Progressive Geological Modeling and Uncertainty Analysis Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Preprocessing
2.2. Progressive Geological Modeling
- (1)
- Stratigraphic classification
- (2)
- Lithologic classification
- (3)
- Classification uncertainty evaluation
3. Results
3.1. Classification Results
3.2. Visualization of the Geological Model
3.3. Modeling Uncertainty
4. Discussion
4.1. Ablation Study
4.2. Comparation with the Conventionally Trained Classifier
4.3. Spatio-Temporal Relationships in the Geological Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wellmann, F.; Caumon, G. 3-D structural geological models: Concepts, methods, and uncertainties. Adv. Geophys. 2018, 59, 1–121. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.T.; Wu, L.X.; Zhou, W.H.; Jiang, J.Z.; Li, C.L. Towards Automatic and Topologically Consistent 3D Regional Geological Modeling from Boundaries and Attitudes. ISPRS Int. J. Geo-Inf. 2016, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Calcagno, P.; Chilès, J.P.; Courrioux, G.; Guillen, A. Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, J.Q.; Tian, Y.P.; Li, Z.L.; Zhang, Y.; Xu, L.R.; Wang, S. Urban Geological 3D Modeling Based on Papery Borehole Log. ISPRS Int. J. Geo-Inf. 2020, 9, 389. [Google Scholar] [CrossRef]
- Kemp, E. Spatial Agents for Geological Surface Modelling. Geosci. Model Dev. 2021, 14, 6661–6680. [Google Scholar] [CrossRef]
- Grose, L.; Ailleres, L.; Laurent, G.; Jessell, M. LoopStructural 1.0: Time-aware geological modelling. Geosci. Model Dev. 2021, 14, 3915–3937. [Google Scholar] [CrossRef]
- Linsel, A.; Wiesler, S.; Haas, J.; Baer, K.; Hinderer, M. Accounting for local geological variability in sequential simulations-concept and application. ISPRS Int. J. Geo-Inf. 2020, 9, 409. [Google Scholar] [CrossRef]
- Rienzo, F.; Oreste, P.; Pelizza, S. Subsurface geological-geotechnical modelling to sustain underground civil planning. Eng. Geol. 2008, 96, 187–204. [Google Scholar] [CrossRef]
- He, H.H.; He, J.; Xiao, J.Z.; Zhou, Y.X.; Liu, Y.; Li, C. 3D geological modeling and engineering properties of shallow superficial deposits: A case study in Beijing, China. Tunn. Undergr. Space Technol. 2020, 100, 103595. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, G.; Carranza, E.J.M.; Wang, H. From 2D to 3D modeling of mineral prospectivity using multi-source geoscience datasets, wulong gold district, China. Nat. Resour. Res. 2020, 29, 345–364. [Google Scholar] [CrossRef]
- Leng, X.; Liu, D.; Luo, J.; Mei, Z. Research on a 3d geological disaster monitoring platform based on rest service. ISPRS Int. J. Geo-Inf. 2018, 7, 226. [Google Scholar] [CrossRef] [Green Version]
- Dou, F.F.; Li, X.H.; Xing, H.X.; Yuan, F.; Ge, W.Y. 3D geological suitability evaluation for urban underground space development–A case study of Qianjiang Newtown in Hangzhou, Eastern China. Tunn. Undergr. Space Technol. 2021, 115, 104052. [Google Scholar] [CrossRef]
- Dou, F.F.; Xing, H.X.; Li, X.H.; Yuan, F.; Lu, Z.T.; Li, X.L.; Ge, W.Y. 3D geological suitability evaluation for urban underground space development based on combined weighting and improved TOPSIS. Nat. Resour. Res. 2022, 31, 693–711. [Google Scholar] [CrossRef]
- Frank, T.; Tertois, A.L.; Mallet, J.L. 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data. Comput. Geosci. 2007, 33, 932–943. [Google Scholar] [CrossRef]
- Hillier, M.; Wellmann, F.; Brodaric, B.; De Kemp, E.; Schetselaar, E. Three-dimensional structural geological modeling using graph neural networks. Math Geosci. 2021, 53, 1725–1749. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Smirnoff, A.; Boisvert, E.; Paradis, S.J. Support vector machine for 3D modelling from sparse geological information of various origins. Comput. Geosci. 2008, 34, 127–143. [Google Scholar] [CrossRef]
- Wang, G.; Carr, T.; Ju, Y.; Li, C.F. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin. Comput. Geosci. 2014, 64, 52–60. [Google Scholar] [CrossRef]
- Adeli, A.; Emry, X.; Dowd, P. Geological modelling and validation of geological interpretations via simulation and classification of quantitative covariates. Minerals 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Xiao, K.; Carranza, E.; Chen, J.P.; Li, S. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China. Nat. Resour. Res. 2019, 29, 395–414. [Google Scholar] [CrossRef]
- Gonçalves, Í.G.; Kumaira, S.; Guadagnin, F. A machine learning approach to the potential-field method for implicit modeling of geological structures. Comput. Geosci. 2017, 103, 173–182. [Google Scholar] [CrossRef]
- Gonalves, T.G.; Guadagnin, F.; Kumaira, S.; Silva, S. A machine learning model for structural trend fields. Comput. Geosci. 2021, 149, 104715. [Google Scholar] [CrossRef]
- Jia, R.; Lv, Y.; Wang, G.; Carranza, E.; Chen, Y.Q.; Wei, C.; Zhang, Z.Q. A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China). Comput. Geosci. 2021, 151, 104754. [Google Scholar] [CrossRef]
- Bai, T.; Tahmasebi, P. Hybrid geological modeling: Combining machine learning and multiple-point statistics. Comput. Geosci. 2020, 142, 104519. [Google Scholar] [CrossRef]
- Yao, J.; Liu, Q.; Liu, W.; Liu, Y.Y.; Chen, X.D.; Pan, M. 3D Reservoir Geological Modeling Algorithm Based on a Deep Feedforward Neural Network: A Case Study of the Delta Reservoir of Upper Urho Formation in the X Area of Karamay, Xinjiang, China. Energies 2020, 13, 6699. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Ouyang, J.W.; Ming, W.H.; Zhang, G.H.; Du, Z.C.; Liu, Z. A Stratigraphic Prediction Method Based on Machine Learning. Appl. Sci. 2019, 9, 3553. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.J.; Mallants, D.; Gao, L.; Munday, T.; Mariethoz, G.; Peeters, L. Sub3DNet1.0: A deep-learning model for regional-scale 3D subsurface structure mapping. Geosci. Model Dev. 2021, 14, 3421–3435. [Google Scholar] [CrossRef]
- Illarionov, E.; Temirchev, P.; Voloskov, D.; Kostoev, R.; Simonov, M.; Pissarenko, D.; Orlov, D.; Koroteev, D. End-to-end neural network approach to 3d reservoir simulation and adaptation. J. Pet. Sci. Eng. 2022, 208, 109332. [Google Scholar] [CrossRef]
- Dev, V.A.; Eden, M.R. Formation lithology classification using scalable gradient boosted decision trees. Comput. Chem. Eng. 2019, 128, 392–404. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.J.; Chen, M.Q.; Li, Q.; Sun, Y.W.; Ren, L.; Zhang, W.G. Real-time updating method of local geological model based on logging while drilling process. Arab. J. Geosci. 2021, 14, 746. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, H.; Yu, L.; Sy, H.J.; Luo, N. Set pair analysis for risk assessment of water inrush in karst tunnels. Bull. Eng. Geol. Environ. 2017, 76, 1199–1207. [Google Scholar] [CrossRef]
- Arab, M.; Belhai, D.; Granjeon, D.; Roure, F.; Arbeaumont, A.; Rabineau, M.; Bracene, R.; Lassal, A.; Sulzer, C.; Deverchere, J. Coupling stratigraphic and petroleum system modeling tools in complex tectonic domains: Case study in the North Algerian Offshore. Arab. J. Geosci. 2016, 9, 289. [Google Scholar] [CrossRef]
- Catuneanu, O. Model-independent sequence stratigraphy. Earth-Sci. Rev. 2019, 188, 312–388. [Google Scholar] [CrossRef]
- Yu, Y.X.; Xia, Z.M. Study on the application of seismic sedimentology in a stratigraphic-lithologic reservoir in central Junggar Basin. In Proceedings of the 3rd International Conference on Advances in Energy, Environment and Chemical Engineering, Chengdu, China, 26–28 May 2017; Volume 69, pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Milad, B.; Slatt, R.; Fuge, Z. Lithology, stratigraphy, chemostratigraphy, and depositional environment of the Mississippian Sycamore rock in the SCOOP and STACK area, Oklahoma, USA: Field, lab, and machine learning studies on outcrops and subsurface wells. Mar. Pet. Geol. 2020, 115, 104278. [Google Scholar] [CrossRef]
- Zavadskas, E.; Turskis, Z. A New Logarithmic Normalization Method in Games Theory. Informatica 2008, 19, 303–314. [Google Scholar] [CrossRef]
- Cracknell, M.; Reading, A. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Merembayev, T.; Kurmangaliyev, D.; Bekbauov, B.; Amanbek, Y. A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan. Energies 2021, 14, 1896. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Raschka, S.; Liu, Y.; Mirjalili, V. Machine Learning with PyTorch and Scikit-Learn; Packt Publishing Ltd.: Birmingham, UK, 2022; p. 101. [Google Scholar]
- Yuan, Y.; Shao, C.F.; Ji, X.; Xiang, H.K.; Zhang, W.J. True 3D Surface Feature Visualization Design and Realization with MapGIS K9. In Proceedings of the 7th International Conference on Green Intelligent Transportation System and Safety, Nanjing, China, 1–4 July 2016; Volume-419, pp. 13–27. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Iwanaga, T.; Vervoort, R.W. 3D lithological mapping of borehole descriptions using word embeddings. Comput. Geosci. 2020, 141, 104516. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Systems Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Wellmann, J.F.; Regenauer-Lieb, K. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics 2012, 526, 207–216. [Google Scholar] [CrossRef]
- Ji, W.P.; Wu, J.J.; Zhang, M.; Liu, Z.Z.; Shi, G.M.; Xie, X.M. Blind Image Quality Assessment with Joint Entropy Degradation. IEEE Access. 2019, 7, 30925–30936. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z.; Zhao, L.; Wang, Z. Quality assessment of post-consumer plastic bottles with joint entropy method: A case study in Beijing, China. Resour. Conserv. Recycl. 2021, 175, 105839. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From precision, recall and f-measure to roc, informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Stehman, S. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Thiele, S.; Jessell, W.M.; Lindsay, M.; Ogarko, V.; Wellmann, J.F.; Pakyuz-Charrier, E. The topology of geology 1: Topological analysis. J. Struct. Geol. 2016, 91, 27–38. [Google Scholar] [CrossRef]
- Egenhofer, M.J.; Herring, J.R. Categorizing binary topological relations between regions, lines and points in geographic databases. In The 9-Intersection: Formalism and Its Use for Natural-Language Spatial Predicates; National Center for Geographic Information and Analysis: Buffalo, NY, USA, 1994. [Google Scholar]
- Burns, K.L. Retrieval of tectonic process models from geologic maps and diagrams. In Proceedings of the Meeting of Geoscience Information Society, Cincinnati, OH, USA, 2–5 November 1981; pp. 105–111. [Google Scholar]
Author (Year) | Data | Algorithm | Input | Target | Accuracy | Uncertainty |
---|---|---|---|---|---|---|
Smirnoff [18] | Wells, geology map, sections | SVM | Position | Sedimentary facies | 79% | - |
Wang [19] | Well- logs | SVM | Log parameters | Shale lithofacies | 75% | - |
Adeli [20] | Drill holes | Decision tree | Position, mineral components | Rock type of iron ore | 82.6% | Only mentioned |
Xiang [21] | Boreholes, sections, geological map | RF | Strata, rock, gravity and magnetic | Mineralization type | 86.84% | - |
Gonçalves [22,23] | Wells | Maximum likelihood | Position, orientation | Strata | 52.84% | Only mentioned |
Orientation measures | Gaussian process | Position, orientation | Iso-value of potential field | - | Predictive variance | |
Jia [24] | Borehole (2766) and 3D inversion model | Stacking method | Position, residual density and magnetic susceptibility | Rock types | 86% | - |
Bai [25] | Training image of flow | CNN | Pixel value | Lithofacies | 87.2% | - |
Yao [26] | Well-logging, seismic attribute, lithofacies model | DFNN | Position, facies, seismic attribute | Physical properties | - | - |
Hillier [15] | Borehole, orientation | GNN | Graph adjacency matrix, graph node matrix | Scalar field, rock | - | - |
Zhou [27] | Boreholes | RNN | Coordinates, elevation | Stratum type | 62.98% | - |
Coordinates, elevation | Stratigraphic sequence | 72.16% | - | |||
Jiang [28] | Land-surface observations, airborne electromagnetic | GAN | Normalized multiple-resolution valley bottom flatness | Paleovalley aquifer index | - | - |
Illarionov [29] | Hydrodynamic models of oil fields | End-to-end neural network | Reservoir static variables, initial state, control parameters | Wells’ production rates | - | - |
Stratigraphy Unit | Target Class | Precision | Recall | F1-Score |
---|---|---|---|---|
Qhml | A | 0.93 | 0.92 | 0.92 |
Qhapl | B | 0.81 | 0.83 | 0.82 |
Qp3-Qhz | C | 0.96 | 0.91 | 0.93 |
K2g | D | 0.85 | 0.91 | 0.87 |
All units | — | 0.89 | 0.89 | 0.89 |
Stratum Unit | Code | Lithologic Unit | Target | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
Qhml | A | Plain fill | a1 | 0.95 | 0.88 | 0.91 |
Qhapl | B | Clay | b2 | 0.62 | 0.65 | 0.63 |
Broken stone soil | b4 | 0.78 | 0.87 | 0.82 | ||
Qp3-Qhz | C | Silt | c1 | 0.60 | 0.71 | 0.65 |
Clay | c2 | 0.87 | 0.88 | 0.87 | ||
Sand | c3 | 0.88 | 0.89 | 0.88 | ||
Broken stone soil | c4 | 0.91 | 0.89 | 0.90 | ||
K2g | D | Gypsum–salt mudstone | d1 | 0.31 | 0.64 | 0.42 |
Sand–mudstone interbedding | d2 | 0.96 | 0.92 | 0.94 | ||
All units | — | All units | — | 0.76 | 0.81 | 0.78 |
Classifier | Precision | Recall | F1-Score |
---|---|---|---|
SVM | 0.8487 | 0.8537 | 0.8512 |
DT | 0.8149 | 0.7967 | 0.8057 |
ANN | 0.7195 | 0.7413 | 0.7302 |
RF | 0.8875 | 0.8925 | 0.8850 |
Groups | Input | Target | F1-Score |
---|---|---|---|
Group 1 | X, Y, Z coordinates | Lithology | 0.60 |
Group 2 | X, Y, Z coordinates; | Lithology | 0.70 |
Group 3 | X, Y, Z coordinates; | Lithology | 0.62 |
Group 4 | X, Y, Z coordinates; ; | Lithology | 0.75 |
Group 5 | ; | Lithology | 0.58 |
Stratum Unit | Code | Lithologic Unit | Target | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
Qhml | A | Plain fill | a1 | 0.88 | 0.88 | 0.88 |
Qhapl | B | Clay | b2 | 0.48 | 0.53 | 0.50 |
Broken stone soil | b4 | 0.77 | 0.82 | 0.79 | ||
Qp3-Qhz | C | Silt | c1 | 0.60 | 0.69 | 0.64 |
Clay | c2 | 0.87 | 0.83 | 0.85 | ||
Sand | c3 | 0.87 | 0.86 | 0.86 | ||
Broken stone soil | c4 | 0.88 | 0.87 | 0.87 | ||
K2g | D | Gypsum–salt mudstone | d1 | 0.27 | 0.52 | 0.36 |
Sand–mudstone interbedding | d2 | 0.94 | 0.91 | 0.92 | ||
All units | — | All units | — | 0.73 | 0.77 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wan, B.; Chu, D.; Wang, R.; Ma, G.; Fu, J.; Xiao, Z. Progressive Geological Modeling and Uncertainty Analysis Using Machine Learning. ISPRS Int. J. Geo-Inf. 2023, 12, 97. https://doi.org/10.3390/ijgi12030097
Li H, Wan B, Chu D, Wang R, Ma G, Fu J, Xiao Z. Progressive Geological Modeling and Uncertainty Analysis Using Machine Learning. ISPRS International Journal of Geo-Information. 2023; 12(3):97. https://doi.org/10.3390/ijgi12030097
Chicago/Turabian StyleLi, Hong, Bo Wan, Deping Chu, Run Wang, Guoxi Ma, Jinming Fu, and Zhuocheng Xiao. 2023. "Progressive Geological Modeling and Uncertainty Analysis Using Machine Learning" ISPRS International Journal of Geo-Information 12, no. 3: 97. https://doi.org/10.3390/ijgi12030097
APA StyleLi, H., Wan, B., Chu, D., Wang, R., Ma, G., Fu, J., & Xiao, Z. (2023). Progressive Geological Modeling and Uncertainty Analysis Using Machine Learning. ISPRS International Journal of Geo-Information, 12(3), 97. https://doi.org/10.3390/ijgi12030097