A Spatial Decision Support Model for Fire Station Construction Prioritization Under Resource Constraints
Abstract
1. Introduction
2. Determination Methods
2.1. Coverage Evaluation Indicators
2.2. Data Collection
2.3. Spatial Decision Support Model
2.4. Additional Analysis
3. Case Study
3.1. Study Area Overview
3.2. Fire Stations and FSDP Data
3.3. Evaluation Scenarios
4. Results
4.1. Sequence Confirmation Results
4.2. Additional Analysis Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sha, Y.; Li, M.; Xu, H.; Zhang, S.; Feng, T. Smart city public safety intelligent early warning and detection. Sci. Program. 2022, 2022, 7552601. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, G. Correlation Characteristics Between Urban Fires and Urban Functional Spaces: A Study Based on Point of Interest Data and Ripley’s K-Function. ISPRS Int. J. Geo-Inf. 2025, 14, 45. [Google Scholar] [CrossRef]
- Abrar, A.; Kamal, A.M.; Fahim, A.K.F. Fire risk vulnerability and safety assessment of Farmgate area using fire risk index, Dhaka City and optimization of fire hydrant placement. Prog. Disaster Sci. 2024, 24, 100384. [Google Scholar] [CrossRef]
- Hao, Y.; Li, M.; Wang, J.; Li, X.; Chen, J. A High-Resolution Spatial Distribution-Based Integration Machine Learning Algorithm for Urban Fire Risk Assessment: A Case Study in Chengdu, China. ISPRS Int. J. Geo-Inf. 2023, 12, 404. [Google Scholar] [CrossRef]
- Kiran, K.; Corcoran, J.; Chhetri, P. Measuring the spatial accessibility to fire stations using enhanced floating catchment method. Socio.-Econ. Plan. Sci. 2020, 69, 100673. [Google Scholar] [CrossRef]
- Granberg, T.A.; Pilemalm, S. Evaluation of new first response initiatives in emergency services. Socio.-Econ. Plan. Sci. 2020, 71, 100829. [Google Scholar] [CrossRef]
- Uddin, M.S.; Warnitchai, P. Decision support for infrastructure planning: A comprehensive location–allocation model for fire station in complex urban system. Nat. Hazards 2020, 102, 1475–1496. [Google Scholar] [CrossRef]
- Wang, W. Site Selection of Fire Stations in Cities Based on Geographic Information System and Fuzzy Analytic Hierarchy Process. Ing. Syst. Inf. 2019, 24, 619. [Google Scholar] [CrossRef]
- Li, L.; Li, N.; Wu, X.; Liu, B. A Method for Evaluating the Spatial Layout of Fire Stations in Chemical Industrial Parks. Appl. Sci. 2024, 14, 2918. [Google Scholar] [CrossRef]
- Yu, W.; Huang, Y.; Chen, Y.; Xia, Z. Accessibility analysis of urban fire stations within communities: A fine-scale perspective. J. Geograph. Syst. 2022, 24, 611–640. [Google Scholar] [CrossRef]
- Guangzhou Urban Firefighting Planning (2021–2035); The Guangzhou Municipal People’s Government: Guangzhou, China, 2013. Available online: https://www.gz.gov.cn/zwgk/ghjh/zxgh/content/post_9365073.html (accessed on 11 February 2025).
- Jiujiang Central Urban Area Firefighting Special Planning (2021–2035). Available online: https://bnr.jiujiang.gov.cn/zwgk_255/zdly/ghsj/ghbzpqgs/202412/t20241209_6791160.html (accessed on 11 February 2025).
- Yang, J.; Guo, K.; Dai, Y.; Tian, S.; Wang, W.; Jiang, Z.; Dai, Z. Spatial layout siting method for fire stations based on comprehensive forest fire risk distribution. Case Stud. Therm. Eng. 2023, 49, 103243. [Google Scholar] [CrossRef]
- Dong, D.; Yu, Z.; Xu, J. A Study on the Characteristics and System Construction of Urban Disaster Resilience in Shanghai: A Metropolis Perspective. Sustainability 2025, 17, 248. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, W.; Liu, D.; Li, Y. The impact of dynamic traffic conditions on the sustainability of urban fire service. Sustain. Cities Soc. 2023, 96, 104667. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y.; Guan, M. Hierarchical siting of macro fire station and micro fire station. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1972–1988. [Google Scholar] [CrossRef]
- Han, B.; Hu, M.; Zheng, J.; Tang, T. Site selection of fire stations in large cities based on actual spatiotemporal demands: A case study of Nanjing City. ISPRS Int. J. Geo-Inf. 2021, 10, 542. [Google Scholar] [CrossRef]
- Li, J.; Hu, M. Mapping Spatial Inequity in Urban Fire Service Provision: A Moran’s I Analysis of Station Pressure Distribution. ISPRS Int. J. Geo-Inf. 2025, 14, 164. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K.; Yuan, Y.; Yang, C. A POIs based method for location optimization of urban fire station: A case study in Zhengzhou City. Fire 2023, 6, 58. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, J.; Wang, S.; Lai, Z.; Wu, L.; Dong, G. Location optimization of urban fire stations considering the variations in fire service demands: A bi-objective coverage model. Int. J. Digital Earth. 2025, 18, 2454386. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, L.; Chen, S.; Jin, C. Research on Urban Fire Station Layout Planning Based on a Combined Model Method. ISPRS Int. J. Geo-Inf. 2023, 12, 135. [Google Scholar] [CrossRef]
- He, Q.; Xue, L.; Yang, Y.; Ding, P.; Liu, M. Research on Chinese Fire Station Optimal Location Model Based on Fire Risk Statistics: Case Study in Shanghai. Appl. Sci. 2024, 14, 2052. [Google Scholar] [CrossRef]
- Pérez, J.; Maldonado, S.; Marianov, V. A reconfiguration of fire station and fleet locations for the Santiago Fire Department. Int. J. Prod. Res. 2016, 54, 3170–3186. [Google Scholar] [CrossRef]
- Cova, S.; Andrade, C.; Soares, O.; Lopes, J. Evaluation of cost-optimal retrofit investment in buildings: The case of Bragança fire station, Portugal. Int. J. Strateg. Prop. Manag. 2021, 25, 369–381. [Google Scholar] [CrossRef]
- Abatcha, B.A.; Barde, U.; Iliyasu, I. Geospatial Mapping and Evaluation of Fire Service Station for Optimum Operation and Response in Damaturu Metropolis Damaturu Yobe State, Nigeria. Fane-Fane Int. Multidiscip. J. 2023, 7, 164–172. [Google Scholar]
- Vaz, I.C.M.; Ghisi, E.; Souza, J.C. Potential use of rainwater as a tool for fire stations and firefighting: Literature review, environmental and cost assessments. Sci. Total Environ. 2023, 898, 165510. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Feng, W.; Yang, R. Fire risk assessment for building operation and maintenance based on BIM technology. Build. Environ. 2021, 205, 108188. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y.; Chen, Z.; Xia, Z.; Zhou, Q. Service area delimitation of fire stations with fire risk analysis: Implementation and case study. Int. J. Environ. Res. Public Health 2020, 17, 2030. [Google Scholar] [CrossRef]
- GB51080-2015; Urban Fire Protection Planning Code. China Architecture & Building Press: Beijing, China, 2015. Available online: http://www.jianbiaoku.com/webarbs/book/73741/1635907.shtml (accessed on 11 February 2025).
- Jian Biao 152-2017; Urban Fire Station Construction Standards. The Ministry of Housing and Urban-Rural Development: Beijing, China, 2017. Available online: http://ebook.chinabuilding.com.cn/zbooklib/bookpdf/probation?SiteID=1&bookID=98220 (accessed on 11 February 2025).
- NFPA 1710; Standard for the Organization and Deployment of Fire Suppression Operations, Emergency Medical Operations, and Special Operations to the Public by Career Fire Departments. The National Fire Protection Association: Quincy, MA, USA, 2020. Available online: https://www.nfpa.org/codes-and-standards/nfpa-1710-standard-development/1710 (accessed on 11 February 2025).
- Bayerisches Feuerwehrgesetz (BayFwG). Available online: https://www.gesetze-bayern.de/Content/Document/BayFwG (accessed on 11 February 2025).
- Sayarshad, R.H. Designing an intelligent emergency response system to minimize the impacts of traffic incidents: A new approximation queuing model. Int. J. Urban Sci. 2022, 26, 691–709. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Wu, G.; Zhang, F.; Zhu, K.; Xia, Z.; Chen, Y. Exploring spatiotemporal accessibility of urban fire services using real-time travel time. Int. J. Environ. Res. Public Health 2021, 18, 4200. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, K.; Shen, Q.; He, Y. Dynamic modal accessibility gap: Measurement and application using travel routes data. Transp. Res. D Transp. Environ. 2020, 81, 102272. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, D.; Liu, W.; Li, Y.; Zhu, S.; Wang, J.; Shi, L. Hierarchical dynamic estimation of fire service accessibility based on POI big data. Case Stud. Therm. Eng. 2024, 59, 104503. [Google Scholar] [CrossRef]
- Lovelace, R. Open source tools for geographic analysis in transport planning. J. Geograph. Syst. 2021, 23, 547–578. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, D.; Tang, J.; Niu, S.; Bell, F.M.; Pena-Mora, F. Dynamic estimation of the fire service spatial accessibility for EV charging stations: Towards preventing severe fires and explosions. Process Saf. Environ. Prot. 2025, 195, 106734. [Google Scholar] [CrossRef]
Grade | Response Time (s) | Travel Time (s) | Grade Description |
---|---|---|---|
Excellent | (0, 300] | (0, 240] | Effective coverage point |
Good | (300, 900] | (240, 840] | Coverable point |
Medium | (900, 1500] | (840, 1440] | Uncoverable point |
Poor | >1500 | >1440 | Completely uncovered point |
Fire Station | ai | bi | ci | di |
---|---|---|---|---|
PFS9 | 1004 | 84 | 82 | 182 |
PFS10 | 477 | 413 | 163 | 308 |
PFS6 | 705 | 246 | 114 | 143 |
PFS1 | 313 | 441 | 144 | 407 |
PFS11 | 0 | 132 | 894 | 553 |
PFS2 | 0 | 482 | 275 | 295 |
PFS8 | 104 | 427 | 99 | 155 |
PFS12 | 409 | 102 | 10 | 87 |
PFS13 | 1 | 235 | 377 | 65 |
PFS3 | 0 | 132 | 319 | 211 |
PFS7 | 4 | 129 | 238 | 276 |
PFS5 | 0 | 96 | 71 | 289 |
PFS4 | 0 | 97 | 229 | 48 |
Pre-Conditions | AT (s) | AD (m) | AV (m/s) |
---|---|---|---|
Existing fire stations | 1958.78 | 21,151.21 | 10.80 |
Existing and Proposed fire stations | 1597.71 | 16,902.69 | 10.58 |
Magnitude of change | −361.08 | −4248.52 | −0.22 |
Percentage of change | −18.43% | −20.09% | −2.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Liu, D.; Yuan, D.; Liu, W.; Wu, G.; Lei, X. A Spatial Decision Support Model for Fire Station Construction Prioritization Under Resource Constraints. ISPRS Int. J. Geo-Inf. 2025, 14, 229. https://doi.org/10.3390/ijgi14060229
Zeng Y, Liu D, Yuan D, Liu W, Wu G, Lei X. A Spatial Decision Support Model for Fire Station Construction Prioritization Under Resource Constraints. ISPRS International Journal of Geo-Information. 2025; 14(6):229. https://doi.org/10.3390/ijgi14060229
Chicago/Turabian StyleZeng, Yuan, Dingli Liu, Diping Yuan, Weijun Liu, Guohua Wu, and Xiao Lei. 2025. "A Spatial Decision Support Model for Fire Station Construction Prioritization Under Resource Constraints" ISPRS International Journal of Geo-Information 14, no. 6: 229. https://doi.org/10.3390/ijgi14060229
APA StyleZeng, Y., Liu, D., Yuan, D., Liu, W., Wu, G., & Lei, X. (2025). A Spatial Decision Support Model for Fire Station Construction Prioritization Under Resource Constraints. ISPRS International Journal of Geo-Information, 14(6), 229. https://doi.org/10.3390/ijgi14060229