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Abstract: This study modeled the urban growth in the Greater Cairo Region (GCR), one of 

the fastest growing mega cities in the world, using remote sensing data and ancillary data. 

Three land use land cover (LULC) maps (1984, 2003 and 2014) were produced from satellite 

images by using Support Vector Machines (SVM). Then, land cover changes were detected 

by applying a high level mapping technique that combines binary maps (change/no-change) 

and post classification comparison technique. The spatial and temporal urban growth 

patterns were analyzed using selected statistical metrics developed in the FRAGSTATS 

software. Major transitions to urban were modeled to predict the future scenarios for year 

2025 using Land Change Modeler (LCM) embedded in the IDRISI software. The model 

results, after validation, indicated that 14% of the vegetation and 4% of the desert in 2014 

will be urbanized in 2025. The urban areas within a 5-km buffer around: the Great Pyramids, 

Islamic Cairo and Al-Baron Palace were calculated, highlighting an intense urbanization 

especially around the Pyramids; 28% in 2014 up to 40% in 2025. Knowing the current 

and estimated urbanization situation in GCR will help decision makers to adjust and 

develop new plans to achieve a sustainable development of urban areas and to protect the 

historical locations. 
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1. Introduction 

Recent studies indicate that our world is undergoing the largest wave of urban growth in history [1]. 

One hundred years ago, two out of every ten people lived in an urban area, this number is expected to 

grow to reach six out of ten in 2030, and seven out of ten in 2050 [2]. The world’s urban residents began 

to increase significantly since the 1950s and it is expected to almost double, increasing from 

approximately 3.4 thousands of million in 2009 to 6.4 thousands of million in 2050 [2]. Consequently, 

this massive increase in urban population makes governments, policy makers, and civil society 

organizations face challenges in resources reallocation to overcome the problems that will arise in the 

future, to achieve a sustainable development of urban areas and to preserve cultural heritage from urban 

settlements being formed around areas of high legacy.  

Models are simplifications of reality; they are theoretical abstractions that represent systems in such 

a way that essential features crucial to the theory and its application are identified and highlighted [3]. 

Land Use Land Cover Change (LULCC) models are tools to support the analysis of the causes and 

consequences of LULCC for a better understanding of the system functionality, and to support land-use 

planning and policy [4]. Models are useful for simplifying the complex suite of socioeconomic and 

biophysical forces that influence the rate and spatial pattern of LULCC and for estimating the impacts 

of changes [4]. 

Table 1. Different Land Use Land Cover Change (LULCC) models in recent studies. 

Model Study Area Data Set Validation Technique Reference 

MC-CA 1 Harbin, China 
Landsat TM 1989, 

2007, ETM+2001 

Kappa spatial correlation 

statistic [5] 
[6] 

LCM Asmara, Eritrea 
Landsat 1989, 

2000, 2009 

Kappa spatial correlation 

statistic 
[7] 

LTM-MC 2 
SEWI 3, USA and 

MRW 4, Michigan, USA 

SEWI and MRW 

were digitized 

manually. 

ROC 5 [8] and PCM 6 [9,10] [11] 

SLEUTH 7 
Jimei, southeast coast of 

Fujian Province, China 

Landsat TM5 1992, 

1997, 2002  

and 2007 

Lee-Sallee index [12] 

1 MC-CA: Markov Chain-Cellular Automata; 2 LTM-MC: Land Transformation Model-Multiple 

Classifications; 3 SEWI: South-Eastern Wisconsin; 4 MRW: Muskegon River Watershed; 5 ROC: Relative 

Operating Characteristic; 6 PCM: Percent Correct Match; 7 SLEUTH: The name comes from an acronym for 

the input image requirements for driving the model: Slope, Land use, Exclusion, Urban extent, Transportation 

and Hill shade [12] 
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There are four types of modeling approaches: machine learning, cellular sector-based economic, spatially 

disaggregated economic, and agent-based approaches [13]. Table 1 summarizes some model types in 

addition to the validation techniques that were applied in some LULCC studies. 

Land Change Modeler (LCM) is an integrated software environment for analyzing and predicting 

LULCC, and for validating the results [14]. It is embedded in the IDRISI software [7], where only 

thematic raster images with the same land cover categories listed in the same sequential order can be 

input for LULCC analysis [15]. LCM evaluates land cover changes between two different times, 

calculates the changes, and displays the results with various graphs and maps. Then, it predicts future 

LULC maps on the basis of relative transition potential maps [15] relying upon Multi-Layer Perceptron 

(MLP) neural networks [16]. LCM was found to produce better prediction accuracy in short time scales, 

especially in the case of stable land covers rather than cases of rapid change [15]. When compared to 

models that predict LULCC based on supervised approaches (e.g., the Weights of Evidence method, 

where the weights can be selected and edited by a user), LCM generates more accurate overall change 

potential maps because neural network outputs are able to express the change of various land cover types 

more adequately than individual probabilities obtained through the Weights of Evidence method [16].  

Different studies have previously been carried out for LULCC detection and modeling in the Greater 

Cairo Region (GCR). The ISODATA clustering procedure was used for image classification and the 

image differencing technique was applied to detect the LULCC between 1986 and 1999 [17]. The study 

indicated that urban areas increased from 344 km2 in 1986 to 460 km2 in 1999. Another study applied 

Maximum Likelihood classifier using ERDAS software for the LULCC detection in 1973 and 2006 [18]. 

The study applied post-classification comparison techniques for LUCC detection. Results showed that 

urban areas expanded from 224 km2 in 1973 to 558 km2 in 2006, with total agricultural cut-offs and 

urbanized desert of 137 km2 and 187 km2, respectively. The Nearest Distance classifier was used to 

classify 1984, 2000 and 2008 images, and MC-CA integrated model with Multi Criteria Evaluation 

procedure was applied in a different study to select and evaluate the driving forces [19]. The model 

accuracy was 88%, indicating the validity of model parameters, and of the model to predict urban growth 

for 2038. 

This study aims to detect the LULCC from 1984 to 2014, analyze the spatial and temporal growth 

patterns, and model the changes to predict the LULC in 2025 using LCM. 

2. Study Area 

The selected area for the study is the metropolitan area of Cairo, the political capital, and Qalyubia, 

in addition to parts of Giza City that belong to the Greater Cairo Region (GCR) (Figure 1). The study 

area is located at 30°02'N and 31°21'E, in the middle of the Delta Region, and covers an area of  

8942 km2. Figure 1 shows three 5-km buffer zones around which the urban density will be calculated: 

(1) The Great Giza Pyramids and the Sphinx area, representing the Pharaonic history. 

(2) Al-Hussien Mosque, Khan Al-Khalily area, Al-Moez Street, and the Citadel, all in one area, 

representing an essential part of ancient Islamic Cairo. 

(3) Al-Baron Palace, which reflects modern Belgian architecture.  
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The region has the highest population and population density among Egyptian governorates [20], and 

is considered one of the most populous regions worldwide [20]. The internal migration from Upper 

Egypt and the Delta began just after the Second World War, especially in the middle of 1950s due to the 

massive industrialization policy launched by President Nasser, which encouraged people to migrate, 

seeking better job opportunities and higher quality of education [21]. In 1947, the GCR hosted around 

three million people, representing 12.5% of the total Egyptian population at the time. This number kept 

growing to 13 million in 1996, representing 17.3% of the total Egyptian population [21], and, in 2006, 

it reached 16.1 million people [22]. Cairo City was the most populous among Egyptian cities in 2013, 

with almost nine million people, representing 10.7% of total population recorded in the same year [20]. 

Consequently, critical housing pressures began to appear in the GCR [21]. More than 75% of the 

population is living within only 30 km from the city center, moreover, the region’s urban development 

has been characterized by the rapid expansion of densely populated informal settlements, which reached 

40% in 2009 [21].  

 

Figure 1. Study area. 

On the other hand, the GCR is a land where many civilizations have met over the ages. The Pharaohs, 

Greeks, Babylonians, Romans, together with Arabs, put it on its way to modernity and enriched the 

historical value of the city. This diverse historical heritage is facing a threat that is interrelated with 

urbanization, which requires definitive administrative plans to detect, analyze, and estimate its magnitude 

and extent. Unfortunately, conventional survey and mapping techniques are expensive and time consuming 

for urban expansion estimations. Such information is not available for most the urban centers, especially 

in developing countries [23]. Thus, governmental and private research centers have turned to the use of 

GIS (Geographic Information Science) and remote sensing tools in monitoring, detecting, and analyzing 

urban growth [23]. They were found to be cost effective and technologically efficient and, in some cases, 

they can be the only reliable source of sufficient monitoring [24]. Satellite images provide a synoptic 

overview for large regions, always recorded with a standardized and calibrated monitoring system [25]. 

A historic view of the past can usually be viewed for free using image archives that store a large number 

of satellite remote sensing imagery, starting from the early 1970s, and increase in data daily [25]. These 

data can be analyzed and used for urban growth prediction and modeling purposes. 
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3. Data and Methods 

3.1. Data 

Three cloud free Landsat images for the years 1984, 2003, and 2014 were downloaded at no cost from 

EarthExplorer [26] (Table 2). 

In addition to these datasets, ancillary data were also used: Google Earth maps [27], road networks [28], 

Digital elevation Model (DEM), and slope [26].  

Table 2. Imageries attributes. 

Acquisition 

Date 
Sensor 

Spatial 

Resolution  
Path/Row Landsat 

Number of 

Bands 

Radiometric 

Resolution 

15/03/2014 OLI-TIRS 30 m 176/39 Landsat 8 11 16 bits 

07/07/2003 TM 30 m 176/39 Landsat 5 7 8 bits 

02/07/1984 TM 30 m 176/39 Landsat 5 7 8 bits 

OLI-TIRS: Operational Land Imager-Thermal Infrared Sensor; TM: Thematic Mapper 

3.2. Methodology Overview 

Figure 2 illustrates the flowchart of the methodology applied during the study. Multiple satellite 

scenes for the same study area, obtained at different time stamps (1984, 2003 and 2014), were classified 

to produce LULC maps. This classification was validated through an accuracy assessment process, 

which was performed with the aid of validation data or reference maps (e.g., Google Earth maps). The 

validation was followed by LULCC detection analysis to determine the amount of each class at time t1 

that became another class by time t2. These transitions were recorded in a change matrix that represented 

the input to the subsequent step; calibrating and modeling the transitions of interest. After the driving 

forces had been set, the transitions between 1984 and 2003 were modeled using LCM to produce a 

predicted map of 2014. This modeled map was compared to the LULC map of the same year, 

derived from satellite images, in order to validate the model. Once validated, the model was used with 

the same prediction time difference (11 years) using the 1984 and 2014 LULC maps to predict the LULC 

map for 2025. 

3.3. LULC Maps Production and LULCC Detection  

The three satellite images from 1984, 2003, and 2014 were classified using a SVM classifier. It is a 

supervised, non-parametric statistical learning approach in which a hyperplane is built to separate 

examples of different classes, maximizing the distance (margin) of the examples lying close to it [29]. 

The larger the distances, from the examples of both classes to the hyperplane, are, the better the 

generalization achieved is [29]. Figure 3 illustrates a simple scenario of a two-class separable 

classification problem in a two-dimensional input space [30]. 
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Figure 2. Methodology. 

 

Figure 3. Linear support vector machine example. 

SVM represent a noticeable development in machine learning research [31], particularly appealing in 

the remote sensing field due to is ability to generalize well, even with limited training samples, which is 

a common limitation for remote sensing applications [30]. It can achieve higher classification accuracy 

than Maximum Likelihood and Artificial Neural Network [29] with an overall accuracy above 90% [32]. 

Four LULC classes were considered: Urban, Vegetation, Water, and Desert. In the post-classification 

step, each raster map was converted to a vector format, and then generalized to a Minimum Map Unit 

(MMU) of one hectare, by selecting all polygons of an area less than one hectare and eliminating them, 

to avoid the “salt and pepper” effect so that enhancing the quality of the produced maps to be more 

representative of the landscape. For accuracy assessment, 100 random points per class were generated 

over the study area and visually compared to Google Earth images to validate the maps [33]. On the 
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other hand, for LULCC detection, there are two main groups of change detection techniques: binary 

change/no-change information, in which the output has only two possibilities; weather the pixel has 

changed, or not changed, within two specific time stamps [33]. The second approach yields a detailed 

“from-to” change trajectory, which results in a complete matrix with the exact amount of pixels turned 

from one class into another (e.g., post classification comparison) [33]. 

The problem while applying change or non-change detection techniques is the difficulty to precisely 

identify the thresholds [33]. Usually, methods used to select thresholds lead to external influences on the 

differences caused by atmospheric conditions, sun angles, soil moistures, and phonological differences, 

in addition to the threshold itself, is highly subjective and scene dependent, depending on the analyst’s 

familiarity with the study area [33]. The post classification comparison technique consists of an 

independent classification of each image, followed by a thematic overlay of the classifications, resulting 

in a complete “from–to” change matrix of the conversion between each class on the two dates [34]. The 

problem in this technique is the high effect of errors resulting from image classification on the change 

map. For example, two images classified with 80% accuracy might have only a 0.80 × 0.80 × 100 = 64% 

correct joint classification rate [34].  

In the combination of both techniques, the change image is recoded into a binary mask consisting of 

areas that have changed between the two dates [35]. The change mask is then overlaid onto the second 

time stamp image and only those pixels that were detected as having changed are classified in the t2 

imagery [35]. A traditional post-classification comparison can then be applied to yield complete “from-to” 

change information. This method may reduce change detection errors. Hence, in this study, a hybrid 

technique was applied, in which binary maps (areas of change/no-change) for both periods, 1984–2003 

and 2003–2014, were produced using the combination of the Normalized Difference Vegetation Index 

(NDVI), Near Infrared (NIR), and Red differences technique, as it was found that the direct use of NDVI 

difference, by applying threshold values, failed to detect many urban settlements, while when combined 

with NIR difference and Red difference, it gave a better result of urban change [36]. Then, only areas of 

change were thematically overlaid to produce the change matrix in both periods; 1984–2003 and 2003–2014. 

3.4. Spatial and Temporal Urban Growth Pattern Analysis 

For urban sprawl analysis, FRAGSTATS software, version 4.2, was used to calculate spatial metrics 

for Urban classes over 30 years, from 1984 to 2014, based on the LULC maps of 1984, 2003, and 2014. 

The selected subset of matrices applied in the study is given in Table 3. They are the most commonly 

used and explored metrics in similar studies [37,38]. 

More complex metrics, such as Area Weighted Mean Patch Fractal Dimension (AWMPFD), 

Contagion (CONTAG) and Shannon’s Entropy were important to be computed for a better 

understanding of urban sprawl. The fractal dimension describes the complexity and the fragmentation 

of a patch using a perimeter-area proportion [38]. The values range between 1 and 2, as low values are 

derived when a patch has a compact rectangular form with a relatively small perimeter compared to the 

area. If the patches are more complex and fragmented, the perimeter increases and yields a higher fractal 

dimension [38]. AWMPFD averages the fractal dimensions of all patches by weighting larger land cover 

patches [38]. CONTAG indicates the heterogeneity of the landscape throughout a given probability that 
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determines patches adjacency. The lower the CONTAG values are, the more heterogeneous the 

landscape becomes. 

Table 3. Spatial metrics. 

Metrics Description Units Range 

CA—Class Area 
The sum of the areas of all urban patches, that 

is, total urban area in the landscape. 
Hectares CA > 0, no limit 

NP—Number of Patches The number of urban patches in the landscape. None NP ≥ 1, no limit 

ED—Edge Density 

The sum of the lengths of all edge segments 

involving the urban patch type, divided by the 

total landscape area.  

Meters/ 

m2 
ED ≥ 0, no limit 

LPI—Largest Patch Index 

The area of the largest patch of the 

corresponding patch type divided by total area 

covered by urban. 

% 0 < LPI ≤ 100 

ENN_MN—Euclidian 

Mean Nearest Neighbor 

Distance 

The distance mean value over all urban patches 

to the nearest neighboring urban patch, based 

on shortest edge-to-edge distance from cell 

center to cell center. 

Meters 
EMN_MN > 0, no 

limit 

AWMPFD—Area 

Weighted Mean Patch 

Fractal Dimension 

Area weighted mean value of the fractal 

dimension values of all urban patches, 

the fractal dimension of a patch equals two 

times the logarithm of patch perimeter divided 

by the logarithm of patch area; the perimeter 

is adjusted to correct for the raster bias 

in perimeter. 

None 
1 ≤ AWMPFD ≤ 2 

 

CONTAG—Contagion 
Measures the overall probability that a cell of a 

patch type is adjacent to cells of the same type. 
% 0 < CONTAG ≤ 100 

Shannon’s Entropy 

Spatial concentration or dispersion indicator in 

which lower values imply higher distribution 

concentration in one region. 

None 
0 < Shannon’s 

Entropy ≤ 1 

4. Model Implementation 

LCM embedded in IDRISI 17.0 was used in this study to predict the LULC map in 2025 using the 

following procedure: change analysis, transition potential modeling and driving forces determination, 

change prediction, and model validation. In the change analysis step, the changes were assessed between 

1984 and 2003. These changes represent the transitions from one class to another, which are important 

in order to identify the dominant transitions to urban and target them for modeling [39]. 

4.1. Transition Potential Modeling and Driving Forces Determination 

This step is responsible for determining the location of the change [14]. It results in a number of 

transition potential maps equal to the significant transitions to urban, considered in the change analysis 

step [14]. These transition potential maps represent the suitability of a pixel to turn into urban one in 

each transition, based on a group of factors, named “Driving Forces” that are used to model the historical 

change process. In this study, elevation, slope, distance to roads in 2014, and distance to existing urban 
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areas in 1984 were set as predictor variables. They were chosen based on recent similar studies [19] in 

which they were found to highly affect urban sprawl, and were based on the LULCC between 1984 

and 2003, where new urban settlements were noticed to occur near the built-up areas and the road 

network. Distance to urban areas in 1984 was defined as a dynamic factor and was recalculated over the 

prediction period (11 years, from 2003 to 2014), as an urban area expands, consequently, distance to 

urban areas in 1984 will vary over time. Likewise, the distance to roads in 2003 should have been 

considered as a dynamic factor, as new roads are assumed to be built between 2003 and 2014. This could 

be applied in case the roads were obtained in 2003, but as long as the roads were in 2014, this driving 

force was set as static. 

LCM provides an optional quick test of the potential explanatory power of each driving force 

represented by Cramer’s V. It is a correlation coefficient that ranges from 0.0, indicating no correlation 

(discarded variable), to 1.0, indicating perfect correlation (excellent potential variable) [14]. Although it 

does not guarantee a strong performance because it cannot account for the mathematical requirements 

and the complexity of the relationship [40], it acts as a guide to determine whether the driving force is 

worth being considered or not [14]. Multi-Layer Perceptron (MLP) neural network is a feedforward 

neural network in which data flows in one direction from an input layer to an output layer through hidden 

layer(s) in between [41]. The computing elements (nodes) are grouped into layers and each node receives 

an input signal from other nodes after processing the signals locally through a transfer function, it outputs 

a transformed signal to other nodes or final result [42]. Each signal feeding into a node in a subsequent 

layer has the original input multiplied by a weight with a threshold added and then is passed through an 

activation function that may be linear or non-linear (hidden units) [42]. The weights have to be 

determined in the training process before the network can be used for prediction purposes, using part of 

the data, aiming at changing the weights so as to minimize the error between the observed and the predicted 

outcomes [42]. A MLP neural network allows for modeling more than one transition at a time [14], 

hence, it was applied in this study. 

4.2. Change Prediction 

In this step, LCM uses the change rates calculated from the first step, as well as the transition potential 

maps produced from the second step, to predict a future scenario for 2014. This step is responsible for 

determining the quantity of change to urban areas in each transition in 2014 using MC analysis [14]. 

There are two basic types of predictions: hard and soft predictions [14]. Hard prediction yields a 

projected map of 2014, where each pixel is assigned one land cover class; the class that it is most likely 

to become. Soft prediction, however, is different, as it produces a vulnerability map in which each pixel 

is assigned a value from 0.0 to 1.0, indicating the probability of the pixel to become urban in 2014 [14].  

4.3. Model Validation 

The validation process aims to determine the quality of 2014’s predicted map in relation to 2014’s 

LULC map (the map of what exists in reality). There are two endorsed approaches to validate a model: 

the visual and the statistical approaches [8]. In the visual validation, a three-way cross tabulation between 

2003’s LULC map, 2014’s predicted map, and the map in reality was run to illustrate the accuracy of 

the model results. The output is a map that has four categories [8]: 
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(1) Hits: Model predicted change and it occurred in reality. 

(2) False alarms: Model predicted change to urban areas while it persisted in reality. 

(3) Misses: Model predicted persistence and it became urban in reality. 

(4) Null success: Model did not predict change and it did not occur in reality. 

False alarms and misses represent the errors that resulted from the model as a disagreement between 

the simulated map and the reference map, while hits and null success represent the model correctness [8]. 

To determine the overall agreement between observed and predicted maps, we calculated the Figure of 

Merit (FOM), which is a ratio between hits and the summation of hits, misses, and false alarms. It ranges 

from 0%, meaning no overlap between the observed and predicted change, to 100%, meaning a perfect 

overlap between the observed and predicted change [43]. On the other hand, the statistical approach 

examines the agreement between a pair of maps that show any categorical variable, which can have any 

number of categories [8]. The map of reality acted as the reference map, while the simulated map was 

the comparison map. In this study, Kappa variations were applied: Kno and Klocalion, where Kno is the 

overall accuracy of the simulation run and Klocation indicates the level of agreement of location [44]. We 

eliminated the usage of Kstandard (the proportion assigned correctly versus the proportion that is correct 

by chance [45]) in this study, as it was not found to be helpful to interpret, while Klocalion can be somewhat 

helpful [46]. Once the model predictive power was assessed, it was used to predict 2025’s LULC map, 

with the same driving forces, modeling the changes between 1984 and 2014’s LULC maps. 

5. Results and Discussion 

5.1. LULC Maps Production and LULCC detection 

The accuracy assessment resulted in an overall accuracy of 96%, 97.3%, and 96.3%, for 1984,  

2003, and 2014’s LULC maps (Figure 4), respectively. The most significant changes in both periods 

(1984–2003 and 2003–2014) are the transitions from vegetation and desert to urban areas. Over 19 years, 

from 1984 to 2003, vegetation lost 13% to urban, representing 19,179 hectares, and almost the same 

percentage (12%) within only 11 years, from 2003 to 2014, representing an amount of 16,486 hectares. 

This indicates the massive leveling of agricultural lands in the GCR for urbanization purposes, especially 

during the last decade, because of the absence and/or the inactivation of farmland protection laws. 

Additionally, 3% of desert areas became urban between 1984 and 2003, which is equivalent to 21,417 

hectares. This percentage increased to 5% between 2003 and 2014, representing 31,045 hectares, 

resulting from the application of desert reconstruction strategies to build new communities outside the 

Nile Valley. 

5.2. Spatial and Temporal Urban Growth Pattern Analysis 

The temporal urban growth signatures of the spatial metrics are illustrated in Figure 5. As a result of 

the continuous urban expansion over the study period (1984–2014), CA and NP have boomed between 

1984 and 2003 with a dramatic increase in 2014, indicating a higher urbanization rate between 2003 and 

2014. ED in 2014 was almost four times of what had been in 1984, thus, indicating an increase in the 

total length of the edge of the urban patches due to land use fragmentation. Moreover, the increase of 

LPI emphasizes the proportion growth of the total landscape area comprised by the largest urban patch. 
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By contrast, ENN_MN dipped from 1984 to 2014, meaning that the space between urban neighbors is 

shrinking over time as a result of higher urbanization density. 

AWMPFD climbed from 1.31 to 1.45 between 1984 and 2003, while, later, it increased steadily to 

reach 1.46 in 2014. This means that the level of complexity and fragmentation is increasing for the 

landscape patches. The drop in CONTAG values between 1984 and 2014 may have resulted from higher 

fragmentation due to more individual urban units. Finally, Shannon’s Entropy values have gradually 

increased over the study period because of the more-dispersed distribution taking place in the GCR. 

   

LULC map—1984 LULC map—2003 LULC map—2014 

Figure 4. LULC maps. 

  

  

Figure 5. Cont. 
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Figure 5. Temporal urban growth signatures of spatial metrics (Class Area, Number of 

Patches, Edge Density, Largest Patch Index, Euclidian Mean Nearest Neighbor Distance, 

Area Weighted Mean Patch Fractal Dimension, Contagion, and Shannon’s Entropy). 

5.3. Model Implementation 

5.3.1. Transition Potential Modeling and Driving Forces Determination 

The LULCC results indicated two significant changes to urban areas: from vegetation and from 

desert, consequently, both were the model’s major transitions. Both transitions to urban areas had the 

same driving forces, depending on the visual examination of the urban spatial trend, which indicated that 

the selected predictor variables affect both of them. Table 4 illustrates the potential explanatory power 

of each driving force, represented by Cramer’s V. The variables that have a Cramer’s V of about 0.15 or 

higher are useful, while those with values of 0.4 or higher are good [14]. Thus, the selected factors were 

found to be relevant and worth consideration.  

After the selection of the predictor variables, both transitions were modeled in one transition  

sub-model, as they had the same driving forces, with the aim of producing the transition maps. 

Table 4. Cramer’s V values of the selected driving forces of change. 

Driving Force Cramer’s V 

DEM 0.55 

Slope 0.49 

Distance to roads in 2014 0.25 

Distance to urban in 1984 0.52 
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5.3.2. Model Validation 

The visual validation of the simulated change in 2014 resulted in a map of correctness and error, given 

in Figure 6. The map consists of 1.31% hits, 89.73% null successes, 2.30% false alarms, and 6.66% 

misses. The simulated change is 3.61% of the landscape, less than the observed change, which is 7.97% 

of the landscape, and this is why the error occurred. In this case, the FOM is 12.76%, which is a low 

performance, emphasizing the importance of considering further predictive variables, as is obvious from 

the results that the applied driving forces are not enough to model this large area of study. Moreover, 

Figure 6 shows the distribution of the misses, which are highly concentrated in the second transition, 

from desert to urban, meaning that modeling the urbanization in the desert parts should be done using a 

set of driving forces different from the set used to model the first transition, from vegetation to urban. 

Obtaining data about Cairo is always a problematic issue due to the lack of available data and the change 

of administrative boundaries of the governorates, which yield some areas with no data. The problem is 

especially highlighted when dealing with a large region like the GCR, where three main cities are 

included, thus, we were unable to include extra variables in this study (e.g., distance to industrial areas 

and commercial centers). However, the results are still higher than some recent studies where FOM was 

10.4 and 2.9% [39,43]. Although visual examination is the quickest way to reveal spatial patterns, which 

statistical methods may fail to detect, it is subjective and can be misleading, therefore, the statistical 

approach is essential [8]. 

 

Figure 6. Visual validation—Map of correctness and error based on 2003 (reference),  

2014 (reference), and 2014 (simulated) LULC maps. 
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On the other hand, Kappa variations that compared the projected LULC in 2014 with the actual LULC 

map in 2014 resulted in Kno and Klocalion of 92.88% and 94.24%, respectively. The interpretation of these 

high values is that the majority of the study area experienced no change, as, even with the new urban 

communities that were constructed in the desert areas during the last 30 years (from 1984 to 2014), the 

desert forms the major land cover that was not subjected to high urbanization during  

this period. Because of this, it was essential to perform the visual validation throughout the FOM  

test, as, although Kappa coefficients obtained in this study are above 90%, better than what was obtained 

in similar studies [47,48], comparing both results reveals the fact that the correct localization of the 

projected LULCC in areas of change is more pronounced than that in areas of no change. However, 

Kappa statistic results are more promising than visual validation. 

5.3.3. LULC Map Prediction for 2025 

The changes between 1984 and 2014 were modeled using the real LULC maps in order to predict the 

LULC map of 2025 with the same prediction period (11 years). Fourteen percent of the vegetation and 

4% of the desert in 2014 are expected to transition to urban areas in 2025, which is equivalent to 16,512 

and 24,687 hectares, respectively. Figure 7 shows the urban growth in the GCR in 1984, 2003, 2014, 

and the estimated urban settlements in 2025. Urban expansion has boomed over 30 years, from 1984 to 

2014, and the modeling results confirm that it will be increasing to 2025. The urban areas were 41,488, 

95,793 and 154,861 hectares in 1984, 2003, and 2014, representing 4.64%, 10.71%, and 17.32% of the 

total area of the GCR, respectively. In 2025, according to the model estimations, the urban areas in the 

GCR will expand to 196,047 hectares, which is about 21.93% of the region. This vast, unplanned growth 

is a serious threat towards the ecological system, as there is an obvious tendency of a continuous 

agricultural loss with increasing rates: 13%, 12%, and 14% within 19, 11, and 11 years between  

1984–2003, 2003–2014, and 2014–2025, respectively. This implies a current and upcoming threat to the 

cultural heritage of the GCR, especially with the increasing population in the Egyptian capital.  

5.3.4. The Future Effect of Urban Sprawl on the Cultural Heritage 

Figure 8 shows the total area of urban settlements within a 5-km buffer around the major monuments 

previously illustrated in Figure 1. Islamic Cairo and Al-Baron Palace are surrounded by more dense 

urban areas than the Pyramids’ area. In 1984, the Pyramids had almost one-fifth and  

one-sixth of the urban densities around Islamic Cairo and Al-Baron Palace, respectively, equivalent to 

9271 hectares. This value experienced a dramatic increase over time to the extent that it is expected to 

be equal to the surrounding urban area to the Islamic Cairo in 2025 (70,512 hectares). This calls for 

preserving plans from the Egyptian policy makers to protect the vital monuments and cultural heritage 

in the Egyptian capital city. 
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Figure 7. Urban growth in the GCR. 

 

Figure 8. Total area of urban patches within 5-km buffer around cultural  

monuments (hectares). 

6. Conclusions  

This study was performed to detect and analyze the urban growth in the GCR over a period of  

30 years, from 1984 to 2014, and to model the changes to estimate the urban area in 2025. Three Landsat 

scenes obtained in 1984, 2003, and 2014 were classified using SVM classifier. LULCC detection was 

determined using a high-level land-cover mapping-technique, which combines binary maps of 

change/no-change information with post-comparison approach. From 1984 to 2003, 13% of the 

vegetation was lost to urban areas, and 12% was lost between 2003 and 2014, representing 19,179 and 

16,486 hectares, respectively. While 3% of desert areas became urban between 1984 and 2003,  
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it increased to 5% between 2003 and 2014, which are equivalent to 21,417 and 31,045 hectares, 

respectively. The absence of low activation against agricultural land leveling and the application of 

desert reconstruction strategies, to build new communities outside the Nile Valley, are the main reasons 

for such massive urbanization. 

Eight metrics were computed using FRAGSTATS to analyze the spatial and temporal urban growth, 

all emphasise the more dense urbanization taking place in the GCR, as well as the dispersed and 

fragmented landscape as a result of individual urban establishment. The transitions from vegetation and 

desert to urban were modeled using LCM, with the driving forces: DEM, slope, distance to road network, 

and distance to existing urban areas. These factors were considered in similar studies and proved to 

dominate the urbanization for future scenarios. Areas with a high slope clearly represent less of a 

tendency to become urban [19], and areas of low elevation are most likely to become urban. From the 

visual inspection of the LULC maps, it was clear that new built-ups tend to be near the existing urban 

areas and road networks, to make use of the available infrastructures, services, and facilities.  

To validate the model, the simulated 2014 map was examined against 2014’s real LULC map, 

applying both visual and statistical approaches, via FOM and Kappa statistics, respectively. Kappa 

coefficients (Kno and Klocalion) were above 90% because the majority of the study area experienced no 

change, however they are more promising than the FOM, which resulted in 12.76%. The FOM results 

highlighted the problem of insufficient predicting variables and modeling both transitions (from 

vegetation and desert to urban) using the same driving forces, as the majority of the misses occurred in 

the new built-ups in the desert areas. The projected 2025 LULC map estimates an urban transition of 

14% from vegetation and 4% from desert, between 2014 and 2025, which are equivalent to 16,512 and 

24,687 hectares, respectively.  

On the other hand, the areas of urban patches were calculated over time (from 1984 to 2025) in a  

5-km buffer around three main historical places in the GCR: the Great Pyramids, Islamic Cairo, and  

Al-Baron Palace. The results showed similar gradual patterns of urban expansion around Islamic Cairo 

and Al-Baron Palace, as they both have been surrounded by dense urban settlements. This trend is 

estimated to continue increasing in 2025 around Al-Baron Palace, whereas no further significant urban 

development is expected to occur within a 5-km ring around the Islamic Cairo area, as it is already full 

of urban, showing no promising vacancies for further settlements. However, the Pyramids’ area showed 

a booming urbanization since the urban density in 2014 was five times what it had been in 1984, 

moreover, this trend is estimated to increase in 2025 to be almost equal to the Islamic Cairo records. 

These results imply that the Egyptian cultural heritage will be surrounded by urban areas, especially 

around the Pyramids’ area, indicating a gradual loss of value and of its unique appearance. If this trend 

continues, protection policies have to be undertaken to preserve the cultural heritage and the agricultural 

fields that will be negatively affected.  
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