Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data
Abstract
:1. Introduction
2. Literature Review
2.1. Housing Development and Data Issues in China
2.2. Hedonic Pricing Model and Spatial Autocorrelation
3. Method
4. Case Study
4.1. Data Collection
4.2. Accessibility Measure
5. Results and Discussion
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- D’Acci, L. Monetary, subjective and quantitative approaches to assess urban quality of life and pleasantness in cities (hedonic price, willingness-to-pay, positional value, life satisfaction, isobenefit lines). Soc. Indic. Res. 2014, 115, 531–559. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. External effects of neighbourhood parks and landscape elements on high-rise residential value. Land Use Policy 2010, 27, 662–670. [Google Scholar] [CrossRef]
- Kaltenborn, B.P.; Andersen, O.; Nellemann, C. Amenity development in the Norwegian mountains. Landsc. Urban Plan. 2009, 91, 195–201. [Google Scholar] [CrossRef]
- Yamagata, Y.; Murakami, D.; Yoshida, T.; Seya, H.; Kuroda, S. Value of urban views in a bay city: Hedonic analysis with the spatial multilevel additive regression (SMAR) model. Landsc. Urban Plan. 2016, 151, 89–102. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Chau, C.K.; Pun, L.; Law, M.Y. Measuring the neighboring and environmental effects on residential property value: Using spatial weighting matrix. Build. Environ. 2007, 42, 2333–2343. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N. Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc. Urban Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Clark, J.K.; McChesney, R.; Munroe, D.K.; Irwin, E.G. Spatial characteristics of exurban settlement pattern in the United States. Landsc. Urban Plan. 2009, 90, 178–188. [Google Scholar] [CrossRef]
- Lin, D.; Allan, A.; Cui, J. Exploring differences in commuting behaviour among various income groups during polycentric urban development in China: New evidence and its implications. Sustainability 2016, 8, 1188. [Google Scholar] [CrossRef]
- Wen, H.; Tao, Y. Polycentric urban structure and housing price in the transitional China: Evidence from Hangzhou. Habitat Int. 2015, 46, 138–146. [Google Scholar] [CrossRef]
- Chiang, Y.H.; Peng, T.C.; Chang, C.O. The nonlinear effect of convenience stores on residential property prices: A case study of Taipei, Taiwan. Habitat Int. 2015, 46, 82–90. [Google Scholar] [CrossRef]
- Jang, M.; Kang, C.-D. Retail accessibility and proximity effects on housing prices in Seoul, Korea: A retail type and housing submarket approach. Habitat Int. 2015, 49, 516–528. [Google Scholar] [CrossRef]
- Dai, X.; Bai, X.; Xu, M. The influence of Beijing rail transfer stations on surrounding housing prices. Habitat Int. 2016, 55, 79–88. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, X.; Wang, L.; Xu, T. Transit development shaping urbanization: Evidence from the housing market in Beijing. Habitat Int. 2014, 44, 545–554. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Zheng, S. The rising demand for subway after private driving restriction: Evidence from Beijing’s housing market. Reg. Sci. Urban Econ. 2015, 54, 28–37. [Google Scholar] [CrossRef]
- Peng, T.; Chiang, Y. The non-linearity of hospitals’ proximity on property prices: Experiences from Taipei, Taiwan. J. Prop. Res. 2016, 9916, 1–21. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, Y.; Zhang, L. Do educational facilities affect housing price? An empirical study in Hangzhou, China. Habitat Int. 2014, 42, 155–163. [Google Scholar] [CrossRef]
- Nguyen-Hoang, P.; Yinger, J. The capitalization of school quality into house values: A review. J. Hous. Econ. 2011, 20, 30–48. [Google Scholar] [CrossRef]
- Basu, S.; Thibodeau, T. Analysis of spatial autocorrelation in house prices. J. Real Estate Financ. Econ. 1998, 17, 61–85. [Google Scholar] [CrossRef]
- Palm, R. Spatial Segmentation of the urban housing market. Econ. Geogr. 1978, 54, 210–221. [Google Scholar] [CrossRef]
- Chau, K.W.; Chin, T.L. A critical review of literature on the hedonic price model. Int. J. Hous. Sci. Its Appl. 2003, 2, 145–165. [Google Scholar]
- Kiel, K.A.; Zabel, J.E. Location, location, location: The 3L approach to house price determination. J. Hous. Econ. 2008, 17, 175–190. [Google Scholar] [CrossRef]
- McMillen, D.P. The return of centralization to Chicago: Using repeat sales to identify changes in house price distance gradients. Reg. Sci. Urban Econ. 2003, 33, 287–304. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Value of scenic views: Hedonic assessment of private housing in Hong Kong. Landsc. Urban Plan. 2009, 91, 226–234. [Google Scholar] [CrossRef]
- Wu, F. Changes in the structure of public housing provision in urban China. Urban Stud. 1996, 33, 1601–1628. [Google Scholar] [CrossRef]
- Ta, N.; Chai, Y.; Zhang, Y.; Sun, D. Understanding job-housing relationship and commuting pattern in Chinese cities: Past, present and future. Transp. Res. Part D Transp. Environ. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L. Housing inequality in transitional Beijing. Int. J. Urban Reg. Res. 2009, 33, 936–956. [Google Scholar] [CrossRef]
- Li, S.M.; Siu, Y.M. Residential mobility and urban restructuring under market transition: A study of Guangzhou, China. Prof. Geogr. 2001, 53, 219–229. [Google Scholar] [CrossRef]
- Mathur, S.; Ferrell, C. Measuring the impact of sub-urban transit-oriented developments on single-family home values. Transp. Res. Part A Policy Pract. 2013, 47, 42–55. [Google Scholar] [CrossRef]
- Ma Laurence, J.C.; MaCui, G. Administrative changes and urban population in China. Ann. Assoc. Am. Geogr. 1987, 77, 373–395. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X. Does food environment influence food choices? A geographical analysis through “tweets”. Appl. Geogr. 2014, 51, 82–89. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.O.; Xie, J.-Y.; Ma, C.-L.; Li, Q.-Q. Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy. Int. J. Geogr. Inf. Sci. 2016, 1–18. [Google Scholar] [CrossRef]
- Liu, X.; Long, Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environ. Plan. B Plan. Des. 2016, 43, 341–360. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Polit. Econ. 1966, 74, 132. [Google Scholar] [CrossRef]
- Malpezzi, S. Hedonic pricing models: A selective and applied review. In Housing Economics and Public Policy; Blackwell Science Ltd.: Oxford, UK; pp. 67–89. ISBN 9780470690680.
- Conway, D.; Li, C.Q.; Wolch, J.; Kahle, C.; Jerrett, M. A spatial autocorrelation approach for examining the effects of urban greenspace on residential property values. J. Real Estate Financ. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J. Interpolation of air quality measures in hedonic house price models: Spatial aspects. Spat. Econ. Anal. 2006, 1, 31–52. [Google Scholar] [CrossRef]
- Kim, C.W.; Phipps, T.T.; Anselin, L. Measuring the benefits of air quality improvement: A spatial hedonic approach. J. Environ. Econ. Manag. 2003, 45, 24–39. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Getis, A.; Griffith, D. A comparative spatial filtering in regression analysis. Geogr. Anal. 2002, 34, 130–140. [Google Scholar] [CrossRef]
- Chun, Y. Analyzing space-time crime incidents using eigenvector spatial filtering: An application to vehicle burglary. Geogr. Anal. 2014, 46, 165–184. [Google Scholar] [CrossRef]
- Chun, Y.; Griffith, D.A. Modeling network autocorrelation in space–time migration flow data: An eigenvector spatial filtering approach. Ann. Assoc. Am. Geogr. 2011, 101, 523–536. [Google Scholar] [CrossRef]
- Diniz-Filho, J.A.F.; Bini, L.M. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 2005, 14, 177–185. [Google Scholar] [CrossRef]
- Helbich, M.; Griffith, D.A. Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches. Comput. Environ. Urban Syst. 2016, 57, 1–11. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Polit. Econ. 1974, 82, 34. [Google Scholar] [CrossRef]
- Ottensmann, J.R.; Payton, S.; Man, J. Urban location and housing prices within a hedonic model. J. Reg. Anal. Policy 2008, 38, 19–35. [Google Scholar]
- Cropper, M.L.; Leland, B.D.; McConnell, K.E. On the choice of funtional form for hedonic price functions. Rev. Econ. Stat. 1988, 70, 668–675. [Google Scholar] [CrossRef]
- De Jong, P.; Sprenger, C.; van Veen, F. On extreme values of moran’s I and Geary’s c. Geogr. Anal. 1984, 16, 17–24. [Google Scholar] [CrossRef]
- Tiefelsdorf, M.; Boots, B. The exact distribution of Moran’s I. Environ. Plan. A 1995, 27, 985–999. [Google Scholar] [CrossRef]
- Griffith, D.A. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2000, 2, 141–156. [Google Scholar] [CrossRef]
- Haining, R.P. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003; ISBN 0521774373. [Google Scholar]
- Patuelli, R.; Griffith, D.A.; Tiefelsdorf, M.; Nijkamp, P. Spatial filtering and eigenvector stability: Space-time models for German unemployment data. Int. Reg. Sci. Rev. 2011, 34, 253–280. [Google Scholar] [CrossRef]
- Tiefelsdorf, M.; Griffith, D.A. Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environ. Plan. A 2007, 39, 1193–1221. [Google Scholar] [CrossRef]
- Beijing Municipal Environment Monitoring Center. Available online: http://www.bjmemc.com.cn/ (accessed on 13 November 2017).
- Kay, S.; Zhao, B.; Sui, D. Can social media clear the air? A case study of the air pollution problem in Chinese cities. Prof. Geogr. 2015, 67, 351–363. [Google Scholar] [CrossRef]
- Helbich, M.; Brunauer, W.; Vaz, E.; Nijkamp, P. Spatial heterogeneity in hedonic house price models: The case of Austria. Urban Stud. 2014, 51, 390–411. [Google Scholar] [CrossRef]
- Helbich, M.; Brunauer, W.; Hagenauer, J.; Leitner, M. Data-driven regionalization of housing markets. Ann. Assoc. Am. Geogr. 2013, 103, 871–889. [Google Scholar] [CrossRef]
- Kwan, M.-P. Space-time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geogr. Anal. 1998, 30, 191–216. [Google Scholar] [CrossRef]
- Chen, X.; Kwan, M.-P. Choice set formation with multiple flexible activities under space–time constraints. Int. J. Geogr. Inf. Sci. 2012, 26, 941–961. [Google Scholar] [CrossRef]
- Black, J.; Conroy, M. Accessibility measures and the social evaluation of urban structure. Environ. Plan. A 1977, 9, 1013–1031. [Google Scholar] [CrossRef]
- Chen, X.; Clark, J. Interactive three-dimensional geovisualization of space-time access to food. Appl. Geogr. 2013, 43, 81–86. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South Western Cengage Learning: Mason, USA, 2015; ISBN 1111531048. [Google Scholar]
- Wang, R.; Yuan, Q. Parking practices and policies under rapid motorization: The case of China. Transp. Policy 2013, 30, 109–116. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wang, X.; Zhang, M.C. Current situation and analysis of parking problem in Beijing. Procedia Eng. 2016, 137, 777–785. [Google Scholar] [CrossRef]
- Jayantha, W.M.; Lam, S.O. Capitalization of secondary school education into property values: A case study in Hong Kong. Habitat Int. 2015, 50, 12–22. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Waley, P. Jiaoyufication: When gentrification goes to school in the Chinese inner city. Urban Stud. 2016, 53, 3510–3526. [Google Scholar] [CrossRef]
- Zhao, P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing. Habitat Int. 2010, 34, 236–243. [Google Scholar] [CrossRef]
- Miao, P. Deserted streets in a jammed town: The gated community in Chinese cities and its solution. J. Urban Des. 2003, 8, 45–66. [Google Scholar] [CrossRef]
- Zhao, W.; Zou, Y. Un-gating the gated community: The spatial restructuring of a resettlement neighborhood in Nanjing. Cities 2017, 62, 78–87. [Google Scholar] [CrossRef]
- Chattopadhyay, S. Estimating the demand for air quality: New evidence based on the Chicago housing market. Land Econ. 1999, 75, 22–38. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Yu, Z.; Tian, G. Amenity, accessibility and housing values in metropolitan USA: A study of Salt Lake County, Utah. Cities 2016, 59, 113–125. [Google Scholar] [CrossRef]
- Chen, X. Take the edge off: A hybrid geographic food access measure. Appl. Geogr. 2017, 87, 149–159. [Google Scholar] [CrossRef]
- Zheng, S.; Hu, W.; Wang, R. How much is a good school worth in Beijing? Identifying price premium with paired resale and rental data. J. Real Estate Financ. Econ. 2016, 53, 184–199. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, L. Home-purchase restriction, property tax and housing price in China: A counterfactual analysis. J. Econom. 2015, 188, 558–568. [Google Scholar] [CrossRef]
Category | Variable | Definition | Min | Max | Mean | Std. |
---|---|---|---|---|---|---|
Structure | Size | Floor space of the property in square meters | 15.00 | 310.00 | 75.58 | 33.70 |
Bedrooms | Number of bedrooms | 1.00 | 6.00 | 1.92 | 0.74 | |
Living rooms | Number of living rooms | 0.00 | 4.00 | 1.07 | 0.49 | |
Orientation | Number of windows facing north (1), west (2), east (3), and south (4). The value is the total number of windows in the living room and the master bedroom | 2.00 | 8.00 | 5.83 | 1.82 | |
Age | 2015 minus the year built | 1.00 | 61.00 | 18.75 | 9.16 | |
Location | Development center | Time cost (seconds) to the nearest development center 1 (Figure 1) | 1.00 | 3746.00 | 1821.47 | 462.81 |
Xicheng | Property located in the Xicheng District (1) or otherwise (0) | 0.00 | 1.00 | 0.16 | 0.37 | |
Dongcheng | Property located in the Dongcheng District (1) or otherwise (0) | 0.00 | 1.00 | 0.12 | 0.33 | |
Chaoyang | Property located in the Chaoyang District (1) or otherwise (0) | 0.00 | 1.00 | 0.42 | 0.49 | |
Haidian | Property located in the Haidian District (1) or otherwise (0) | 0.00 | 1.00 | 0.16 | 0.37 | |
Amenities | Geographical accessibility to type-N amenity | (Table 2) | ||||
Environment | Air quality | Local Air Quality Index 2 (Figure 2) | 109.58 | 121.80 | 115.76 | 3.03 |
Time | Time dummy | Time of the transaction made in the third (0) or fourth (1) quarter of 2015 | 0.00 | 1.00 | 0.56 | 0.50 |
Variable | Min | Max | Mean | Std. |
---|---|---|---|---|
Bus stops | 1.67 | 11.99 | 6.23 | 1.82 |
Convenience stores | 3.32 | 48.73 | 17.71 | 6.85 |
Metro stations | 0.00 | 2.90 | 0.63 | 0.34 |
Parking lots | 6.15 | 205.01 | 70.61 | 24.61 |
Primary schools | 0.03 | 7.43 | 2.17 | 1.14 |
Supermarkets | 2.65 | 31.80 | 12.59 | 4.10 |
Shopping malls | 0.00 | 22.07 | 2.69 | 3.08 |
Gyms | 1.67 | 11.99 | 6.23 | 1.82 |
OLS | ESF | ||||||
---|---|---|---|---|---|---|---|
β | VIF | p-Value | β | VIF | p-Value | ||
Structure | Size | 0.1765 | 3.614 | *** | 0.1736 | 3.9289 | *** |
Bedrooms | 0.0213 | 2.7127 | *** | 0.0221 | 2.8425 | *** | |
Living rooms | 0.0291 | 1.6303 | *** | 0.0287 | 1.7267 | *** | |
Orientation | 0.0114 | 1.2112 | *** | 0.0098 | 1.2598 | *** | |
Age | −0.0251 | 2.0304 | *** | −0.0318 | 2.4164 | *** | |
Location | Development center | −0.0162 | 1.4022 | *** | −0.006 | 2.9418 | ** |
Xicheng | 0.2258 | 2.3692 | *** | 0.2237 | 4.6954 | *** | |
Dongcheng | 0.184 | 2.0835 | *** | 0.1676 | 3.8533 | *** | |
Chaoyang | 0.0282 | 2.7626 | *** | 0.0198 | 5.9633 | *** | |
Haidian | 0.1179 | 3.4012 | *** | 0.1261 | 5.8366 | *** | |
Bus stops | NA | NA | NA | −0.0059 | 2.4996 | *** | |
Convenience stores | 0.0044 | 2.3815 | * | 0.0126 | 4.3491 | *** | |
Metro stations | NA | NA | NA | 0.0045 | 2.1238 | ** | |
Parking lots | NA | NA | NA | 0.0119 | 3.282 | *** | |
Primary schools | 0.0037 | 1.5073 | * | 0.0083 | 2.468 | *** | |
Supermarkets | −0.0065 | 1.8605 | *** | −0.0126 | 3.4714 | *** | |
Shopping malls | 0.0096 | 1.3314 | *** | 0.0058 | 2.7566 | ** | |
Gyms | 0.0061 | 1.7607 | *** | 0.0117 | 3.6287 | *** | |
Environment | Air quality | −0.066 | 2.3913 | *** | −0.0601 | 5.7194 | *** |
Time | Time dummy | 0.0162 | 1.0043 | *** | 0.0182 | 1.0146 | *** |
Adjusted R2 | 0.8384 | *** | 0.8768 | *** | |||
Residuals | Breusch-Pagon | 0.5071 | 0.4764 | 2.2747 | 0.1315 | ||
Jarque-Bera | 3351.4 | *** | 17021 | *** | |||
Moran’s I | 0.2324 | *** | −0.03 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Chen, X.; Li, Q.; Yu, X.; Chen, J.; Guo, J. Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data. ISPRS Int. J. Geo-Inf. 2017, 6, 358. https://doi.org/10.3390/ijgi6110358
Xiao Y, Chen X, Li Q, Yu X, Chen J, Guo J. Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data. ISPRS International Journal of Geo-Information. 2017; 6(11):358. https://doi.org/10.3390/ijgi6110358
Chicago/Turabian StyleXiao, Yixiong, Xiang Chen, Qiang Li, Xi Yu, Jin Chen, and Jing Guo. 2017. "Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data" ISPRS International Journal of Geo-Information 6, no. 11: 358. https://doi.org/10.3390/ijgi6110358