Leveraging Explainable Artificial Intelligence for Place-Based and Quantitative Strategies in Urban Pluvial Flooding Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.3. Selection of FRVs
2.4. Ensemble Learning Models
2.5. SHAP Method
2.5.1. Quantitative Influences of Flooding-Related Variables
2.5.2. Identification of Dominant Variables in Different Regions
2.6. Study Framework
3. Results
3.1. UPFS Assessment Based on Ensemble Learning
3.2. Quantitative Interpretation of FRVs
3.3. Identification of Dominant Variables for Pluvial Flooding
3.4. Stability and Reliability Validation of Interpretation Results
4. Discussions
4.1. Place-Based and Quantitative Decision Recommendations
4.2. Comparison with Existing Studies
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bera, D.; Kumar, P.; Siddiqui, A.; Majumdar, A. Assessing Impact of Urbanisation on Surface Runoff Using Vegetation-Impervious Surface-Soil (V-I-S) Fraction and NRCS Curve Number (CN) Model. Model. Earth Syst. Environ. 2022, 8, 309–322. [Google Scholar] [CrossRef]
- Manawi, S.M.A.; Nasir, K.A.M.; Shiru, M.S.; Hotaki, S.F.; Sediqi, M.N. Urban Flooding in the Northern Part of Kabul City: Causes and Mitigation. Earth Syst. Environ. 2020, 4, 599–610. [Google Scholar] [CrossRef]
- Schreider, S.Y.; Smith, D.I.; Jakeman, A.J. Climate Change Impacts on Urban Flooding. Clim. Change 2000, 47, 91–115. [Google Scholar] [CrossRef]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global Evidence of Rapid Urban Growth in Flood Zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef]
- Davis, A.P. Green Engineering Principles Promote Low-Impact Development. Environ. Sci. Technol. 2005, 39, 338A–344A. [Google Scholar] [CrossRef]
- Wu, J.; Sha, W.; Zhang, P.; Wang, Z. The Spatial Non-Stationary Effect of Urban Landscape Pattern on Urban Waterlogging: A Case Study of Shenzhen City. Sci. Rep. 2020, 10, 7369. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Cao, Z.; Guo, G.; Zhang, H.; Li, C.; Tarolli, P. How to Develop Site-Specific Waterlogging Mitigation Strategies? Understanding the Spatial Heterogeneous Driving Forces of Urban Waterlogging. J. Clean. Prod. 2023, 422, 138595. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically Weighted Regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Wu, P. Robust Geographical Detector. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102782. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Ke, E.; Zhao, J.; Zhao, Y.; Wu, J.; Xu, T. Coupled and Collaborative Optimization Model of Impervious Surfaces and Drainage Systems from the Flooding Mitigation Perspective for Urban Renewal. Sci. Total Environ. 2024, 917, 170202. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Xu, T.; Li, J.; Tang, X.; Wang, F.; Fu, Y. A High-efficiency Global Model of Optimization Design of Impervious Surfaces for Alleviating Urban Waterlogging in Urban Renewal. Trans. GIS 2021, 25, 1716–1740. [Google Scholar] [CrossRef]
- Zhao, J.; Ke, E.; Wang, B.; Zhao, Y. An Optimization Model for the Impervious Surface Spatial Layout Considering Differences in Hydrological Unit Conditions for Urban Waterlogging Prevention in Urban Renewal. Ecol. Indic. 2024, 158, 111546. [Google Scholar] [CrossRef]
- Sakieh, Y. Understanding the Effect of Spatial Patterns on the Vulnerability of Urban Areas to Flooding. Int. J. Disaster Risk Reduct. 2017, 25, 125–136. [Google Scholar] [CrossRef]
- Lin, J.; He, X.; Lu, S.; Liu, D.; He, P. Investigating the Influence of Three-Dimensional Building Configuration on Urban Pluvial Flooding Using Random Forest Algorithm. Environ. Res. 2021, 196, 110438. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Feng, Q.; Yu, T.; Engel, B.A. Analyzing the Impacts of Topographic Factors and Land Cover Characteristics on Waterlogging Events in Urban Functional Zones. Sci. Total Environ. 2023, 904, 166669. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R.D.; Jaber, F.H. How Does Increasing Impervious Surfaces Affect Urban Flooding in Response to Climate Variability? Ecol. Indic. 2020, 118, 106774. [Google Scholar] [CrossRef]
- Wang, L.; Hou, H.; Li, Y.; Pan, J.; Wang, P.; Wang, B.; Chen, J.; Hu, T. Investigating Relationships between Landscape Patterns and Surface Runoff from a Spatial Distribution and Intensity Perspective. J. Environ. Manag. 2023, 325, 116631. [Google Scholar] [CrossRef]
- Motta, M.; de Castro Neto, M.; Sarmento, P. A Mixed Approach for Urban Flood Prediction Using Machine Learning and GIS. Int. J. Disaster Risk Reduct. 2021, 56, 102154. [Google Scholar] [CrossRef]
- Tang, X.; Wu, Z.; Liu, W.; Tian, J.; Liu, L. Exploring Effective Ways to Increase Reliable Positive Samples for Machine Learning-Based Urban Waterlogging Susceptibility Assessments. J. Environ. Manag. 2023, 344, 118682. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP Approach to Quantifying Morphological Impact on Urban Flooding Susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Tian, J.; Chen, Y.; Yang, L.; Li, D.; Liu, L.; Li, J.; Tang, X. Enhancing Urban Flood Susceptibility Assessment by Capturing the Features of the Urban Environment. Remote Sens. 2025, 17, 1347. [Google Scholar] [CrossRef]
- Zerouali, B.; Almaliki, A.H.; Santos, C.A.G. Flood Susceptibility Mapping in Arid Urban Areas Using SHAP-Enhanced Stacked Ensemble Learning: A Case Study of Jeddah. J. Environ. Manag. 2025, 393, 127128. [Google Scholar] [CrossRef]
- Li, Z.; Tian, J.; Zhu, Y.; Chen, D.; Ji, Q.; Sun, D. A Study on Flood Susceptibility Mapping in the Poyang Lake Basin Based on Machine Learning Model Comparison and SHapley Additive exPlanations Interpretation. Water 2025, 17, 2955. [Google Scholar] [CrossRef]
- Gulshad, K.; Yaseen, A.; Szydłowski, M. From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland. Remote Sens. 2024, 16, 3902. [Google Scholar] [CrossRef]
- Singha, C.; Chakraborty, N.; Sahoo, S.; Pham, Q.B.; Xuan, Y. A Novel Framework for Flood Susceptibility Assessment Using Hybrid Analytic Hierarchy Process-Based Machine Learning Methods. Nat. Hazards 2025, 121, 13765–13810. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Water 2021, 13, 770. [Google Scholar] [CrossRef]
- Ministry of Civil Affairs of the People’s Republic of China. Administrative Divisions of the People’s Republic of China, 1949–1997; China Society Press: Beijing, China, 1998; ISBN 978-7-80146-034-9. [Google Scholar]
- Peng, S. 1-Km Monthly Precipitation Dataset for China (1901–2022); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar]
- Li, Z.; He, W.; Cheng, M.; Hu, J.; Yang, G.; Zhang, H. SinoLC-1: The First 1-meter Resolution National-Scale Land-Cover Map of China Created with a Deep Learning Framework and Open-Access Data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Wu, W.-B.; Ma, J.; Banzhaf, E.; Meadows, M.E.; Yu, Z.-W.; Guo, F.-X.; Sengupta, D.; Cai, X.-X.; Zhao, B. A First Chinese Building Height Estimate at 10 m Resolution (CNBH-10 m) Using Multi-Source Earth Observations and Machine Learning. Remote Sens. Environ. 2023, 291, 113578. [Google Scholar] [CrossRef]
- Monte, B.E.O.; Goldenfum, J.A.; Michel, G.P.; de Albuquerque Cavalcanti, J.R. Terminology of Natural Hazards and Disasters: A Review and the Case of Brazil. Int. J. Disaster Risk Reduct. 2021, 52, 101970. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, X.; Zhao, Z.; Tang, L. Achieving Fine-Grained Urban Flood Perception and Spatio-Temporal Evolution Analysis Based on Social Media. Sustain. Cities Soc. 2024, 101, 105077. [Google Scholar] [CrossRef]
- McGuire, K.J.; McDonnell, J.J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J. The Role of Topography on Catchment-Scale Water Residence Time. Water Resour. Res. 2005, 41, 5002. [Google Scholar] [CrossRef]
- Crave, A.; Gascuel-Odoux, C. The Influence of Topography on Time and Space Distribution of Soil Surface Water Content. Hydrol. Process. 1997, 11, 203–210. [Google Scholar] [CrossRef]
- Ke, E.; Zhao, J.; Zhao, Y. Investigating the Influence of Nonlinear Spatial Heterogeneity in Urban Flooding Factors Using Geographic Explainable Artificial Intelligence. J. Hydrol. 2025, 648, 132398. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, X.; Liu, F.; Zhao, Y.; Ke, E. How Do Social Management Systems and Urbanization Influence the Spatio-Temporal Characteristics of Urban Flood Risk? A Comparison between Guangzhou and Hong Kong, China. J. Hydrol. 2025, 647, 132335. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, S.; Lin, Z.; Chen, Z.; Yang, Y.; Lin, J.; Li, S. Assessing the Influence of Green Space Morphological Spatial Pattern on Urban Waterlogging: A Case Study of a Highly-Urbanized City. Environ. Res. 2025, 266, 120561. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-Based Method for Flash Flood Risk Assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Tang, X.; Hong, H.; Shu, Y.; Tang, H.; Li, J.; Liu, W. Urban Waterlogging Susceptibility Assessment Based on a PSO-SVM Method Using a Novel Repeatedly Random Sampling Idea to Select Negative Samples. J. Hydrol. 2019, 576, 583–595. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, J.-S. Detecting Areas Vulnerable to Flooding Using Hydrological-Topographic Factors and Logistic Regression. Appl. Sci. 2021, 11, 5652. [Google Scholar] [CrossRef]
- Rana, M.S.; Mahanta, C. Spatial Prediction of Flash Flood Susceptible Areas Using Novel Ensemble of Bivariate Statistics and Machine Learning Techniques for Ungauged Region. Nat. Hazards 2023, 115, 947–969. [Google Scholar] [CrossRef]
- Blum, A.G.; Ferraro, P.J.; Archfield, S.A.; Ryberg, K.R. Causal Effect of Impervious Cover on Annual Flood Magnitude for the United States. Geophys. Res. Lett. 2020, 47, e2019GL086480. [Google Scholar] [CrossRef]
- Li, Y.; Osei, F.B.; Hu, T.; Stein, A. Urban Flood Susceptibility Mapping Based on Social Media Data in Chengdu City, China. Sustain. Cities Soc. 2023, 88, 104307. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Liu, M.; Cui, Q.; Wang, H.; Lv, J.; Li, B.; Xiong, Z.; Hu, Y. Spatial Characteristics and Driving Factors of Urban Flooding in Chinese Megacities. J. Hydrol. 2022, 613, 128464. [Google Scholar] [CrossRef]
- Yu, S.; Yuan, M.; Wang, Q.; Corcoran, J.; Xu, Z.; Peng, J. Dealing with Urban Floods within a Resilience Framework Regarding Disaster Stages. Habitat. Int. 2023, 136, 102783. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying Dominant Factors of Waterlogging Events in Metropolitan Coastal Cities: The Case Study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Li, M.; Zang, X.; Wang, Y. Identification of Urban Waterlogging Indicators and Risk Assessment Based on MaxEnt Model: A Case Study of Tianjin Downtown. Ecol. Indic. 2024, 158, 111354. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Tan, X.; Zhao, L.; Cai, Y.; Li, L. Assessing the Urban Heat Island Effect of Different Local Climate Zones in Guangzhou, China. Build. Environ. 2023, 244, 110770. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Siam, Z.S.; Kabir, I.; Kabir, Z.; Ahmed, M.R.; Hassan, Q.K.; Rahman, R.M.; Dewan, A. A Novel Framework for Addressing Uncertainties in Machine Learning-Based Geospatial Approaches for Flood Prediction. J. Environ. Manag. 2023, 326, 116813. [Google Scholar] [CrossRef]
- Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.-H.; Akbari, H. Urban Heat Island Mitigation Strategies: A State-of-the-Art Review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Abbas, Z.; Yang, Y.; Zhao, Y. Ensemble Learning Analysis of Influencing Factors on the Distribution of Urban Flood Risk Points: A Case Study of Guangzhou, China. Front. Earth Sci. 2023, 11, 1042088. [Google Scholar] [CrossRef]








| Data | Source | Description |
|---|---|---|
| Flood points | Guangzhou Water Affairs Bureau | Shapefile format, published in 2020, representing the complete dataset for Guangzhou |
| Landsat 8 OLI satellite imagery | AI Earth platform | TIFF format, 30 m resolution, captured in November 2019 |
| Precipitation | Peng (2020) [35] | TIFF format, 1 km resolution |
| Digital Elevation Model (DEM) | ASTGTM V003 | TIFF format, 30 m resolution |
| Soil texture | HWSD v2.0s database | TIFF format, 1 km resolution |
| Land use data | Z. Li et al. (2023) [36] | TIFF format, 1 m resolution, 2020 |
| Building Height (BH) | Wu et al. (2023) [37] | TIFF format, 10 m resolution, 2020 |
| FRVs | PRE | DEM | Slope | AWC | ISD | kNDVI | Dis2w | BH |
|---|---|---|---|---|---|---|---|---|
| VIF | 1.052 | 4.902 | 5.512 | 2.57 | 5.98 | 6.05 | 1.279 | 2.034 |
| Model | Overall Accuracy | F1 Score | AUC | Kappa |
|---|---|---|---|---|
| RF | 0.829 | 0.848 | 0.912 | 0.656 |
| GBDT | 0.838 | 0.853 | 0.905 | 0.674 |
| XGBoost | 0.855 | 0.864 | 0.918 | 0.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Ke, E.; Shi, H. Leveraging Explainable Artificial Intelligence for Place-Based and Quantitative Strategies in Urban Pluvial Flooding Management. ISPRS Int. J. Geo-Inf. 2025, 14, 475. https://doi.org/10.3390/ijgi14120475
Tan C, Ke E, Shi H. Leveraging Explainable Artificial Intelligence for Place-Based and Quantitative Strategies in Urban Pluvial Flooding Management. ISPRS International Journal of Geo-Information. 2025; 14(12):475. https://doi.org/10.3390/ijgi14120475
Chicago/Turabian StyleTan, Chaorui, Entong Ke, and Haochen Shi. 2025. "Leveraging Explainable Artificial Intelligence for Place-Based and Quantitative Strategies in Urban Pluvial Flooding Management" ISPRS International Journal of Geo-Information 14, no. 12: 475. https://doi.org/10.3390/ijgi14120475
APA StyleTan, C., Ke, E., & Shi, H. (2025). Leveraging Explainable Artificial Intelligence for Place-Based and Quantitative Strategies in Urban Pluvial Flooding Management. ISPRS International Journal of Geo-Information, 14(12), 475. https://doi.org/10.3390/ijgi14120475

