
applied  
sciences

Article

A Stratigraphic Prediction Method Based on
Machine Learning

Cuiying Zhou 1,2, Jinwu Ouyang 1,2, Weihua Ming 1,2, Guohao Zhang 1,2, Zichun Du 1,2

and Zhen Liu 1,2,*
1 Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 Guangdong Engineering Research Centre for Major Infrastructure Safety, Guangzhou 510275, China
* Correspondence: Liuzh8@mail.sysu.edu.cn

Received: 20 June 2019; Accepted: 27 August 2019; Published: 29 August 2019
����������
�������

Abstract: Simulation of a geostratigraphic unit is of vital importance for the study of geoinformatics,
as well as geoengineering planning and design. A traditional method depends on the guidance
of expert experience, which is subjective and limited, thereby making the effective evaluation of
a stratum simulation quite impossible. To solve this problem, this study proposes a machine
learning method for a geostratigraphic series simulation. On the basis of a recurrent neural
network, a sequence model of the stratum type and a sequence model of the stratum thickness is
successively established. The performance of the model is improved in combination with expert-driven
learning. Finally, a machine learning model is established for a geostratigraphic series simulation,
and a three-dimensional (3D) geological modeling evaluation method is proposed which considers
the stratum type and thickness. The results show that we can use machine learning in the simulation
of a series. The series model based on machine learning can describe the real situation at wells, and it
is a complimentary tool to the traditional 3D geological model. The prediction ability of the model
is improved to a certain extent by including expert-driven learning. This study provides a novel
approach for the simulation and prediction of a series by 3D geological modeling.

Keywords: recurrent neural network; series simulation; three-dimensional geological modeling;
expert-driven learning

1. Introduction

A geostratigraphic structure is the result of multiple factors in the course of the evolution of
Earth’s history, forming a complex morphology and irregular distribution. Geological bodies have
spatially successive relationships, thus forming a series of strata with different lateral extensions and
thicknesses. A geostratigraphic series is spatially uncertain due to the variations in sequence and the
number and thickness of the stratum layers. Within the rock-soil mass extending from the top of the
bedrock (referring to lithified rock that underlies unconsolidated surface sediments, conglomerates
or regolith) to the surface, only one layer or dozens of layers can be present. There can be a few
layers, and each can be different. At the same time, the thickness of the strata also varies considerably,
from tens of centimeters to hundreds of meters. Different geotechnical bodies have different physical,
chemical, and mechanical properties, and weak stratum conditions directly threaten the safety of
engineering construction and operation. A geostratigraphic series model with high reliability is helpful
to understand the geological conditions of a construction area, providing far-reaching practical guidance
for site planning and selection, engineering construction, environmental assessment, cost savings,
and operational risk reduction. Therefore, building a series model and accurately describing the spatial
distribution of strata have become important topics in the field of geology and engineering geology.
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To understand the geological structure, many techniques and methods have been developed to
describe, simulate, and model strata [1–6]. With the introduction of the Glass Earth [7] concept and
geological data, interdisciplinary theoretical integration and application research is being carried out.
The most representative traditional method of simulating the stratum structure is three-dimensional
(3D) geological modeling, such as that with the B-rep model [8], octree model [9], tri-prism model [10]
and geochron concepts [11–14]. However, the traditional method relies on the guidance of expert
knowledge and experience in the selection of assumptions, parameters, and data interpolation methods,
which are subjective and limited [15]. Assumptions about the borehole data distribution must be made,
and it is difficult to effectively evaluate the stratum simulation results.

Machine learning [16–18] has been widely used in various fields of geology. The machine learning
method does not make too many assumptions about the data but selects a model according to the data
characteristics. Then, the machine learning method divides the data into a training set and a test set and
constantly adjusts the parameters to obtain better accuracy. Machine learning is more concerned with the
predictive power of models [19]. In the fields of geology and engineering, there have been numerous
research and application examples in different fields [20–25]. Rodriguez-Galiano et al. conducted
a study on mineral exploration based on a decision tree [26]. Porwal et al. used radial function and
neural network to evaluate potential maps in mineral exploration [27]. Zhang studied the relationships
between chemical elements and magmatite and between the sedimentary rock lithology and sedimentary
rock minerals by using a multilayer perceptron and back propagation (BP) neural network [28].
Zhang et al. predicted karst collapse based on the Gaussian process [29]. Chaki et al. carried out
an inversion of reservoir parameters by combining well logging and seismic data [30]. Gaurav combined
machine learning, pattern recognition, and multivariate geostatistics to estimate the final recoverable
shale gas volume [31]. Sha et al. used a convolutional neural network to characterize unfavorable
geological bodies and surface issues, etc. [32]. Generally, machine learning research on stratum
distributions based on drilling data is in its infancy.

To solve the above problems, this study explores the feasibility and reliability of machine learning
through the simulation of a geostratigraphic series and proposes a machine learning geostratigraphic
series simulation method. This method does not rely on subjective factors, and it is based on the
principle of a recurrent neural network [33,34] to establish a stratum simulation model. This method
can determine the stratum information accurately. The predictive power of machine learning models
is examined with expert-driven mechanism based on supervisory learning [35]. Compared with the
traditional 3D geological modeling method, this study shows that the proposed method can better
describe the real situation. This study provides a novel approach for the simulation and prediction of
a geostratigraphic series. This work has far-reaching practical significance for the accurate description
of the spatial distribution of lithologic features and guidance of site selection, engineering construction,
and environmental assessment.

2. Geostratigraphic Series Simulation Method Based on Machine Learning

2.1. Geostratigraphic Series

A sequence refers to a series of data of a system at a specific sampling interval. In reality, sequences
are a very common form of data. For example, strata have a certain thickness, and a certain stratum
may be distributed throughout the whole field or only locally (namely, the stratum division). Stratum
information can be interpreted as a sequence. Therefore, the strata can be regarded as a vertically
oriented spatial sequence, as shown in Figure 1. The simulation of a geostratigraphic series is based on
the learning results of borehole data to predict the geostratigraphic series at any point in the study
area, including the stratum type and thickness of each layer in the sequence.
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Figure 1. Geostratigraphic series diagram. 

2.2. Stratum Data Reconstruction Schemes Based on Machine Learning 

Drilling data reconstruction schemes based on machine learning include data normalization, 
data segmentation, data filling, and data coding. 

2.2.1. Stratum Data Normalization 

Data normalization refers to the process of compressing data into a small interval, and the 
interval is usually taken as [0, 1] or [−1, 1]. Data normalization is essentially a linear transformation. 
Data normalization does not change the variation suppress and sequence of the data. There are many 
common means of data normalization, such as linear normalization, and inverse cotangent 
normalization. In this study, the most common method of linear normalization is adopted. For any 
data point, the program determines the spatial coordinates and the maximum and minimum values 
(Xmax and Xmin, respectively) of the stratum thickness after traversing all the borehole data. The above 
linear normalization is applied by using Equation (1): 

X = (X − Xmin) / (Xmax − Xmin) (1) 

where X is the result of normalization. 

2.2.2. Drilling Data Segmentation and Equalization 

Machine learning is used to ensure that the designed model achieves good prediction results in 
both the training set and the test set. Therefore, before machine learning, the original drilling data 
must be divided into training data and test data. This process is called data segmentation. To ensure 
the effectiveness of machine learning, randomness and uniformity of the data distribution should be 
ensured during sampling of the training data and test data. 

To ensure the effectiveness of the training data, we adopt a random replication strategy for small 
samples. We randomly select data from boreholes with different numbers of geological layers to 
improve the replication effect. This method is used to comprehensively study data with different 
characteristics, improve the prediction ability of a model for different numbers of geological layers, 
increase the number of different layers represented by nearby drilling data, and artificially upgrade 
the training sample data at the equilibrium level. This approach of artificially replicating small data 
types is known as over sampling [36]. 

2.2.3. Geostratigraphic Series Filling 

When a recurrent neural network (RNN) is used to process sequential problems, input data are 
received at every moment, and output is produced after the hidden layer has finished processing the 
data. Therefore, the input and output of an RNN are equal in length, and it is difficult to process 
input data of different lengths at the same time. In drilling data, the number of layers in each borehole 

Figure 1. Geostratigraphic series diagram.

2.2. Stratum Data Reconstruction Schemes Based on Machine Learning

Drilling data reconstruction schemes based on machine learning include data normalization, data
segmentation, data filling, and data coding.

2.2.1. Stratum Data Normalization

Data normalization refers to the process of compressing data into a small interval, and the
interval is usually taken as [0,1] or [−1,1]. Data normalization is essentially a linear transformation.
Data normalization does not change the variation suppress and sequence of the data. There are
many common means of data normalization, such as linear normalization, and inverse cotangent
normalization. In this study, the most common method of linear normalization is adopted. For any
data point, the program determines the spatial coordinates and the maximum and minimum values
(Xmax and Xmin, respectively) of the stratum thickness after traversing all the borehole data. The above
linear normalization is applied by using Equation (1):

X = (X − Xmin)/(Xmax − Xmin) (1)

where X is the result of normalization.

2.2.2. Drilling Data Segmentation and Equalization

Machine learning is used to ensure that the designed model achieves good prediction results
in both the training set and the test set. Therefore, before machine learning, the original drilling data
must be divided into training data and test data. This process is called data segmentation. To ensure
the effectiveness of machine learning, randomness and uniformity of the data distribution should be
ensured during sampling of the training data and test data.

To ensure the effectiveness of the training data, we adopt a random replication strategy for small
samples. We randomly select data from boreholes with different numbers of geological layers to
improve the replication effect. This method is used to comprehensively study data with different
characteristics, improve the prediction ability of a model for different numbers of geological layers,
increase the number of different layers represented by nearby drilling data, and artificially upgrade the
training sample data at the equilibrium level. This approach of artificially replicating small data types
is known as over sampling [36].

2.2.3. Geostratigraphic Series Filling

When a recurrent neural network (RNN) is used to process sequential problems, input data are
received at every moment, and output is produced after the hidden layer has finished processing the
data. Therefore, the input and output of an RNN are equal in length, and it is difficult to process
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input data of different lengths at the same time. In drilling data, the number of layers in each borehole
varies, and the geostratigraphic series is nonuniform. Therefore, the use of an RNN for batch training
using stratum data requires filling at the tail of the geostratigraphic series without changing the
original sequence of the geostratigraphic series and extending all geostratigraphic series to the same
length [37]. Before training, in addition to adding a start of sequence (SOS) to the geostratigraphic
series, an end of sequence (EOS) must be added to the geostratigraphic series. For each training set,
the sampling process stops when the termination marker appears in the equal length geostratigraphic
series output of the RNN. As two virtual stratum types, the initiation and termination markers
participate in the RNN training process via the input and output. The initiation markers represent
the beginning of geostratigraphic series prediction, while the termination markers represent the end
of the series prediction. The introduction of termination markers teaches the RNN model to predict
when a sequence will end and overcomes the shortcomings of processing unequally long sequences by
the RNN. In addition, the RNN model can conduct geostratigraphic series simulations with different
numbers of layers at any location in the research area.

2.2.4. Stratum Coding Based on One-Hot Encoding

In machine learning tasks, data characteristics are not always continuous values, such as coordinates.
One-hot encoding is a data processing method used to address discrete features. In geology, stratum
types are finite and countable, regardless of the criteria used to divide the strata. Therefore, the set of
geostratigraphic series elements is determined after crossing all the borehole data, in addition to obtaining
the maximum value of each feature and the number of layers. To facilitate the search and mathematical
representation, in this study, each stratum is represented by a unique digital identification [38].

2.3. Geostratigraphic Series Simulation Based on a Recurrent Neural Network

2.3.1. Establishment of the Sequence Model of the Stratum Type

The model in geostratigraphic series prediction uses the RNN as the core of the neural network.
The structure is shown in Figure 2. In the machine learning tasks, the input data are coordinated
in a stratum, while the output result is the simulation result of the stratum type model corresponding
to the given coordinates. Since the RNN does not have a state hidden from the previous moment at the
current moment, it is necessary to assign the initial state of the hidden layer neurons in the RNN before
each training run. The input coordinates are the common attributes of all the strata in a geostratigraphic
series, and it guides the whole process of RNN simulation of the geostratigraphic series. Therefore,
the assignment process establishes the correlation between the input coordinates and RNN, guiding
the geostratigraphic series simulation from the beginning. The content of the assignment is determined
by the input information. After the input layer receives the coordinates of the borehole and the basic
elevation information, the coordinate input information is increased from the original three dimensions
to the number of dimensions equal to the number of neurons. It serves as the initial state of the hidden
layer neurons in the RNN.



Appl. Sci. 2019, 9, 3553 5 of 29Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 32 

 
Figure 2. Schematic diagram of the stratum type model. 

At each moment, the RNN receives input of the neuron state and stratum information from the 
previous moment, and outputs the judgement of the stratum type through hidden layer calculations. 
By introducing an n-dimensional correct value vector, each item in the weight vector represents the 
possibility of a certain stratum. The larger the value is, the higher the probability of a certain stratum. 
Thus, the most likely stratum is the predicted value at that moment. Repeating the above process and 
removing the termination marker in the output, we can obtain the model’s simulation results for the 
input coordinate information of the geostratigraphic series. 

2.3.2. Establishment of the Series Model of the Stratum Thickness 

Sequence-to-sequence (or seq2seq) learning has been widely used in the processing of machine 
translation and speech recognition, also known as the encoder-decoder network. It maps sequences 
as input to output sequences through deep neural networks. The seq2seq model is shown in Figure 
3. This process includes two steps, input encoding and output decoding and these two links are 
handled by the encoder and decoder, respectively. The encoder is responsible for converting a 
variable-length input series into a fixed-length vector. This fixed-length vector contains information 
about the input series. The encoder is responsible for decoding this fixed-length vector and 
generating a variable-length output series according to the information content the vector represents. 

 
Figure 3. The sequence-to-sequence (seq2seq) model. 

In contrast to the traditional RNN, the seq2seq architecture does not require input and generates 
output at every moment. Instead, the algorithm converts the input series of the stratum types into a 
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Figure 2. Schematic diagram of the stratum type model.

At each moment, the RNN receives input of the neuron state and stratum information from the
previous moment, and outputs the judgement of the stratum type through hidden layer calculations.
By introducing an n-dimensional correct value vector, each item in the weight vector represents the
possibility of a certain stratum. The larger the value is, the higher the probability of a certain stratum.
Thus, the most likely stratum is the predicted value at that moment. Repeating the above process and
removing the termination marker in the output, we can obtain the model’s simulation results for the
input coordinate information of the geostratigraphic series.

2.3.2. Establishment of the Series Model of the Stratum Thickness

Sequence-to-sequence (or seq2seq) learning has been widely used in the processing of machine
translation and speech recognition, also known as the encoder-decoder network. It maps sequences as
input to output sequences through deep neural networks. The seq2seq model is shown in Figure 3.
This process includes two steps, input encoding and output decoding and these two links are handled
by the encoder and decoder, respectively. The encoder is responsible for converting a variable-length
input series into a fixed-length vector. This fixed-length vector contains information about the input
series. The encoder is responsible for decoding this fixed-length vector and generating a variable-length
output series according to the information content the vector represents.
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In contrast to the traditional RNN, the seq2seq architecture does not require input and generates
output at every moment. Instead, the algorithm converts the input series of the stratum types into
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a vector with the help of the encoder, and then outputs the results through the decoder. In other words,
seq2seq carries more information when making predictions than the traditional RNN and infers the
output content based on the input series as a whole.

In this study, two RNNs are used as the encoder and decoder which are connected to each other.
Seq2seq is now widely used to process machine translation and speech recognition problems, thus, we
apply it to the layer thickness recognition problem, that is to say, given the geostratigraphic series x
= [x1, x2, x3, . . . ,xn], an equal-length thickness sequence d = [d1, d2, d3, . . . ,dn] is generated. N is
the length of the sequence (i.e., the total number of strata at that point). The encoder receives the
type information of the current stratum at each moment, n times in total. After the input has been
completely received, the hidden state, at the last moment of the encoder, is taken as the initial state
to guide the decoder. Then, the decoder outputs the thickness of each layer step-by-step. The above
process and model structure are shown in Figure 4.
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2.3.3. Establishment of the Geostratigraphic Series Modeling

The stratum thickness model uses real stratum type data in the training process. In practice,
the real stratum type is unknown, and the output sequence of the stratum type model should be
used as the judgement basis. The output of the stratum type model is connected with the encoder of
the layer thickness model. We can obtain a complete geostratigraphic series model. The simulation
sequence of the layer thickness is shown in Figures 5 and 6.
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2.4. Evaluation Method of Stratum Type Series Simulation

The stratum accuracy, the series edit distance, and the geostratigraphic series similarity based
on the edit distance are used to evaluate the simulation performance of the series models of the
stratum type.

The stratum accuracy is the simplest evaluation index. By comparing elements at corresponding
positions of the simulated sequence and the real geostratigraphic series, the proportion of the same
number of strata in the total number of strata was calculated by Equation (2):

Correct stratum number
Total formation number of test data

(2)

The edit distance is a standard that is used to measure the similarity of series. The edit distance
represents the minimum number of edit operations required for one series to be converted into another
series after insertion, deletion, and replacement. The smaller the edit distance between the two series,
the more similar the two series are. Since the length of the series for edit distance alignment is different,
the longer series has a notably higher similarity when editing two series with the same distance.
To better describe the closeness of series, the following Equation (3) is used in the calculation of the
similarity of series:

L(S, T) = 1−
D(S, T)

max(|S|, |T|)
(3)

where D(S, T) represents the edit distance between series S and T.
There is no exact equation for calculating D(S, T). Its calculation examples are as follows:
Suppose there are two geostratigraphic series, t1 = [silt, fine sand, silt, clay, silt, clay] and t2 =

[miscellaneous fill, sand, fine sand, silt, clay]. In order to convert t1 to t2, the implementation process
of the minimum operation times is as follows:

1. Replace the first “silt” with “sand”;
2. Insert “miscellaneous fill” at the beginning of t1;
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3. Remove the last “clay”;
4. Delete the final “silt”.

Throughout the above four steps to replace, delete, and insert operations, the geostratigraphic
series t1 changed to series t2. Thus, the two geostratigraphic series of edit distance D(S, T) is 4.

Although the transition from one series to another through several insertions, deletions, and substitutions
has many possibilities, the editing distance D(S, T) between the two series is always unique.

3. Results and Discussions

3.1. Study of the Regional Geology and Data Reconstruction Schemes

The research area is located in a city in eastern China with a plain topography. The soil in the
study area is mainly composed of sandy soil, cohesive soil, and silty soil. The local strata are silt and
silty soil. The research data come from the city’s geological survey work. There is a total of 1386
borehole datasets, and all the boreholes terminate on the bedrock surface. A total of 13 stratum types
were determined. These boreholes are nonuniformly distributed in an area of 3882 square kilometers,
as shown in Figure 7.
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Using the reconstruction scheme of the stratum data proposed in this study, the drilling data are
reconstructed. The specific operation process is as follows:

1. Data normalization: In this study, the borehole data are used and the x coordinates, y coordinates,
hole elevation, and stratum thickness are continuous values. After reviewing all the borehole data,
it is found that the coordinates of the borehole data used the Xi’an 80 coordinate system, and their
value reaches the millions, while the elevation of the orifice and the thickness of the strata are only
within 100 m. The difference between each characteristic is large and can be up to tens of thousands.
To ensuring the same dimension, the above borehole data characteristics are compressed into the
interval of [0,1] by linear normalization processing.

2. Drilling data segmentation and equalization: In this study, the training data and test data are
selected randomly according to the ratio of 4:1 among all drilling points, and the data are balanced
according to the number of layers. The spatial positions of the training data and test data are shown
in Figure 8.
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Figure 8 shows the location distributions of the training data and test data in the study area
after the original drilling data are segmented into training data and test data, where the red symbols
represent the training data, and the green symbols represent the test data. The positions, plotting scale,
and geographic coordinates in Figure 8 are the same as in Figure 7.

3. Stratum coding: According to the statistics, the borehole stratum data used, in this study, contain
a total of 13 types of strata and 15 types of initiation and termination markers artificially introduced
in the subsequent geostratigraphic series. The numbers zero to 14 were assigned, and vectorization
was carried out by one-hot encoding. The number and coding vectors of the stratum types are shown
in Table 1.

Table 1. Strata numbers and one-hot vectors.

Stratum Types Number Coding Vector

clay 0 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
silt 1 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

plain fill 2 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
miscellaneous fill 3 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

silty sand 4 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
silty clay 5 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

mucky soil 6 (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
mucky clay 7 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
old city fill 8 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

clay sand inclusion 9 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
mud 10 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

medium sand 11 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
intermediate fine sand 12 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

start mark 13 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
end mark 14 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

4. Geostratigraphic series filling: According to the statistics, the maximum number of strata
in the study data is 10. Therefore, the filling length of the geostratigraphic series should be larger than
10 layers. For simplicity, the termination marker is used here to fill all geostratigraphic series to the
11th layer. Suppose that all stratum types of a borehole are clay, silt, silt sand, clay, and mucky clay,
and the corresponding number vector is expressed as (0,1,4,0,7). The termination marker denoted by
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the number 14 is repeatedly added at the end of the vector until the length of the numbered vector is 11.
Finally, the geostratigraphic series data input of the machine learning model is obtained by replacing
each item in the numbered vector with the corresponding one-hot encoding vector.

3.2. Machine Learning Simulation Result Analysis

We have implemented the proposed algorithms written by Python software in the computer. Part
of the algorithm code is as follows:

1. class CrossLoss(nn.Module):
2. def __init__(self,ignore_index = 0):
3. super(CrossLoss, self).__init__()
4. self.ignore_index = ignore_index
5. self.criterion = nn.CrossEntropyLoss(ignore_index = 0)
6. def forward(self, input, target):
7. ind = (target ! = self.ignore_index).float()
8. num_all = torch.sum(ind).data[0]
9. #print(target)
10. size0 = target.size(0)
11. size1 = target.size(1)
12. temp = target.cpu().data
13. for i in range(size0):
14. for j in range(size1):
15. temp[i,j] = depthLabel(temp[i,j])
16. pred = torch.mul(input,ind).long()
17. temp = temp.long()
18. loss = self.criterion(pred, temp)
19. return loss, num_all

As the procedure may be further commercialized, it is not suitable to make it all public for the
time being.

Information about the algorithm’s computer performance is as follows:

• CPU: Intel Core i7-4790k @ 4.00GHz quad-core;
• Memory: 32 GB;
• VGA card: Nvidia GeForce GTX 770(2GB).

3.2.1. Training and Verification of the Stratum Type Series Model

(1) Model Training
The cross-entropy loss function is used to describe the performance of the model in the training

process. Figure 9 shows that as the number of training rounds increases, the loss value decreases
continuously. However, the gradient of the loss curve begins to decrease after several cycles, and the
amplitude of change gradually decreases. The final loss value fluctuates in a small range and tends to
be stable.
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data. The specific decline in the loss function is listed in Table 2.
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Table 2. Statistical table of the loss decline.

Round Number 50 500

Loss value 0.483226 0.374167
Cumulative decline 0.327009 0.436068
Cumulative decline 40.36% 53.82%

(2) Model Test
The trained and finally stable model was tested, and the coordinate information of the test borehole

data was inputted successively. The position of the termination marker in the simulated stratum
type sequence output by the model was searched and intercepted. All the elements before the first
termination marker were taken as the stratum prediction series. By comparing the predicted value with
the real value one-to-one, the single-layer accuracy of the geostratigraphic series is tested. Then the
similarity between the prediction sequence and the real geostratigraphic series is evaluated by using
the edit distance algorithm.

The accuracy of stratum type simulation varies with the training round, as shown in Figure 11.
Figure 11 shows that as the number of training rounds increases, the overall prediction ability of
the model continues to improve, and the accuracy of the stratum type and geostratigraphic series
prediction is rapidly improved. The accuracy of the final stratum type prediction was stable at 59.86%.
As the loss function curve changes, the accuracy curve increases gradually. The accuracy achieved
in the first 50 rounds is almost the same as the final accuracy.

The prediction of a single stratum is the first step in establishing a spatial stratum distribution
model. In addition to the accurate prediction of a single stratum, it is of greater concern whether
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the model can make an accurate overall prediction of the geostratigraphic series in the study area.
Then, the edit distance algorithm is used to evaluate the similarity between the simulated sequence
and the real geostratigraphic series. If the edit distance between the prediction sequence and the real
geostratigraphic series is larger than one, the prediction failed and will not be considered. The edit
distance changes are shown in Figure 12.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 32 
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In Figure 12, the lower curve indicates that the edit distance is zero, i.e., the proportion of the
number of boreholes in the predicted result in the test set is exactly equal to the real result. The above
curve indicates the proportion of the number of boreholes within an edit distance of one, i.e., the model
makes no more than one wrong prediction in the whole sequence prediction process. The predicted
sequence can be converted into a real stratum sequence by a single insertion, replacement, or deletion
operation. In the end, the former curve converges to 35.2%, while the latter curve converges to 74%.

Because the number of layers is different, it is difficult to accurately describe the similarity between
the predicted series and the real result by applying the edit distance alone. Therefore, the similarity
calculation equation based on the edit distance is adopted. The variation curve of the predicted series
similarity with the number of training rounds is shown in Figure 13.
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In Figure 13, with an increase in training rounds, the overall prediction ability of the model is
continuously improved, and the average similarity curve between the predicted series and the actual
geostratigraphic series also gradually increases and finally converges to 70.9%. This result shows that
model accuracy continuously improves with increasing training rounds in the learning process and
gradually establishes the correlation between the elevation information and the geostratigraphic series
in the study area.

(3) Testing the Effect of Expert-Driven Learning
To improve the learning performance of the RNN and test the effect of expert-driven learning, this

study conducted the training and testing of the expert-driven model based on supervisory learning
in accordance with four ratios using the same dataset. The four expert ratios are 1/3, 1/2, 2/3 and 1, i.e.,
expert-driven learning is carried out once every three rounds, once every two rounds, and twice every
three rounds, and the entire training process is conducted in the form of expert-driven learning.

Figures 14–17 show the loss function curves of expert-driven learning using different factors.
Since the model is based on the prediction results of both expert-driven learning and non-expert-driven
learning, the loss function is banded in the first three figures. The model obtained a higher descent
gradient under the guidance of correct monitoring signals as compared with the ordinary RNN model.
The larger the proportion of expert-driven learning in the learning process is, the higher the rate of
loss reduction. When expert-driven learning is completely adopted, the model loss function curve
decreases the fastest. Almost all of the gradient descent is completed within the first 50 training rounds.
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Table 3. Stratum type accuracy under different expert ratios.

Expert Ratio 0 1/3 1/2 2/3 1

Maximum value 61.42% 63.83% 64.82% 63.40% 64.82%
Steady value 59.86% 60.00% 62.41% 61.13% 60.42%

Figures 22–25 show the proportion of the drilling data with edit distances of zero and one in the
total test data between the prediction series of the model and the real geostratigraphic series. Detailed
statistics are shown in Table 4.
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Table 4. Statistical results of the edit distance under the different expert ratios.

Expert Ratio 0 1/3 1/2 2/3 1

Edit Distance = 0
Maximum value 37.2% 39.6% 39.2% 39.6% 36.4%
Steady value 35.2% 38% 38.4% 38.4% 35.6%

Edit Distance <= 1
Maximum value 76% 77.2% 76.4% 77.2% 76.4%
Steady value 74% 75.6% 75.6% 75.6% 73.6%

The similarity curves between the prediction series of the model and the real geostratigraphic
series under different expert ratios is shown in Figures 26–29.
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The statistics of series similarity under different expert ratios are shown in Table 5.

Table 5. Statistical results of the series similarity.

Expert Ratio 0 1/3 1/2 2/3 1

Maximum value 71.85% 73.60% 73.95% 73.98% 72.51%
Steady value 70.91% 72.64% 73.57% 73.09% 71.68%

It can be seen that adopting the expert-driven learning mechanism is helpful to improve the
performance of test models for stratum type series simulation based on machine learning, as shown
in Table 5. However, the amplitude of the improvement effect is not significant. The expert-driven
model can accelerate the convergence of the learning curve, and the higher the expert ratio is, the faster
the model will reach stability. From the highest and stable values of the various indicators in the
different models, it is not the rule that the higher the expert ratio is, the better the effect will be.
The ultimate performance of full expert-driven learning was only slightly better than that of the RNN
model. The best results were obtained by using a partial expert-driven learning strategy model.

3.2.2. Training and Verification of the Stratum Thickness Series Model

(1) Layer Thickness Simulation Based on Multi-Category Classification
The layer thickness of the study area is divided into six stratum thickness intervals as follows:

within 3 m, 3 m to 5 m, 5 m to 10 m, 10 m to 20 m, 20 m to 30 m, and above 30 m. Stratum thickness
series simulation based on multi-category classification also needs to be numbered and coded for the
different stratum thicknesses, as shown in Table 6.

Table 6. Code of the layer thickness type.

Stratum Thickness Interval Layer Thickness Type
Coding Number Coded Vector

<3 m 0 [1, 0, 0, 0, 0, 0, 0]
3–5 m 1 [0, 1, 0, 0, 0, 0, 0]

5–10 m 2 [0, 0, 1, 0, 0, 0, 0]
10–20 m 3 [0, 0, 0, 1, 0, 0, 0]
20–30 m 4 [0, 0, 0, 0, 1, 0, 0]
>30 m 5 [0, 0, 0, 0, 0, 1, 0]

initiation mark 6 [0, 0, 0, 0, 0, 0, 1]



Appl. Sci. 2019, 9, 3553 18 of 29

Before the output of the model is generated, the encoder has received a complete series of stratum
types, that is, the total number of stratum layers at the prediction point is known. Therefore, there
is no need to add a termination marker for the layer thickness interval. Only an initiation mark is
introduced as the starting point of the decoder’s simulated layer thickness sequence. After all outputs
of the model are completed, a series equal to the number of layers is intercepted as the prediction
sequence of the layer thickness.

(2) Model Training and Testing
The stratum thickness series model adopts the seq2seq architecture and uses the drilling data

in the training set for training. To accurately reflect the actual performance of the model, the highest
accuracy and average accuracy of the model in the test set were compared. After each round of training,
the model was tested, and the test results were recorded. After training 500 rounds, the loss curve
of the model is shown in Figure 30, and the changes in prediction accuracy are shown in Figure 31.
As the number of training rounds increases, the prediction performance of the model increases slowly
and finally converges to 63.53%.
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(3) Testing the Effect of Expert-Driven Learning
To further improve the accuracy of the model and improve the prediction ability of the model

for the stratum thickness category, this section conducts expert-driven model based on supervisory
learning in different proportions and compares the learning effect to determine the model with the
highest accuracy and the greatest prediction ability. In this section, the expert ratios adopted by the
seq2seq model in the learning process are 1/3, 1/2, 2/3, and 1. The accuracy performance of the different
models in test data is provided in Table 7.

Table 7. Prediction accuracy of the layer thickness.

Expert Ratio 0 1/3 1/2 2/3 1

Maximum value 65.07% 73.05% 80.08% 75.60% 70.07%
Steady value 63.53% 70.07% 75.05% 72.62% 67.94%

Table 7 shows the highest value of the results achieved in the test data and the final stable value
after convergence, based on the different expert ratios. As we can see from the test results, with the
increase in the proportion of expert-driven learning, the accuracy of the model in terms of the test data
first increases and then decreases. In addition, the models that do not adopt expert-driven learning and
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completely adopt expert-driven learning do not achieve the highest accuracy. Clearly, the relationship
between the expert ratio and the prediction accuracy rate is not simply a positive correlation. The loss
function of 50% expert-driven learning and the training process is shown in Figure 32. When 50%
expert-driven learning is applied, the stable value of the layer thickness prediction accuracy is 75.05%,
and the highest value is 80.08%, which is the best model performance in the test set, as shown
in Figure 33. At this point, the prediction ability of the model for unknown data is the greatest, which
is consistent with the experience with the stratum type identification model. Therefore, expert-driven
learning can improve the prediction ability of the model and accelerate convergence, but it is not the
rule that the higher the expert ratio is, the better the performance of the model.
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The final results show that the maximum accuracy of the layer thickness model is 80.85% under
the 50% expert ratio, which accurately predicts the layer thickness in the test data.

3.2.3. Verification of the Geostratigraphic Series Model

To verify the true prediction ability of the geostratigraphic series model, the stratum data in the
test borehole data are used for practical testing, and the differences between the simulated series output
by the model and the real geostratigraphic series are compared. Selected examples of the real borehole
stratum conditions and prediction results of machine learning are shown in Table 8.

Table 8 shows that by comparing the prediction results of the model with the real borehole data,
the machine learning model based on the seq2seq architecture has a high accuracy in stratum type
prediction. According to the statistics, in all data of the test set, the machine learning model accurately
simulates 62.98% of the stratum types, and the similarity between the simulated sequence and the
real stratum sequence is 72.16%. In addition, the accuracy rate of the stratum thickness prediction is
74.04%, which basically realizes the determination of the stratum thickness in the study area, as shown
in Table 9.

In conclusion, the machine learning model based on a recurrent neural network can accurately
simulate the real stratum situation in the study area, and its feasibility is verified.
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Table 8. Comparison of the real borehole stratum and machine learning prediction results.

Number
The Real Borehole Strata Prediction Results of Machine Learning

Stratum Type Sequence Stratum Thickness Sequence
(m) Stratum Type Sequence Stratum Thickness Sequence

(m)

1 silt, clay 0.3, 3.9 floury soil, clay, plain fill within 3 m, within 3 m, 3–5 m
2 clay 2 clay within 3 m
3 miscellaneous fill 0.6 plain fill 5–10 m
4 plain fill, clay 3.1, 9.8 plain fill, clay within 3 m, 5–10 m

5 miscellaneous fill, clay, mucky soil, plain fill, clay 1.2, 1.3, 1.5, 2.4, 13.3 miscellaneous fill, plain fill, mucky soil,
plain fill, clay

within 3 m, within 3 m, within 3 m, within 3
m, 10–20 m

6 floury soil, silty clay, plain fill, clay, plain fill, clay 1.0, 0.5, 2.5, 1.2, 0.3, 3.6 floury soil, plain fill, clay, plain fill, clay within 3 m, within 3 m, within 3 m, within 3
m 5–10 m

7 miscellaneous fill, plain fill, clay 0.7, 3.0, 4.5 miscellaneous fill, plain fill, clay within 3 m, within 3 m, 3–5 m
8 miscellaneous fill, clay 0.6, 4.0 miscellaneous fill within 3 m
9 miscellaneous fill, plain fill, clay 0.5, 1.0, 11.9 miscellaneous fill, plain fill, clay within 3 m, within 3 m, 10–20 m
10 miscellaneous fill, clay 1.0, 9.8 miscellaneous fill, clay within 3 m, 5–10 m
11 miscellaneous fill, silt, plain fill, clay 4.1, 11.2, 7.0, 10.0 miscellaneous fill, plain fill, clay within 3 m, 10–20 m, 5–10 m
12 floury soil, plain fill, mucky soil, clay 0.5, 6.7, 1.2, 8.6 floury soil, plain fill, plain fill, clay within 3 m, within 3 m, within 3 m, 5–10 m
13 silt, clay 0.4, 6.6 floury soil, clay within 3 m, 5–10 m
14 silt, clay 0.4, 10.4 floury soil, clay within 3 m, 5–10 m
15 miscellaneous fill, silt, plain fill, clay 0.7, 1.9, 3.4, 24.0 miscellaneous fill, floury soil, plain fill, clay within 3 m, within 3 m, within 3 m, 20–30 m

16 miscellaneous fill soil, plain fill soil, old city
miscellaneous fill soil, clay 1.2, 2.6, 6.5, 13.0 miscellaneous fill, floury soil, plain fill, old

town fill, clay
within 3 m, within 3 m, within 3 m, 5–10 m,
10–20 m

17 miscellaneous fill soil, plain fill soil, clay 0.5, 2.8, 10.2 miscellaneous fill, plain fill, clay within 3 m, within 3 m, 10–20 m
18 miscellaneous fill soil, plain fill soil, clay 2.1, 0.8, 12.9 miscellaneous fill, plain fill, clay within 3 m, within 3 m, 10–20 m,
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Table 9. Statistical results of the geostratigraphic series model simulations.

Stratum Type Accuracy Average Sequence Similarity Stratum Thickness Accuracy

62.98% 72.16% 74.04%

3.3. Three-Dimensional Geological Modeling and Testing

3.3.1. Three-Dimensional Geological Modeling

To further test the geostratigraphic series simulation effect based on machine learning, this section
compares the geostratigraphic series simulation method based on machine learning with the traditional
method based on 3D geological modeling. On the basis of the training data, a 3D geological model
of the research area is constructed by using the triangulated irregular network (TIN) 3D geological
modeling method [39]. The 3D geological model is consistent with the real strata at the borehole
locations, and it can directly show the complex geological structure and the spatial distributions of the
rock and soil masses comprehensively.

The main steps for the construction the 3D geological model in this study are as follows:
1. Drilling treatment: According to the geological conditions and drilling stratification data,

the strata are classified and integrated, and the strata are preliminarily sorted from top to bottom.
2. Interpolation mesh generation: Using Delaunay’s triangulation and subdivision algorithms,

a TIN mesh is generated, as shown in Figure 34.
3. Network refinement: The generated irregular triangular interpolation network is adjusted until

the accuracy meets the requirements.
4. Uniform drilling series: All drilling holes are traversed and a uniform geostratigraphic series

is established by considering special stratum conditions such as missing data and reversals. Then,
according to the unified geostratigraphic series, the original stratification of all borehole data is
transformed into a unified stratification of the borehole series, as shown in Figure 35. If a stratum is
not included in the original data of the borehole, its layer thickness is set to zero.

5. Spatial interpolation: For each layer of the uniform drilling series, the Kriging method is used
to calculate the elevation at the top and bottom of the layer in the interpolation grid. If the elevation of
the top layer is the same as that of the bottom layer, this layer does not exist.

6. Stratum construction: If the elevation of the top and bottom of the stratum are different, the top
and bottom can be connected with adjacent points to the interpolation point to form a stratum of the
3D model, as shown in Figure 36.

7. Inspection: The generated 3D model is inspected, and the model is adjusted according to
experience and geological characteristics.

8. Model generation: A 3D stratum model is rendered, and the redundant parts are removed,
while only the research area is maintained.
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The method to determine the boundary conditions of the model is as follows: According to
boundary on the map of the study area, boundary points are selected at appropriate distances.
The boundary points are used as the control points of the estimated stratigraphic boundaries.
Then, these control points are connected successively to form a closed polygon. The closed polygon
is used as the boundary of the estimated stratum. After determining the estimated stratigraphic
boundary, we extended the area of the borehole to the boundary of the estimated stratum and eventually
established the entire 3D geological model.

The whole process of 3D geological model modeling, from borehole data processing to the final
generation of the model, is shown in Figure 37 below.Appl. Sci. 2019, 9, x FOR PEER REVIEW 25 of 32 
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Finally, a 3D geological model of the research area is constructed (as shown in Figure 38) and
sectioned. The stratum types and series after sectioning are shown in Figures 39–41.
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3.3.2. Three-Dimensional Geological Model Verification

At the same positions as the data in Section 3.2.3, the borehole coordinate information is input into
the 3D geological model. Then the comparison prediction results between the 3D geological model
and the real borehole stratum are obtained, as shown in Table 10.
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Table 10. Comparison of the real borehole stratum conditions and 3D geological modeling prediction results.

Number
The Real Borehole Strata Prediction Results of 3D Geological Modeling

Stratum Type Sequence Stratum Thickness Sequence
(m) Stratum Type Sequence Stratum Thickness Sequence

(m)

1 silt, clay 0.3, 3.9 clay, silt 0.3, 3.9
2 clay 2 miscellaneous fill 2.0
3 miscellaneous fill 0.6 miscellaneous fill 0.6
4 plain fill, clay 3.1, 9.8 miscellaneous fill 13.5
5 miscellaneous fill, clay, mucky soil, plain fill, clay 1.2, 1.3, 1.5, 2.4, 13.3 miscellaneous fill, clay, mucky soil, silt 1.2, 1.3, 3.9, 13.3
6 floury soil, silty clay, plain fill, clay, plain fill, clay 1.0, 0.5, 2.5, 1.2, 0.3, 3.6 plain fill, silt clay, silt, clay, silt 1, 0.5, 2.5, 1.2, 3.9
7 miscellaneous fill, plain fill, clay 0.7, 3.0, 4.5 miscellaneous fill, silt 0.7, 8.5
8 miscellaneous fill, clay 0.6, 4.0 miscellaneous fill 4.6
9 miscellaneous fill, plain fill, clay 0.5, 1.0, 11.9 miscellaneous fill, silt 0.5, 0.5
10 miscellaneous fill, clay 1.0, 9.8 miscellaneous fill 12.2
11 miscellaneous fill, silt, plain fill, clay 4.1, 11.2, 7.0, 10.0 miscellaneous fill, silt 2.8, 25.2
12 floury soil, plain fill, mucky soil, clay 0.5, 6.7, 1.2, 8.6 plain fill, silt 0.5, 16.5
13 silt, clay 0.4, 6.6 plain fill 7
14 silt, clay 0.4, 10.4 plain fill 10.9
15 miscellaneous fill, silt, plain fill, clay 0.7, 1.9, 3.4, 24.0 miscellaneous fill, plain fill, silt, silt 0.7, 1.9, 3.4, 24

16 miscellaneous fill soil, plain fill soil, old city
miscellaneous fill soil, clay 1.2, 2.6, 6.5, 13.0 miscellaneous fill, plain fill, old city

miscellaneous fill soil 1.2, 2.6, 22.5

17 miscellaneous fill soil, plain fill soil, clay 0.5, 2.8, 10.2 miscellaneous fill, plain fill 0.5, 13
18 miscellaneous fill soil, plain fill soil, clay 2.1, 0.8, 12.9 miscellaneous fill, silt, clay 2.1, 0.8, 12.9
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From Table 10, the 3D geological model performs poorly in terms of the number of layers, stratum
type, and sequence similarity, but it can better predict the stratum thickness. When the prediction of
the stratum type is accurate, the corresponding thickness prediction is close to the real value.

Some borehole data are randomly selected in the training set, and the borehole coordinate
information is input into the 3D geological model to obtain the stratum sequence prediction results of
the borehole points. According to the statistics, in all the data of the test set, the 3D geological model
accurately simulates 30.78% of the stratum types, and the similarity between the simulated series and
the real geostratigraphic series is 32.27%. In addition, the accuracy rate of the stratum thickness is
64.52%, as shown in Table 11.

Table 11. Statistics of 3D geological model prediction results.

Stratum Type Accuracy Average Sequence Similarity Stratum Thickness Accuracy

30.78% 32.27% 64.52%

Comparing Tables 9 and 11, the prediction results histogram of machine learning and 3D geological
modeling is obtained in terms of the stratum type, average series similarity, and stratum thickness
accuracy, as shown in Figure 42.
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Figure 42 shows that there is a certain difference in accuracy between the geostratigraphic series
models based on 3D geological modeling and machine learning. Generally, these two methods
can describe the real stratum situation well. The model based on machine learning has a good
simulation effect in terms of the stratum type, and all its corresponding indexes are superior to those
of the traditional 3D geological model. The machine learning model provides stratum information
by predicting the layer thicknesses within the strata and it is slightly more accurate than the 3D
geological model.

3.4. Evaluation of 3D Geological Modeling Based on the Geostratigraphic Series Model

Considering the actual performance of the machine learning model in the prediction of the stratum
type and stratum thickness, this study proposes an evaluation algorithm for a 3D geological model.
In the absence of real data guidance, the learning results based on the machine learning model represent
the accuracy of geological modeling. For any geostratigraphic series, the reliability evaluation process
is described below.

The evaluation objects are divided into a stratum type series and stratum thickness series.
The geostratigraphic series model generates output in the same position, including stratum type and
stratum thickness series.
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The similarity of the stratum type series calculated by the edit distance algorithm is used as the
evaluation index.

Comparing the layer thickness series, if the 3D layer thickness is the same as the most likely
thickness, the score is one; if the 3D layer thickness is the same as the second most likely thickness,
the score is 0.5; otherwise, the score is zero.

The scores are added, and the score sum is divided by the 3D series length, which is then used as
the layer thickness evaluation index. The average values of the type evaluation index and thickness
evaluation index are calculated, and the reliability score of this point in the 3D geological model is
obtained. If the reliability score is higher than 0.5, the simulation of the real stratum is considered to
be reliable.

The calculation process of this algorithm consists of two parts, the type evaluation index and the
layer thickness evaluation index. The reliability score is the average of these two indexes. The range of
reliability scores calculated by this algorithm is [0,1], representing the matching degree between the
evaluation object and the empirical cognition of the machine learning model. The higher the reliability
score is, the closer the evaluation object and the model are in predicting the stratum distribution of
this point.

The test borehole provides the real stratum data, and its evaluation result should be higher than
that of the 3D model. Moreover, if the stratum distribution of a point in the 3D model is similar to the
real situation, the scoring result will be similar to the result of the real stratum. To test the feasibility of
the evaluation algorithm based on the 3D geological model, this study uses the algorithm to calculate
the reliability score of the test borehole data and the 3D geological model. The calculation and statistical
results show that the average reliability score of the test borehole data is 0.6293, which is higher than
that of the 3D geological model, as shown in Table 12. In addition, the reliability scores of the test
boreholes are mostly higher than 0.5, while those of the 3D geological model are mainly below 0.5,
as shown in the Figures 43 and 44.

Table 12. Average reliability of the test borehole data and 3D geological model.

Test Borehole Data Three-Dimensional Geological Model

Average reliability 0.6293 0.3205

Appl. Sci. 2019, 9, x FOR PEER REVIEW 29 of 32 

The similarity of the stratum type series calculated by the edit distance algorithm is used as the 
evaluation index. 

Comparing the layer thickness series, if the 3D layer thickness is the same as the most likely 
thickness, the score is one; if the 3D layer thickness is the same as the second most likely thickness, 
the score is 0.5; otherwise, the score is zero. 

The scores are added, and the score sum is divided by the 3D series length, which is then used 
as the layer thickness evaluation index. The average values of the type evaluation index and thickness 
evaluation index are calculated, and the reliability score of this point in the 3D geological model is 
obtained. If the reliability score is higher than 0.5, the simulation of the real stratum is considered to 
be reliable. 

The calculation process of this algorithm consists of two parts, the type evaluation index and the 
layer thickness evaluation index. The reliability score is the average of these two indexes. The range 
of reliability scores calculated by this algorithm is [0,1], representing the matching degree between 
the evaluation object and the empirical cognition of the machine learning model. The higher the 
reliability score is, the closer the evaluation object and the model are in predicting the stratum 
distribution of this point. 

The test borehole provides the real stratum data, and its evaluation result should be higher than 
that of the 3D model. Moreover, if the stratum distribution of a point in the 3D model is similar to the 
real situation, the scoring result will be similar to the result of the real stratum. To test the feasibility 
of the evaluation algorithm based on the 3D geological model, this study uses the algorithm to 
calculate the reliability score of the test borehole data and the 3D geological model. The calculation 
and statistical results show that the average reliability score of the test borehole data is 0.6293, which 
is higher than that of the 3D geological model, as shown in Table 12. In addition, the reliability scores 
of the test boreholes are mostly higher than 0.5, while those of the 3D geological model are mainly 
below 0.5, as shown in the Figures 43 and 44. 

Table 12. Average reliability of the test borehole data and 3D geological model. 

 Test Borehole Data Three-Dimensional Geological Model 
Average reliability 0.6293 0.3205 

 
Figure 43. Histogram of the reliability index frequency of the 3D geological model. 

 
Figure 44. Histogram of the borehole data reliability index frequency. 

In conclusion, the evaluation method of 3D geological modeling based on the geostratigraphic 
series model is feasible in this study. 

Figure 43. Histogram of the reliability index frequency of the 3D geological model.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 29 of 32 

The similarity of the stratum type series calculated by the edit distance algorithm is used as the 
evaluation index. 

Comparing the layer thickness series, if the 3D layer thickness is the same as the most likely 
thickness, the score is one; if the 3D layer thickness is the same as the second most likely thickness, 
the score is 0.5; otherwise, the score is zero. 

The scores are added, and the score sum is divided by the 3D series length, which is then used 
as the layer thickness evaluation index. The average values of the type evaluation index and thickness 
evaluation index are calculated, and the reliability score of this point in the 3D geological model is 
obtained. If the reliability score is higher than 0.5, the simulation of the real stratum is considered to 
be reliable. 

The calculation process of this algorithm consists of two parts, the type evaluation index and the 
layer thickness evaluation index. The reliability score is the average of these two indexes. The range 
of reliability scores calculated by this algorithm is [0,1], representing the matching degree between 
the evaluation object and the empirical cognition of the machine learning model. The higher the 
reliability score is, the closer the evaluation object and the model are in predicting the stratum 
distribution of this point. 

The test borehole provides the real stratum data, and its evaluation result should be higher than 
that of the 3D model. Moreover, if the stratum distribution of a point in the 3D model is similar to the 
real situation, the scoring result will be similar to the result of the real stratum. To test the feasibility 
of the evaluation algorithm based on the 3D geological model, this study uses the algorithm to 
calculate the reliability score of the test borehole data and the 3D geological model. The calculation 
and statistical results show that the average reliability score of the test borehole data is 0.6293, which 
is higher than that of the 3D geological model, as shown in Table 12. In addition, the reliability scores 
of the test boreholes are mostly higher than 0.5, while those of the 3D geological model are mainly 
below 0.5, as shown in the Figures 43 and 44. 

Table 12. Average reliability of the test borehole data and 3D geological model. 

 Test Borehole Data Three-Dimensional Geological Model 
Average reliability 0.6293 0.3205 

 
Figure 43. Histogram of the reliability index frequency of the 3D geological model. 

 
Figure 44. Histogram of the borehole data reliability index frequency. 

In conclusion, the evaluation method of 3D geological modeling based on the geostratigraphic 
series model is feasible in this study. 

Figure 44. Histogram of the borehole data reliability index frequency.



Appl. Sci. 2019, 9, 3553 27 of 29

In conclusion, the evaluation method of 3D geological modeling based on the geostratigraphic
series model is feasible in this study.

4. Conclusions

(1) In view of the disadvantages of the traditional simulation method of the structure of
a geostratigraphic series, this study proposes a method based on the principle of a recurrent neural
network. This method has the advantage of not relying on subjective factors such as assumptions and
expert experience. Moreover, this approach can effectively evaluate geostratigraphic series simulation
results in terms of characteristics such as the stratum thickness, stratum type, and stratum sequence.
In the process of stratum simulation, utilizing expert-driven learning can improve both the learning
efficiency and the predictive ability of the model.

(2) A complete machine learning model for geostratigraphic series simulation is established,
and a model-based 3D geological modeling evaluation method is designed. This study provides
a novel approach for the simulation and prediction of geostratigraphic series with 3D geological
modeling. This work has far-reaching practical significance for the accurate description of the
spatial distributions of geological features and guidance of site selection, engineering construction,
and environmental assessment.

(3) The series model based on machine learning can describe the real situation at wells, and is
a complimentary tool to the traditional 3D geological model. This study directly shows that machine
learning is feasible and reliable in geostratigraphic series simulation. Additionally, our research
provides new ideas and references for the popularization of machine learning in other fields of geology
and engineering, especially 3D geological modeling.
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