The Interplay between Spatial Urban Expansion and Morphologic Landscapes East of Cairo, Egypt Using Time Series Satellite Imagery
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Acquisition and Preprocessing
3.2. Data Automation, Analysis, and Assessment
4. Results
4.1. Regional and Morphologic Setting of the Study Area
4.2. Spatial Urban Expansion
5. Discussion
5.1. Spatial Orientation of Watersheds
5.2. Spatial Relationships between Urban Spatial Expansions and Main Valleys of Watersheds
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. Global Population Growth and Sustainable Development; United Nation: New York, NY, USA, 2022. [Google Scholar]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, R.; Dong, Y. Analysis of temporal and spatial characteristics of urban expansion in Xiaonan District from 1990 to 2020 using time series Landsat imagery. Remote Sens. 2021, 13, 4299. [Google Scholar] [CrossRef]
- Mahtta, R.; Fragkias, M.; Güneralp, B.; Mahendra, A.; Reba, M.; Wentz, E.A.; Seto, K.C. Urban land expansion: The role of population and economic growth for 300+ cities. NPJ Urban Sustain. 2022, 2, 5. [Google Scholar] [CrossRef]
- Aljoufie, M.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities 2013, 31, 57–68. [Google Scholar] [CrossRef]
- Daunt, A.B.P.; Inostroza, L.; Hersperger, A.M. The role of spatial planning in land change: An assessment of urban planning and nature conservation efficiency at the southeastern coast of Brazil. Land Use Policy 2021, 111, 105771. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; McPhearson, T.; Bai, X.; Bettencourt, L.; Brondizio, E.; Colding, J.; Daily, G.; Folke, C.; Grimm, N.; et al. Urbanization in and for the anthropocene. NPJ Urban Sustain. 2021, 1, 6. [Google Scholar] [CrossRef]
- Alig, R.J.; Kline, J.D.; Lichtenstein, M. Urbanization on the US landscape: Looking ahead in the 21st century. Landsc. Urban Plan. 2004, 69, 219–234. [Google Scholar] [CrossRef]
- PADCO Inc. Egypt Urban Growth and Urban Data Report; Prepared for the Ministry of Development of Egypt; PADCO Inc.: Washington, DC, USA, 1982. [Google Scholar]
- Moavenzadeh, F.; Selim, T.M. The Construction Industry in Egypt; Massachusetts Institute of Technology, Technology Adaptation Program: Cambridge, MA, USA, 1984. [Google Scholar]
- Selim, T.M. Development of the construction industry in Egypt. Int. J. Proj. Manag. 1985, 3, 27–34. [Google Scholar] [CrossRef]
- Saregeldin, M. Cairo: 1800–2000: Planning for the capital city in the context of Egypt’s history and development. In The Expanding Metropolis: Coping with the Urban Growth of Cairo; Evin, A., Ed.; Concept Media: Singapore, 1984; pp. 91–113. [Google Scholar]
- Feiler, G. Housing policy in Egypt. Middle East. Stud. 1992, 28, 295–312. [Google Scholar] [CrossRef]
- Emam, A. The futuer of urban growth in Egypt assessment of current trends and forging new approaches for sustainable development. JES J. Eng. Sci. 2019, 47, 752–764. [Google Scholar]
- Parker, J.B.; Coyle, J.R. Urbanization and Agricultural Policy in Egypt; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 1981. [Google Scholar]
- Bécard, L. New Settlements: A New Approach to Solving Existing Housing and Urban Problems. In Architectural Transformations in the Islamic World—The Expanding Metropolis: Coping with the Urban Growth of Cairo; Amin, A., Ed.; Concept Media: Cairo, Egypt, 1985; pp. 183–187. [Google Scholar]
- Hafez, R.M. New cities between sustainability and real estate investment: A case study of New Cairo city. HBRC J. 2017, 13, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Carle, M.V.; Halpin, P.N.; Stow, C.A. Patterns of watershed urbanization and impacts on water quality. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 693–708. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Sun, G.E.; Caldwell, P.V. Impacts of urbanization on stream water quantity and quality in the United States. Water Resour. Impact 2015, 17, 17–20. [Google Scholar]
- Sun, G.; Lockaby, B.G. Water quantity and quality at the urban–rural interface. In Urban–Rural Interfaces: Linking People and Nature; American Society of Agronomy: Madison, WI, USA, 2012; pp. 29–48. [Google Scholar]
- Maconachie, R. Urban Growth and Land Degradation in Developing Cities: Change and Challenges in Kano Nigeria; Routledge: London, UK, 2016. [Google Scholar]
- Oliveira, E.; Tobias, S.; Hersperger, A.M. Can strategic spatial planning contribute to land degradation reduction in urban regions? State of the art and future research. Sustainability 2018, 10, 949. [Google Scholar] [CrossRef] [Green Version]
- Hermas, E.; Alharbi, O.; Alqurashi, A.; Niang, A.; Al-Ghamdi, K.; Al-Mutiry, M.; Farghaly, A. Characterisation of Sand Accumulations in Wadi Fatmah and Wadi Ash Shumaysi, KSA, Using Multi-Source Remote Sensing Imagery. Remote Sens. 2019, 11, 2824. [Google Scholar] [CrossRef] [Green Version]
- Imbrenda, V.; Quaranta, G.; Salvia, R.; Egidi, G.; Salvati, L.; Prokopovà, M.; Coluzzi, R.; Lanfredi, M. Land degradation and metropolitan expansion in a peri-urban environment. Geomat. Nat. Hazards Risk 2021, 12, 1797–1818. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [Green Version]
- Garschagen, M.; Romero-Lankao, P. Exploring the relationships between urbanization trends and climate change vulnerability. Clim. Change 2015, 133, 37–52. [Google Scholar] [CrossRef]
- Hao, L.; Huang, X.; Qin, M.; Liu, Y.; Li, W.; Sun, G. Ecohydrological processes explain urban dry island effects in a wet region, Southern China. Water Resour. Res. 2018, 54, 6757–6771. [Google Scholar] [CrossRef]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Lee, D.; Choe, H. Estimating the impacts of urban expansion on landscape ecology: Forestland perspective in the greater Seoul metropolitan area. J. Urban Plan. Dev. (ASCE) 2011, 137, 425–437. [Google Scholar] [CrossRef]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.r.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Zhu, C.; Dong, B.; Xu, H. Simulating urban expansion based on ecological security pattern—A case study of Hangzhou, China. Int. J. Environ. Res. Public Health 2022, 19, 301. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Past, present and future land use changes and their impact on water balance. J. Environ. Manag. 2017, 197, 582–596. [Google Scholar] [CrossRef]
- Kumar, S.; Moglen, G.E.; Godrej, A.N.; Grizzard, T.J.; Post, H.E. Trends in water yield under climate change and urbanization in the US Mid-Atlantic region. J. Water Resour. Plan. Manag. 2018, 144, 05018009. [Google Scholar] [CrossRef]
- Zeinali, V.; Vafakhah, M.; Sadeghi, S.H. Impact of urbanization on temporal distribution pattern of storm runoff coefficient. Environ. Monit. Assess. 2019, 191, 595. [Google Scholar] [CrossRef]
- Price, K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. Earth Environ. 2011, 35, 465–492. [Google Scholar] [CrossRef]
- PEDRR. Managing Watersheds for Urban Resilience: Policy Brief; UN: Geneva, Switzerland, 2011; p. 16. [Google Scholar]
- Areu-Rangel, O.S.; Cea, L.; Bonasia, R.; Espinosa-Echavarria, V.J. Impact of Urban Growth and Changes in Land Use on River Flood Hazard in Villahermosa, Tabasco (Mexico). Water 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elhamid, H.F.; Zeleňáková, M.; Vranayová, Z.; Fathy, I. Evaluating the Impact of Urban Growth on the Design of Storm Water Drainage Systems. Water 2020, 12, 1572. [Google Scholar] [CrossRef]
- Del Monte, M.; D’Orefice, M.; Luberti, G.M.; Marini, R.; Pica, A.; Vergari, F. Geomorphological classification of urban landscapes: The case study of Rome (Italy). J. Maps 2016, 12, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Hereher, M.E. Analysis of urban growth at Cairo, Egypt using remote sensing and GIS. Nat. Sci. 2012, 4, 19961. [Google Scholar] [CrossRef] [Green Version]
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef] [Green Version]
- El-Sawy, E.K.; Ibrahim, A.M.; El-Bastawesy, M.A.; El-Saud, W.A. Detection of land use and land cover changes for New Cairo area, using remote sensing and GIS. Int. J. Sci. Res. (IJSR) 2000, 5, 161321. [Google Scholar]
- Salem, A. The anthropogenic geomorphology of the new suburbs, East of Greater Cairo, Egypt. Bull. De La Société De Géographie D’egypte 2018, 91, 1–28. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Toure, S.I.; Stow, D.A.; Shih, H.; Weeks, J.; Lopez-Carr, D. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens. Environ. 2018, 210, 259–268. [Google Scholar] [CrossRef]
- Havenith, H.r.; Strom, A.; Caceres, F.; Pirard, E. Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: Statistical and geotechnical approach. Landslides 2006, 3, 39–50. [Google Scholar] [CrossRef]
- Menze, B.H.; Ur, J.A.; Sherratt, A.G. Detection of ancient settlement mounds. Photogramm. Eng. Remote Sens. 2006, 72, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Galiatsatos, N.; Donoghue, D.N.M.; Philip, G. High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control. Photogramm. Eng. Remote Sens. 2007, 73, 1093–1106. [Google Scholar] [CrossRef] [Green Version]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Change 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Hepcan, S.; Hepcan, C.C.; Kilicaslan, C.; Ozkan, M.B.; Kocan, N. Analyzing Landscape Change and Urban Sprawl in a Mediterranean Coastal Landscape: A Case Study from Izmir, Turkey. J. Coast. Res. 2012, 29, 301–310. [Google Scholar] [CrossRef]
- Jelil Niang, A.; Hermas, E.; Alharbi, O.; Al-Shaery, A. Monitoring landscape changes and spatial urban expansion using multi-source remote sensing imagery in Al-Aziziyah Valley, Makkah, KSA. Egypt. J. Remote Sens. Space Sci. 2020, 23, 89–96. [Google Scholar] [CrossRef]
- Gao, J.; Skillcorn, D. Capability of SPOT XS data in producing detailed land cover maps at the urban-rural periphery. Int. J. Remote Sens. 1998, 19, 2877–2891. [Google Scholar] [CrossRef]
- Altmaier, A.; Kany, C. Digital surface model generation from CORONA satellite images. ISPRS J. Photogramm. Remote Sens. 2002, 56, 221–235. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; McIver, D.K.; Woodcock, C.E. Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 1377–1386. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Li, C.; Sun, G.; Caldwell, P.V.; Cohen, E.; Fang, Y.; Zhang, Y.; Oudin, L.; Sanchez, G.M.; Meentemeyer, R.K. Impacts of Urbanization on Watershed Water Balances Across the Conterminous United States. Water Resour. Res. 2020, 56, e2019WR026574. [Google Scholar] [CrossRef]
- Alqurashi, A.F. Quantification of urban patterns and processes through space and time using remote sensing data: A comparative study between three Saudi Arabian cities. Sustainability 2021, 13, 12615. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Feng, Y.; Xie, H.; Jiang, L.; Lei, Z. Spatiotemporal dynamics of urban green space influenced by rapid urbanization and land use policies in Shanghai. Forests 2021, 12, 476. [Google Scholar] [CrossRef]
- Shukri, N.M.; Akmal, M.G. The geology of Gebel el-Nasuri and Gebel el-Anqabiya district. Bull. Soc. Geogr. Egypte 1953, 26, 243–276. [Google Scholar]
- Said, R. Planktonic foraminifera from the Thebes formation, Luxor, Egypt. Micropaleontology 1960, 6, 277–286. [Google Scholar] [CrossRef]
- Sallam, E.; Issawi, B.; Osman, R. Stratigraphy, facies, and depositional environments of the Paleogene sediments in Cairo–Suez district, Egypt. Arab. J. Geosci. 2015, 8, 1939–1964. [Google Scholar] [CrossRef]
- Hassan, H.F.; Korin, A.H. Contribution to the biostratigraphy of the Middle-Upper Eocene rock units at North Eastern Desert; an integrated micropaleontological approach. Heliyon 2019, 5, e01671. [Google Scholar] [CrossRef] [Green Version]
- Abou Khadrah, A.M.; Wali, A.M.A.; Müller, A.M.A.; El Shazly, A.M. Facies development and sedimentary structures of syn-rift sediments, Cairo-Suez District, Egypt. Bull. Fac. Sci. Zagazig Univ 1993, 15, 355–373. [Google Scholar]
- Abdelkhalek, N.K.M.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and oxidative stress. Environ. Sci. Pollut. Res. 2015, 22, 3023–3031. [Google Scholar] [CrossRef]
- Strougo, A.; Abd-Allah, A.M. Mokattamian stratigraphy of north central Eastern desert (south of maadi-Qattamiya road). Middle East Res. Cent. Earth Sci. Ser. Ain Shams Univ. 1990, 4, 152–175. [Google Scholar]
- Moustafa, A.R.; Yehia, M.A.; Abdel Tawab, S. Structural setting of the area east of Cairo, Maadi and Helwan. Middle East Res. Cent. Ain Shams Univ. Sci. Res. Ser. 1985, 5, 40–64. [Google Scholar]
- Hagag, W. Structural evolution and Cenozoic tectonostratigraphy of the Cairo-Suez district, north Eastern Desert of Egypt: Field-structural data from Gebel Qattamiya-Gebel Um Reheiat area. J. Afr. Earth Sci. 2016, 118, 174–191. [Google Scholar] [CrossRef]
- Hagag, W.; Hassan, S.; Toni, M. Active tectonic structures in northeastern Egypt: A geospatial analysis using structural, remote sensing, and seismic data. Arab. J. Geosci. 2019, 12, 572. [Google Scholar] [CrossRef]
- Darwish, A.; Elghazali, S.; Shakweer, A. The effect of ring road construction on urban land cover change: Greater Cairo case study. In Proceedings of the 2007 Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007; pp. 1–6. [Google Scholar]
- Duranton, G.; Turner, M.A. Urban growth and transportation. Rev. Econ. Stud. 2012, 79, 1407–1440. [Google Scholar] [CrossRef]
- Osman, T.; Shaw, D.; Kenawy, E. An integrated land use change model to simulate and predict the future of greater Cairo metropolitan region. J. Land Use Sci. 2018, 13, 565–584. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Barsi, J. Landsat 7 scan line corrector-off gap-filled product development. In Proceedings of the Pecora, Sioux Falls, SD, USA, 23–27 October 2005; pp. 23–27. [Google Scholar]
- McDonald, R.A. Opening the Cold War sky to the public: Declassifying satellite reconnaissance imagery. Photogramm. Eng. Remote Sens. 1995, 61, 385–390. [Google Scholar]
- Dashora, A.; Lohani, B.; Malik, J.N. A repository of earth resource information–CORONA satellite programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Richelson, J.T. A “Rifle” in space. Air Force Magazine, 1 June 2003; 72–75. [Google Scholar]
- Fekete, A. Corona high-resolution satellite and aerial imagery for change detection assessment of natural hazard risk and urban growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sens. 2020, 12, 3246. [Google Scholar] [CrossRef]
- Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Processes 2005, 16, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Said, R. The Geology of Egypt; El Sevier Publ Co.: Amsterdam, The Netherlands, 1962. [Google Scholar]
Satellite | Landsat | ASTER | CORONA | ||
---|---|---|---|---|---|
System/Camera | Optical satellite systems | Designator KH-4B | |||
Sensor/Camera type | TM | ETM+ | OLI8 | ASTER | J-3, panchromatic |
Acquisition dates | 1986–1998 2004–2006 2008–2011 | 1999–2003 | 2013–2020 | 2007 2012 | 9 December 1969 |
No. of images | 20 | 5 | 8 | 2 | 4 |
Spatial resolution (m) | 30 | 30 | 30 | 30 | 1.8 |
Mission | Landsat 4–6 | Landsat 7 | Landsat 8 | 1108-1 | |
Data frames | 176/039 | 176/039 | 176/039 | Two Granules | 014 & 015 |
Ground coverages (Kkm2) | 180 × 180 | 180 × 180 | 180 × 180 | 60 × 60 | 13.8 × 188 |
Orbit inclination | 98.2 | 98.2 | 98.2 | 98.2 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalaby, H.; Hermas, E.; Khormi, H.; Farghaly, A.M.; ElSayed, A.M.; Alqurashi, A.; Ascoura, I. The Interplay between Spatial Urban Expansion and Morphologic Landscapes East of Cairo, Egypt Using Time Series Satellite Imagery. ISPRS Int. J. Geo-Inf. 2022, 11, 386. https://doi.org/10.3390/ijgi11070386
Shalaby H, Hermas E, Khormi H, Farghaly AM, ElSayed AM, Alqurashi A, Ascoura I. The Interplay between Spatial Urban Expansion and Morphologic Landscapes East of Cairo, Egypt Using Time Series Satellite Imagery. ISPRS International Journal of Geo-Information. 2022; 11(7):386. https://doi.org/10.3390/ijgi11070386
Chicago/Turabian StyleShalaby, Heidi, ElSayed Hermas, Hassan Khormi, Abudeif M. Farghaly, Ayman M. ElSayed, Abdullah Alqurashi, and Ibrahim Ascoura. 2022. "The Interplay between Spatial Urban Expansion and Morphologic Landscapes East of Cairo, Egypt Using Time Series Satellite Imagery" ISPRS International Journal of Geo-Information 11, no. 7: 386. https://doi.org/10.3390/ijgi11070386
APA StyleShalaby, H., Hermas, E., Khormi, H., Farghaly, A. M., ElSayed, A. M., Alqurashi, A., & Ascoura, I. (2022). The Interplay between Spatial Urban Expansion and Morphologic Landscapes East of Cairo, Egypt Using Time Series Satellite Imagery. ISPRS International Journal of Geo-Information, 11(7), 386. https://doi.org/10.3390/ijgi11070386