Challenges to Viticulture in Montenegro under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
Abbreviation | Model | Source |
---|---|---|
GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory Earth System Model Version 4.1 | Dunne et al. [91] |
UKESM1-0-LL | UK Earth System Model 1.0 Low Resolution | Sellar et al. [92] |
MPI-ESM1-2-HR | Max Planck Institute Earth System Model Version 1.2—High Resolution | Gutjahr et al. [93] |
IPSL-CM6A-LR | Institut Pierre-Simon Laplace Earth System Model—Coupled Model version 6A—Low Resolution | Lurton et al. [94] |
MRI-ESM2-0 | Meteorological Research Institute Earth System Model Version 2.0 | Yukimoto et al. [95] |
2.3. Methods
2.3.1. Validation of CHELSA Dataset
2.3.2. Evaluation of Future Climate Changes
3. Results and Discussion
3.1. Validation of CHELSA Dataset
3.2. Montenegro Climate Change
3.3. Climate Change in Vineyards
4. Adaptation Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in Scientific Research on Climate Change in Agriculture and Forestry Subject Areas (2005–2014). J. Clean. Prod. 2017, 147, 406–418. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of Climate Change on Human Infectious Diseases: Empirical Evidence and Human Adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef]
- Arrhenius, S. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philos. Mag. J. Sci. 1896, 41, 237–276. [Google Scholar] [CrossRef]
- Chesney, M.; Gheyssens, J.; Pana, A.C.; Taschini, L. International Efforts to Tackle Climate Change. In Environmental Finance and Investments; Chesney, M., Gheyssens, J., Pana, A.C., Taschini, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 17–48. ISBN 978-3-662-48175-2. [Google Scholar]
- Moser, S.C. Communicating Climate Change: History, Challenges, Process and Future Directions. Wiley Interdiscip. Rev. Clim. Change 2010, 1, 31–53. [Google Scholar] [CrossRef]
- Pasqui, M.; Di Giuseppe, E. Climate Change, Future Warming, and Adaptation in Europe. Anim. Front. 2019, 9, 6–11. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021—The Physical Science Basis; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Chan, D.; Wu, Q. Significant Anthropogenic-Induced Changes of Climate Classes since 1950. Sci. Rep. 2015, 5, 13487. [Google Scholar] [CrossRef]
- Cruz, J.; Belo-Pereira, M.; Fonseca, A.; Santos, J.A. Dynamic and Thermodynamic Drivers of Severe Sub-Hourly Precipitation Events in Mainland Portugal. Atmosphere 2023, 14, 1443. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Vaidya, H.N.; Breininger, R.D.; Madrid, M.; Lazarus, S.; Kachouie, N.N. Generalized Additive Models for Predicting Sea Level Rise in Coastal Florida. Geosciences 2023, 13, 310. [Google Scholar] [CrossRef]
- Eccles, R.; Zhang, H.; Hamilton, D. A Review of the Effects of Climate Change on Riverine Flooding in Subtropical and Tropical Regions. J. Water Clim. Change 2019, 10, 687–707. [Google Scholar] [CrossRef]
- Volchenko, N.; Zhmakin, S.; Udovenko, R.; Soldatkin, S.; Soldatkin, I. Combating Climate Change through the International Law Perspective: The Role of the EU in Environmental Diplomacy. Eur. Energy Environ. Law Rev. 2023, 32, 257–266. [Google Scholar] [CrossRef]
- Debebe, Y.; Merine, M.; Argaw, M. An Overview of Climate Change Mitigation, Mitigation Strategies, and Technologies to Reduce Atmospheric Greenhouse Gas Concentrations: A Review Review Article. Environ. Sci. Res. Rev. 2023, 6, 595–603. [Google Scholar]
- Jütersonke, S.; Groß, M. The Effect of Social Recognition on Support for Climate Change Mitigation Measures. Sustainability 2023, 15, 16486. [Google Scholar] [CrossRef]
- Kolodko, G.W. Political System and Socio-Economic Development. In Political Economy of New Pragmatism: Implications of Irreversible Globalization; Kolodko, G.W., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 53–108. ISBN 978-3-031-12263-7. [Google Scholar]
- Kawase, H.; Nagashima, T.; Sudo, K.; Nozawa, T. Future Changes in Tropospheric Ozone under Representative Concentration Pathways (RCPs). Geophys. Res. Lett. 2011, 38, L05801. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Sirishantha, D.; Karunadhipathi, U.L.; Ampitiyawatta, A.D.; Muttil, N.; Rathnayake, U. Climate Change and Soil Dynamics: A Crop Modelling Approach. Soil. Syst. 2023, 7, 82. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Fila, G.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M. Late Spring Frost Impacts on Future Grapevine Distribution in Europe. Field Crops Res. 2018, 222, 197–208. [Google Scholar] [CrossRef]
- Dinu, D.G.; Ricciardi, V.; Demarco, C.; Zingarofalo, G.; De Lorenzis, G.; Buccolieri, R.; Cola, G.; Rustioni, L. Climate Change Impacts on Plant Phenology: Grapevine (Vitis vinifera) Bud Break in Wintertime in Southern Italy. Foods 2021, 10, 2769. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Garcia de Cortazar-Atauri, I.; Malheiro, A.; Santos, J. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Jones, G.; Davis, R. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Xynas, B.; Barnes, C. Yeast or Water: Producing Wine with Lower Alcohol Levels in a Warming Climate: A Review. J. Sci. Food Agric. 2022, 103, 3249–3260. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Romboli, Y.; Gardiman, M.; Costafreda-Aumedes, S.; García De Cortázar-Atauri, I.; Bindi, M.; Granchi, L.; Brilli, L. Modelling Sugar and Acid Content in Sangiovese Grapes under Future Climates: An Italian Case Study. Clim. Res. 2019, 78, 211–224. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A Dynamic Viticultural Zoning to Explore the Resilience of Terroir Concept under Climate Change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-Linear Loss of Suitable Wine Regions over Europe in Response to Increasing Global Warming. Glob. Change Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Tuel, A.; Eltahir, E. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere 2022, 13, 837. [Google Scholar] [CrossRef]
- Naulleau, A.; Gary, C.; Prévot, L.; Hossard, L. Evaluating Strategies for Adaptation to Climate Change in Grapevine Production—A Systematic Review. Front. Plant Sci. 2021, 11, 607859. [Google Scholar] [CrossRef]
- Jones, G.; Alves, F. Impact of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Usmonova, D. The Use of Marketing Strategies in Increasing the Export Potential of Enterprises of the Viticultural Industry. Econ. Educ. 2023, 24, 268–273. [Google Scholar] [CrossRef]
- Ćulafić, G.; Popov, T.; Gnjato, S.; Bajić, D.; Trbić, G.; Mitrović, L. Spatial and Temporal Patterns of Precipitation in Montenegro. Időjárás 2020, 124, 499–519. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Trend of Percentile Climate Indices in Montenegro in the Period 1961–2020. Sustainability 2022, 14, 12519. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Precipitation, Humidity and Cloudiness in Podgorica (Montenegro) during the Period 1951–2018. Geogr. Pannonica 2019, 23, 233–244. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Changes in Temperature and Precipitation in the Instrumental Period (1951–2018) and Projections up to 2100 in Podgorica (Montenegro). Int. J. Climatol. 2021, 41, E133–E149. [Google Scholar] [CrossRef]
- Burić, D.; Vladan, D.; Mihajlovic, J. The Climate of Montenegro: Modificators and Types—Part One. Glas. Srp. Geogr. Drus. 2013, 93, 83–102. [Google Scholar] [CrossRef]
- Doderović, M.M.; Burić, D.B. Atlantic Multi-Decadal Oscillation and Changes of Summer Air Temperature in Montenegro. Therm. Sci. 2015, 19, 405–414. [Google Scholar] [CrossRef]
- Burić, D.; Ducic, V.; Mihajlovic, J. The Climate of Montenegro: Modificators and Types—Part Two. Glas. Srp. Geogr. Drus. 2014, 94, 73–90. [Google Scholar] [CrossRef]
- Lukovic, J.; Buric, D.; Mihajlovic, J.; Pejovic, M. Spatial and Temporal Variations of Aridity-Humidity Indices in Montenegro. Theor. Appl. Climatol. 2024, 155, 4553–4566. [Google Scholar] [CrossRef]
- Burić, D.; Banjak, D.; Doderović, M.; Marčev, A. Example of the Importance of Early Warning of Extreme Weather Events in Montenegro in the Context of Recent Climate Change. Zb. Rad.-Geogr. Fak. Univ. Beogr. 2022, 2022, 57–72. [Google Scholar] [CrossRef]
- Doderović, M.; Burić, D.; Ducić, V.; Mijanović, I. Recent and Future Air Temperature and Precipitation Changes in the Mountainous North of Montenegro. J. Geogr. Inst. Jovan Cvijic SASA 2020, 70, 189–201. [Google Scholar] [CrossRef]
- Burić, D.; Dragojlović, J.; Penjišević-Sočanac, I.; Luković, J.; Doderović, M. Relationship between Atmospheric Circulation and Temperature Extremes in Montenegro in the Period 1951–2010. In Climate Change Adaptation in Eastern Europe: Managing Risks and Building Resilience to Climate Change; Leal Filho, W., Trbic, G., Filipovic, D., Eds.; Springer International Publishing: Cham, Switerland, 2019; pp. 29–42. ISBN 978-3-030-03383-5. [Google Scholar]
- Buric, D. Detected and Projected Temperature Changes in the Area of Mediterranean Montenegro. Geogr. J. 2024, e12580. [Google Scholar] [CrossRef]
- Burić, D.; Doderović, M. Projected Temperature Changes in Kolašin (Montenegro) up to 2100 According to EBU-POM and ALADIN Regional Climate Models. Idojaras 2020, 124, 427–445. [Google Scholar] [CrossRef]
- Knežević, M.; Zivotić, L.; Čereković, N.; Topalović, A.; Koković, N.; Todorovic, M. Impact of Climate Change on Water Requirements and Growth of Potato in Different Climatic Zones of Montenegro. J. Water Clim. Change 2018, 9, 657–671. [Google Scholar] [CrossRef]
- Knezević, M.; Zivotić, L.; Perović, V.; Topalović, A.; Todorović, M. Impact of Climate Change on Olive Growth Suitability, Water Requirements and Yield in Montenegro. Ital. J. Agrometeorol. 2017, 22, 39–52. [Google Scholar] [CrossRef]
- CLC CORINE Land Cover 2018 (Vector). Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/71c95a07-e296-44fc-b22b-415f42acfdf0?language=all (accessed on 5 January 2024).
- Djurović, P.; Djurović, M. Physical Geographic Characteristics and Sustainable Development of the Mountain Area in Montenegro. In Sustainable Development in Mountain Regions: Southeastern Europe; Springer: Cham, Switerland, 2016; ISBN 978-3-319-20109-2. [Google Scholar]
- Del Bianco, F.; Gasperini, L.; Angeletti, L.; Giglio, F.; Bortoluzzi, G.; Montagna, P.; Ravaioli, M.; Kljajic, Z. Stratigraphic Architecture of the Montenegro/N. Albania Continental Margin (Adriatic Sea—Central Mediterranean). Mar. Geol. 2014, 359, 61–74. [Google Scholar] [CrossRef]
- Pajek, L.; Košir, M. Overheating Vulnerability Assessment of Energy Retrofit Actions in a Multi-Apartment Building in Podgorica, Montenegro. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023; Volume 396. [Google Scholar]
- Körner, C.; Hiltbrunner, E. Why Is the Alpine Flora Comparatively Robust against Climatic Warming? Diversity 2021, 13, 383. [Google Scholar] [CrossRef]
- Burić, D.; Luković, J.; Bajat, B.; Kilibarda, M.; Živković, N. Recent Trends in Daily Rainfall Extremes over Montenegro (1951–2010). Nat. Hazards Earth Syst. Sci. 2015, 15, 2069–2077. [Google Scholar] [CrossRef]
- Ljubisavljević, K.; Tomović, L.; Urošević, A.; Gvozdenović Nikolić, S.; Vuk, I.; Vernes, Z.; Labus, N. Species Diversity and Distribution of Lizards in Montenegro. Acta Herpetol. 2018, 13, 3–11. [Google Scholar] [CrossRef]
- Savić, S.; Vukotić, M. Viticulture Zoning in Montenegro. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2018, 75, 73. [Google Scholar] [CrossRef]
- Fraga, H.; Freitas, T.R.; Fonseca, A.; Fernandes, A.; Santos, J.A. Climate Change Implications on the Viticulture Geography. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2024; ISBN 0065-2296. [Google Scholar]
- Maraš, V.; Popović, T.; Gazivoda, A.; Raičević, J.; Kodžulović, V.; Mugoša, M.; Radonjić, S. Origin and Characterization of Montenegrin Grapevine Varieties. Vitis—J. Grapevine Res. 2015, 54, 135–137. [Google Scholar]
- Maraš, V. Ampelographic and Genetic Characterization of Montenegrin Grapevine Varieties. In Advances in Grape and Wine Biotechnology; BoD—Books on Demand: Norderstedt, Germany, 2019; ISBN 978-1-78984-612-6. [Google Scholar]
- TrendEconomy. Annual International Trade Statistics by Country (HS). Available online: https://trendeconomy.com/data/h2/Montenegro/2204 (accessed on 13 July 2024).
- Zejak, D.; Dudic, B.; Bartáková, G.P.; Gubíniová, K. Contribution to the Knowledge of Grapevine Production in Southeastern Europe—Case Study of Montenegro. In New Technologies, Development and Application VI. NT 2023; Lecture Notes in Networks and Systems; Springer: Cham, Switerland, 2023; Volume 707 LNNS. [Google Scholar]
- Jakšić, D.; Basha, E.; Blesić, M.; Kuçi, Y.; Maraš, V.; Beleski, K. Report for the Viticulture and Wine Sector in the Western Balkans; Regional Rural Development Standing Working Group in SEE (SWG): Skopje, North Macedonia, 2023. [Google Scholar]
- CRSFA. Studija o Rejonizaciji Vinogradarskih Geografskih Proizvodnih Područja Crne Gore (A Study on Regionization of Wine Growing Geographic Production Areas of Montenegro); CRSFA: Bari, Italy, 2017. [Google Scholar]
- Burić, D.; Mihajlović, J.; Ducić, V. Climatic Regionalization of Montenegro by Applying Different Methods of Cluster Analysis. Geogr. Pannonica 2023, 27, 119–131. [Google Scholar] [CrossRef]
- Spalevic, V. Pedological Characteristics of Montenegro. In Speleology of Montenegro; Barovic, G., Ed.; Springer International Publishing: Cham, Switerland, 2024; pp. 85–97. ISBN 978-3-031-49375-1. [Google Scholar]
- Tello, J.; Mammerler, R.; Čajić, M.; Forneck, A. Major Outbreaks in the Nineteenth Century Shaped Grape Phylloxera Contemporary Genetic Structure in Europe. Sci. Rep. 2019, 9, 17540. [Google Scholar] [CrossRef]
- Pajović-Šćepanović, R.; Wendelin, S.; Eder, R. Phenolic Composition and Varietal Discrimination of Montenegrin Red Wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 2018, 244, 2243–2254. [Google Scholar] [CrossRef]
- Maraš, V.; Bozovic, V.; Giannetto, S.; Crespan, M. SSR Molecular Marker Analysis of the Grapevine Germplasm of Montenegro. J. Int. Sci. Vigne Vin 2014, 48, 87–97. [Google Scholar] [CrossRef]
- Štajner, N.; Tomić, L.; Ivanišević, D.; Korać, N.; Cvetković-Jovanović, T.; Beleski, K.; Angelova, E.; Maraš, V.; Javornik, B. Microsatellite Inferred Genetic Diversity and Structure of Western Balkan Grapevines (Vitis vinifera L.). Tree Genet. Genomes 2014, 10, 127–140. [Google Scholar] [CrossRef]
- Mihaljević, M.Ž.; Anhalt, U.C.M.; Rühl, E.; Mugoša, M.T.; Maraš, V.; Forneck, A.; Zdunić, G.; Preiner, D.; Pejić, I. Cultivar Identity, Intravarietal Variation, and Health Status of Native Grapevine Varieties in Croatia and Montenegro. Am. J. Enol. Vitic. 2015, 66, 531–541. [Google Scholar] [CrossRef]
- Madžgalj, V.; Petrović, A.; Cakar, U.; Maras, V.; Sofrenic, I.; Tešević, V. The Influence of Different Enzymatic Preparations and Skin Contact Time on Aromatic Profile of Wines Produced from Autochthonous Grape Varieties Krstac and Zizak. J. Serbian Chem. Soc. 2023, 88, 11–23. [Google Scholar] [CrossRef]
- Maraš, V.; Popovic, T.; Gajinov, S.; Mugosa, M.; Popovic, V.; Savovic, A.; Pavicevic, K.; Mirovic, V. Optimal Irrigation as a Tool of Precision Agriculture. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2019. [Google Scholar]
- Stojanovic, R.; Maraš, V.; Radonjić, S.; Martic, A.; Đurković, J.; Pavicevic, K.; Mirovic, V.; Cvetkovic, M. A Feasible IoT-Based System for Precision Agriculture. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021. [Google Scholar]
- Maraš, V.; Kodžulović, V.; Mugoša, M.; Raičević, J.; Gazivoda, A.; Šućur, S.; Perišić, M. Clonal Selection of Autochthonous Grape Variety Vranac in Montenegro. In Proceedings of the CMBEBIH 2017, Sarajevo, Bosnia and Herzegovina, 16–18 March 2017; Badnjevic, A., Ed.; Springer: Singapore, 2017; pp. 787–790. [Google Scholar]
- Maraš, V.; Tello, J.; Gazivoda, A.; Mugoša, M.; Perišić, M.; Raičević, J.; Stajner, N.; Ocete, R.; Bozovic, V.; Popović, T.; et al. Population Genetic Analysis in Old Montenegrin Vineyards Reveals Ancient Ways Currently Active to Generate Diversity in Vitis vinifera. Sci. Rep. 2020, 10, 15000. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Hari, C.; Pellissier, L.; Karger, D.N. Global Climate-Related Predictors at Kilometer Resolution for the Past and Future. Earth Syst. Sci. Data 2022, 14, 5573–5603. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; McVicar, T.R.; Zambrano-Bigiarini, M.; Alvarez-Garreton, C.; Baez-Villanueva, O.M.; Sheffield, J.; Karger, D.N. Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments. J. Clim. 2020, 33, 1299–1315. [Google Scholar] [CrossRef]
- Lange, S. Trend-Preserving Bias Adjustment and Statistical Downscaling with ISIMIP3BASD (v1.0). Geosci. Model. Dev. 2019, 12, 3055–3070. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The Shared Socio-Economic Pathway (SSP) Greenhouse Gas Concentrations and Their Extensions to 2500. Geosci. Model. Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Karger, D.N.; Brun, P.; Zimmermann, N. Climatologies at High Resolution for the Earth Land Areas, CHELSA V2.1: Technical Specification; Nature Publishing Groups: London, UK, 2021; Volume 4. [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 1 August 2023).
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- IHMS Institute of Hydrometeorology and Seismology. Available online: https://www.meteo.co.me/ (accessed on 17 July 2023).
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. J. Adv. Model Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Lurton, T.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Contoux, C.; Cozic, A.; et al. Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model. J. Adv. Model Earth Syst. 2020, 12, e2019MS001940. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Comte, V.; Schneider, L.; Calanca, P.; Rebetez, M. Effects of Climate Change on Bioclimatic Indices in Vineyards along Lake Neuchatel, Switzerland. Theor. Appl. Climatol. 2022, 147, 423–436. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. A Summary of the PRUDENCE Model Projections of Changes in European Climate by the End of This Century. Clim. Change 2007, 81, 7–30. [Google Scholar] [CrossRef]
- Jacob, D.; Bärring, L.; Christensen, O.B.; Christensen, J.H.; De Castro, M.; Déqué, M.; Giorgi, F.; Hagemann, S.; Hirschi, M.; Jones, R.; et al. An Inter-Comparison of Regional Climate Models for Europe: Model Performance in Present-Day Climate. Clim. Change 2007, 81, 31–52. [Google Scholar] [CrossRef]
- Wallach, D.; Mearns, L.; Ruane, A.; Rötter, R.P.; Asseng, S. Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling. Clim. Change 2016, 139, 551–564. [Google Scholar] [CrossRef]
- UNDP. Montenegro Third National Communication on Climate Change; UNDP: New York, NY, USA, 2020. [Google Scholar]
- Živković, K.; Radulović, M.; Lojen, S.; Pucarević, M. Overview of the Chemical and Isotopic Investigations of the Mareza Springs and the Zeta River in Montenegro. Water 2020, 12, 957. [Google Scholar] [CrossRef]
- Cataldo, E.; Eichmeier, A.; Mattii, G.B. Effects of Global Warming on Grapevine Berries Phenolic Compounds—A Review. Agronomy 2023, 13, 2192. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J. Impact of Climate Change on Plant Phenology in Mediterranean Ecosystems. Glob. Change Biol. 2010, 16, 1082–1106. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Doupis, G.; Kapetanakis, E.; Goumenaki, E. Future Shifts in the Phenology of Table Grapes on Crete under a Warming Climate. Agric. For. Meteorol. 2022, 318, 108915. [Google Scholar] [CrossRef]
- Williams, L.E. Potential Vineyard Evapotranspiration (ET) Due to Global Warming: Comparison of Vineyard et at Three Locations in California Differing in Mean Seasonal Temperatures. Acta Hortic. 2012, 931, 221–226. [Google Scholar] [CrossRef]
- Bačević, N.; Valjarević, A.; Kićović, D.; Milentijević, N.; Ivanović, M.; Mujević, M. Analysis of Air Temperature Trends: City of Podgorica (Montenegro). Univ. Thought—Publ. Nat. Sci. 2020, 10, 31–36. [Google Scholar] [CrossRef]
- Ruml, M.; Gregorić, E.; Vujadinović, M.; Radovanović, S.; Matović, G.; Vuković, A.; Počuča, V.; Stojičić, D. Observed Changes of Temperature Extremes in Serbia over the Period 1961–2010. Atmos. Res. 2017, 183, 26–41. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.; Malheiro, A.; Oliveira, A.; Moutinho Pereira, J.; Jones, G. Climatic Suitability of Portuguese Grapevine Varieties and Climate Change Adaptation. Int. J. Climatol. 2015, 36, 1–12. [Google Scholar] [CrossRef]
- Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected Shifts of Wine Regions in Response to Climate Change. Clim. Change 2013, 119, 825–839. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture. Soil. Sci. 1975, 120, 462. [Google Scholar] [CrossRef]
- Alba, V.; Gentilesco, G.; Tarricone, L. Climate Change in a Typical Apulian Region for Table Grape Production: Spatialisation of Bioclimatic Indices, Classification and Future Scenarios. OENO One 2021, 55, 1–20. [Google Scholar] [CrossRef]
- Cardell, M.; Amengual, A.; Romero, R. Future Effects of Climate Change on the Suitability of Wine Grape Production across Europe. Reg. Environ. Change 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Barbosa, P. European Degree-Day Climatologies and Trends for the Period 1951–2011. Int. J. Climatol. 2015, 35, 25–36. [Google Scholar] [CrossRef]
- Santos, J.; Malheiro, A.; Pinto, J.; Jones, G. Macroclimate and Viticultural Zoning in Europe: Observed Trends and Atmospheric Forcing. Clim. Res. 2012, 51, 89–103. [Google Scholar] [CrossRef]
- Tello, J.; Ibáñez, J. Review: Status and Prospects of Association Mapping in Grapevine. Plant Sci. 2023, 327, 111539. [Google Scholar] [CrossRef]
- Yang, C.; Menz, C.; Fraga, H.; Reis, S.; Machado, N.; Malheiro, A.C.; Santos, J.A. Simultaneous Calibration of Grapevine Phenology and Yield with a Soil–Plant–Atmosphere System Model Using the Frequentist Method. Agronomy 2021, 11, 1659. [Google Scholar] [CrossRef]
- Ollat, N.; Touzard, J.-M.; Van Leeuwen, C. Climate Change Impacts and Adaptations: New Challenges for the Wine Industry. J. Wine Econ. 2016, 11, 139–149. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T.; Brunori, E.; Cirigliano, P.; Biasi, R. Biochemical Markers for Enological Potentiality in a Grapevine Aromatic Variety under Different Soil Types. Am. J. Enol. Vitic. 2017, 68, 100–111. [Google Scholar] [CrossRef]
- Oliveira, C.; Ferreira, A.C.; Costa, P.; Guerra, J.; De Pinho, P.G. Effect of Some Viticultural Parameters on the Grape Carotenoid Profile. J. Agric. Food Chem. 2004, 52, 4178–4184. [Google Scholar] [CrossRef]
- Biddoccu, M.; Zecca, O.; Audisio, C.; Godone, F.; Barmaz, A.; Cavallo, E. Assessment of Long-Term Soil Erosion in a Mountain Vineyard, Aosta Valley (NW Italy). Land. Degrad. Dev. 2018, 29, 617–629. [Google Scholar] [CrossRef]
- Radonjić, S.; Krstić, O.; Cvrković, T.; Hrnčić, S.; Marinković, S.; Mitrović, M.; Toševski, I.; Jović, J. The First Report on the Occurrence of Flavescence Dorée Phytoplasma Affecting Grapevine in Vineyards of Montenegro and an Overview of Epidemic Genotypes in Natural Plant Reservoirs. J. Plant Pathol. 2023, 105, 419–427. [Google Scholar] [CrossRef]
- Rodrigo Comino, J.; Ruiz Sinoga, J.D.; Senciales González, J.M.; Guerra-Merchán, A.; Seeger, M.; Ries, J.B. High Variability of Soil Erosion and Hydrological Processes in Mediterranean Hillslope Vineyards (Montes de Málaga, Spain). Catena 2016, 145, 274–284. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the Potential of Vineyards for Biodiversity Conservation and Delivery of Biodiversity-Mediated Ecosystem Services: A Global-Scale Systematic Review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef] [PubMed]
- Ćeranić, G.; Krivokapić, N.; Šarović, R.; Živković, P. Perception of Climate Change and Assessment of the Importance of Sustainable Behavior for Their Mitigation: The Example of Montenegro. Sustainability 2023, 15, 10165. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate Change, Viticulture, and Wine: Challenges and Opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing Local Climate Vulnerability and Winegrowers’ Adaptive Processes in the Context of Climate Change. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 777–803, https://doi.org/10.1007/s11027-015-9698-0. Erratum in Mitig. Adapt. Strateg. Glob. Change 2020, 25, 737–738. [Google Scholar] [CrossRef]
- Sekulić, G.; Radulovic, M. The Hydrology and Hydrogeology of Montenegro. In The Rivers of Montenegro; Springer: Cham, Switerland, 2019; ISBN 978-3-030-55711-9. [Google Scholar]
- Maraš, V.; Bogicevic, M.; Tomic, M.; Kodžulović, V.; Radonjić, S.; Čizmović, M.; Raicevic, D. Genetic and Sanitary Evaluation of CV. Vranac. Bull. UASVM Hortic. 2011, 68, 155–162. [Google Scholar]
- Pajovic Scepanovic, R.; Raicevic, D.; Popovic, T.; Sivilotti, P.; Lisjak, K.; Vanzo, A. Polyphenolic Characterisation of Vranac, Kratosija and Cabernet Sauvignon (Vitis vinifera L. Cv.) Grapes and Wines from Different Vineyard Locations in Montenegro. S. Afr. J. Enol. Vitic. 2014, 35, 139–148. [Google Scholar] [CrossRef]
- Rodrigues, P.; Pedroso, V.; Reis, S.; Yang, C.; Santos, J.A. Climate Change Impacts on Phenology and Ripening of Cv. Touriga Nacional in the Dão Wine Region, Portugal. Int. J. Climatol. 2022, 42, 7117–7132. [Google Scholar] [CrossRef]
- Milosavljević, M. Biotehnika Vinove Loze; Samostalna izdavačka agencija; NIK-PRESS: Beograd, Srbija, 2012. [Google Scholar]
- Ollat, N.; Quénol, H.; Barbeau, G.; van Leeuwen, C.; Darriet, P.; Garcia de Cortazar-Atauri, I.; Bois, B.; Ojeda, H.; Duchêne, E.; Lebon, E.; et al. Adaptation to Climate Change of the French Wine Industry: A Systemic Approach—Main Outcomes of the Project LACCAVE. E3S Web Conf. 2018, 50, 01020. [Google Scholar] [CrossRef]
- Keller, M. Managing Grapevines to Optimise Fruit Development in a Challenging Environment: A Climate Change Primer for Viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Adelsheim, D.; Busch, C.; Catena, L.; Champy, B.; Coetzee, J.; Coia, L.; Croser, B.; Draper, P.; Durbourdieu, D.; Frank, F.; et al. Climate Change: Field Reports from Leading Winemakers. J. Wine Econ. 2016, 11, 5–47. [Google Scholar] [CrossRef]
- Kemp, B.; Pedneault, K.; Pickering, G.; Usher, K.; Willwerth, J. Red Winemaking in Cool Climates. Red Wine Technol. 2019, 341–356. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Rekarte, I.; Torres, N.; Galar, M.; Villa-Llop, A.; Visconti, F.; Intrigliolo, D.S.; Escalona, J.M.; de Herralde, F.; Miranda, C. The Role of Rootstocks for Grape Growing Adaptation to Climate Change. Meta-Analysis of the Research Conducted in Spanish Viticulture. OENO One 2023, 57, 283–290. [Google Scholar] [CrossRef]
- Ollat, N.; Peccoux, A.; Papura, D.; Esmenjaud, D.; Marguerit, E.; Tandonnet, J.-P.; Bordenave, L.; Cookson, S.; Barrieu, F.; Rossdeutsch, L.; et al. Rootstocks as a Component of Adaptation to Environment. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Morales-Henríquez, T.; Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Principles of Vineyard Establishment and Strategies to Delay Ripening under a Warming Climate. IVES Tech. Rev. Vine Wine 2022. [Google Scholar] [CrossRef]
- Corso, M.; Bonghi, C. Grapevine Rootstock Effects on Abiotic Stress Tolerance. Plant Sci. Today 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural Irrigation Demands under Climate Change Scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- De Cáceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. Estimating Daily Meteorological Data and Downscaling Climate Models over Landscapes. Environ. Model. Softw. 2018, 108, 186–196. [Google Scholar] [CrossRef]
- Fonseca, A.; Cruz, J.; Fraga, H.; Andrade, C.; Valente, J.; Alves, F.; Neto, A.; Flores, R.; Santos, J. Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change. Sustainability 2024, 16, 3477. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Evans, S.P.; Bullock, P. Climate Change and Agricultural Soils: Impacts and Adaptation. Clim. Change 1999, 43, 683–709. [Google Scholar] [CrossRef]
- Dai, Z.; Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated Temperature Shifts Soil N Cycling from Microbial Immobilization to Enhanced Mineralization, Nitrification and Denitrification across Global Terrestrial Ecosystems. Glob. Change Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef] [PubMed]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akça, E.; et al. Effects of Soil Erosion on Agro-Ecosystem Services and Soil Functions: A Multidisciplinary Study in Nineteen Organically Farmed European and Turkish Vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Abad, J.; Hermoso de Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (1): Implications on Soil Characteristics and Biodiversity in Vineyard. OENO One 2021, 55, 295–312. [Google Scholar] [CrossRef]
Average Temperature | |||||||
Station | Dataset | MAE (°C) | RMSE (°C) | MAPE (%) | PBIAS (%) | NSE | Pearson Correlation |
Bar_(B) | CHELSA | 0.8 | 0.9 | 4.6 | −5.0 | 0.97 | 1.00 |
Cetinje_(C) | 2.3 | 2.4 | 66.7 | −22.6 | 0.88 | 1.00 | |
Podgorica_(P) | 0.5 | 0.5 | 3.4 | −0.6 | 0.99 | 1.00 | |
Ulcinj_(U) | 0.7 | 0.8 | 6.4 | −4.3 | 0.98 | 1.00 | |
Bar_(B) | E-OBS | 2.9 | 3.0 | 22.8 | 17.7 | 0.72 | 1.00 |
Cetinje_(C) | 2.0 | 2.1 | 57.6 | −19.6 | 0.91 | 1.00 | |
Podgorica_(P) | 0.3 | 0.3 | 2.3 | 2.0 | 1.00 | 1.00 | |
Ulcinj_(U) | 0.6 | 0.7 | 5.0 | 1.5 | 0.99 | 1.00 | |
Bar_(B) | ERA5-Land | 2.2 | 2.2 | 16.8 | 13.4 | 0.85 | 1.00 |
Cetinje_(C) | 0.8 | 0.9 | 23.7 | −5.3 | 0.98 | 0.99 | |
Podgorica_(P) | 1.6 | 1.7 | 13.3 | 10.2 | 0.95 | 1.00 | |
Ulcinj_(U) | - | - | - | - | - | - | |
Precipitation | |||||||
Station | Dataset | MAE (mm) | RMSE (mm) | MAPE (%) | PBIAS (%) | NSE | Pearson Correlation |
Bar_(B) | CHELSA | 11 | 14 | 8.9 | −10.2 | 0.90 | 1.00 |
Cetinje_(C) | 44 | 53 | 18.5 | 5.5 | 0.88 | 0.97 | |
Podgorica_(P) | 43 | 49 | 30.4 | −31.4 | 0.42 | 1.00 | |
Ulcinj_(U) | 12 | 14 | 12.4 | −12.1 | 0.88 | 0.99 | |
Bar_(B) | E-OBS | 19 | 21 | 18.0 | 16.9 | 0.77 | 0.97 |
Cetinje_(C) | 184 | 219 | 62.4 | 67.3 | −1.04 | 0.95 | |
Podgorica_(P) | 18 | 19 | 13.0 | 12.9 | 0.91 | 1.00 | |
Ulcinj_(U) | 9 | 10 | 12.9 | 6.7 | 0.94 | 0.99 | |
Bar_(B) | ERA5-Land | 59 | 69 | 49.1 | −53.3 | −1.36 | 0.98 |
Cetinje_(C) | 85 | 116 | 25.2 | 28.9 | 0.43 | 0.92 | |
Podgorica_(P) | 18 | 20 | 14.5 | −12.3 | 0.90 | 0.99 | |
Ulcinj_(U) | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.; Kovač, N.; Fraga, H.; Fonseca, A.; Šućur Radonjić, S.; Simeunović, M.; Ratković, K.; Menz, C.; Costafreda-Aumedes, S.; Santos, J.A. Challenges to Viticulture in Montenegro under Climate Change. ISPRS Int. J. Geo-Inf. 2024, 13, 270. https://doi.org/10.3390/ijgi13080270
Fernandes A, Kovač N, Fraga H, Fonseca A, Šućur Radonjić S, Simeunović M, Ratković K, Menz C, Costafreda-Aumedes S, Santos JA. Challenges to Viticulture in Montenegro under Climate Change. ISPRS International Journal of Geo-Information. 2024; 13(8):270. https://doi.org/10.3390/ijgi13080270
Chicago/Turabian StyleFernandes, António, Nataša Kovač, Hélder Fraga, André Fonseca, Sanja Šućur Radonjić, Marko Simeunović, Kruna Ratković, Christoph Menz, Sergi Costafreda-Aumedes, and João A. Santos. 2024. "Challenges to Viticulture in Montenegro under Climate Change" ISPRS International Journal of Geo-Information 13, no. 8: 270. https://doi.org/10.3390/ijgi13080270
APA StyleFernandes, A., Kovač, N., Fraga, H., Fonseca, A., Šućur Radonjić, S., Simeunović, M., Ratković, K., Menz, C., Costafreda-Aumedes, S., & Santos, J. A. (2024). Challenges to Viticulture in Montenegro under Climate Change. ISPRS International Journal of Geo-Information, 13(8), 270. https://doi.org/10.3390/ijgi13080270