibrahimbegovic, A., Kozar, I., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2007; pp. 105–135. [Google Scholar]
- Şen, Z. Supervised fuzzy logic modeling for building earthquake hazard assessment. Expert Syst. Appl. 2011, 38, 14564–14573. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environ. Model. Softw. 2013, 48, 129–140. [Google Scholar] [CrossRef]
- Önüt, S.; Efendigil, T.; Soner Kara, S. A combined fuzzy MCDM approach for selecting shopping center site: An example from Istanbul, Turkey. Expert Syst. Appl. 2010, 37, 1973–1980. [Google Scholar] [CrossRef]
- Ajay Kumar, S.; Rajaram, C.; Mishra, S.; Pradeep Kumar, R.; Karnath, A. Rapid visual screening of different housing typologies in Himachal Pradesh, India. Nat. Hazards 2017, 85, 1851–1875. [Google Scholar] [CrossRef]
- World Housing Encyclopedia—WHE. Available online: http://db.world-housing.net (accessed on 27 February 2017).
Weight | Definition |
---|---|
1 | Equal |
2 | Equal to moderate |
3 | Moderate |
4 | Moderate to strong |
5 | Strong |
6 | Strong to very strong |
7 | Very strong |
8 | Very strong to extreme |
9 | Extreme |
Prepared Data | Source data | Source Scale | Organization |
---|---|---|---|
Tabriz Districts layer | Tabriz county map | 1:2000 | Statistics and IT organization/Municipality of Tabriz |
Slope layer | Topographical map | 1:2000 | Iran National Cartographic Center (NCC) |
Lithology layer | Geological map | 1:2000 | Geological Survey of Iran (GSI) |
Faults layer | Active faults of Iran map | 1:2,500,000 | International Institute of Earthquake Eng. and Seismology (IIEES) |
statistical units layer | District One statistical units map | 1:2000 | Statistical Center of Iran (SCI) |
Age of the buildings | Year of the construction (Excel worksheet) | - | Statistical Center of Iran (SCI) |
Structural types | Frame types of the buildings (Excel worksheet) | - | Statistical Center of Iran (SCI) |
Ground water layer | (UTM) X,Y,Z of wells of East Azerbaijan (Excel worksheet) | - | Water Resources Management Company/Ministry of Energy |
Number of floors | Land use map (attribute table) | 1:2000 | Ministry of Roads and Urban Development |
Slope | Ground-Water | Dist. to Faults | Lithology | Struct. Age | Floor No. | Struct. Type | |
---|---|---|---|---|---|---|---|
slope | 1 | 2 | 1/6 | 1/4 | 1/5 | 1/2 | 1/3 |
groundwater | 1/2 | 1 | 1/7 | 1/5 | 1/6 | 1/3 | 1/4 |
dist to faults | 6 | 7 | 1 | 4 | 2 | 5 | 4 |
lithology | 4 | 5 | 1/4 | 1 | 1/2 | 3 | 2 |
lithology | 5 | 6 | 1/2 | 2 | 1 | 4 | 3 |
floor no. | 2 | 3 | 1/5 | 1/3 | 1/4 | 1 | 1/2 |
struct. type | 3 | 4 | 1/4 | 1/2 | 1/3 | 2 | 1 |
Criterion | Weight | Criterion | Weight |
---|---|---|---|
lithology | 0.152 | struct. age | 0.235 |
dist. to faults | 0. 369 | No. of floors | 0.067 |
slope | 0.044 | struct. type | 0.102 |
groundwater level | 0.031 | Inconsistency = 0.03 |
Vulnerability | Triangular Fuzzy Number |
---|---|
Very Low (VL) | (0,0.1,0.3) |
Low (L) | (0.1,0.3,0.5) |
Moderate (M) | (0.3,0.5,0.7) |
High (H) | (0.5,0.7,0.9) |
Very High (VH) | (0.7,0.9,1.0) |
Criterion | Weight | Criterion | Weight |
---|---|---|---|
lithology | 0.250 | struct. age | 0.382 |
slope | 0.064 | no. of floors | 0.101 |
groundwater level | 0.043 | struct. type | 0.160 |
Inconsistency: 0.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrykia, M.; Delavar, M.R.; Zare, M. A GIS-Based Fuzzy Decision Making Model for Seismic Vulnerability Assessment in Areas with Incomplete Data. ISPRS Int. J. Geo-Inf. 2017, 6, 119. https://doi.org/10.3390/ijgi6040119
Sadrykia M, Delavar MR, Zare M. A GIS-Based Fuzzy Decision Making Model for Seismic Vulnerability Assessment in Areas with Incomplete Data. ISPRS International Journal of Geo-Information. 2017; 6(4):119. https://doi.org/10.3390/ijgi6040119
Chicago/Turabian StyleSadrykia, Mansoureh, Mahmoud Reza Delavar, and Mehdi Zare. 2017. "A GIS-Based Fuzzy Decision Making Model for Seismic Vulnerability Assessment in Areas with Incomplete Data" ISPRS International Journal of Geo-Information 6, no. 4: 119. https://doi.org/10.3390/ijgi6040119
APA StyleSadrykia, M., Delavar, M. R., & Zare, M. (2017). A GIS-Based Fuzzy Decision Making Model for Seismic Vulnerability Assessment in Areas with Incomplete Data. ISPRS International Journal of Geo-Information, 6(4), 119. https://doi.org/10.3390/ijgi6040119