Using GIS to Understand Healthcare Access Variations in Flood Situation in Surabaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Flood Inundation Map
2.4. Vulnerability Assessment
2.5. Network Analysis
- 1 = Motorway;
- 2 = Trunk;
- 3 = Primary;
- 4 = Secondary;
- 5 = Tertiary;
- 6 = Residential;
- 7 = Unclassified
- Determine one-way restriction rules (IF ([DIR] = “1”) THEN True, ELSE IF False), “1” represents one-way that is restricted, and “0” represents vice versa.
- Determine length as cost (km), which is based on the cumulative length of each road edge following each road name based on the record of length attribute
- Calculate drive-time as cost in minutes based on Equation (6).t = s/v × 60,
- Determine the hierarchical priority of road class.
- Load healthcare locations as the facilities, Y = (, , …… ).
- Set “drive-time” as the impedance and determine the drive-time by 5, 10, and 15 min.
- Ignore invalid locations to avoid errors in the justification process.
- Apply one-way and hierarchical as the restriction.
- Set the direction of transportation using “toward facility”, as the simulation assumes that the time and length are finished at the facility.
- Set the overlay type as “rings” and multiple facility option as “merge by break value” so that each facility will have an area that overlaps with the same neighborhood drive-time.
- In the after-flood scenario, apply impacted bridges as point barriers, impacted roads as line barriers, and inundation areas as polygon barriers.
- Solve.
- origins will choose a route with the least instantaneous drive-time impedance
- the generated lines, (or synonymously, generalized cost), is the sum of drive-time on the links, including intersections
- each link cost function is assumed to be independent of the flows on all other links or equal to
3. Results
3.1. Impact Analysis of Flood Inundation
3.2. Vulnerability Analysis
3.3. Network Analysis
3.3.1. Building Network Dataset
3.3.2. Healthcare Service Area
3.3.3. Route Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunes, A.E.; Kovel, J.P. Using GIS in Emergency Management Operations. J. Urban Plan. Dev. 2001, 126, 136–149. [Google Scholar] [CrossRef]
- Pacific Humanitarian Team. Emergency Preparedness & Response Plan A Guide to Inter-Agency Humanitarian Action in the Pacific, 1st ed.; OCHA Regional Office for the Pasific: Suva, Fiji, 2013; pp. 1–84. [Google Scholar]
- Mansourian, A.; Rajabifard, A.; Valadan Zoej, M.J.; Williamson, I. Using SDI and web-based system to facilitate disaster management. Comput. Geosci. 2006, 32, 303–315. [Google Scholar] [CrossRef]
- Huder, R.C. Disaster Operations and Decision Making; JOHN WILEY & SONS, Inc.: Hoboken, NJ, USA, 2012; ISBN 9780309123983. [Google Scholar]
- BMKG. Prakiraan Musim Kemarau 2019 di Indonesia; Badan Meteorologi Klimatologi dan Geofisika: Jakarta, Indonesia, 2019; pp. 1–141.
- Saydi, M.; Zoej, V.M.J.; Mansourian, A. Design and implementation of a Web-based GIS (in response phase) for earthquake disaster management in Tehran City. ISPRS High Resolut. Earth Imaging Geospat. Inf. Workshop 2004, 35, 678–681. [Google Scholar]
- Van Westen, C. Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. Treatise Geomorphol. 2013, 3, 259–298. [Google Scholar] [CrossRef]
- Taramelli, A.; Melelli, L.; Pasqui, M.; Sorichetta, A. Estimating hurricane hazards using a GIS system. Nat. Hazards Earth Syst. Sci. 2008, 8, 839–854. [Google Scholar] [CrossRef]
- Tang, A.; Ran, C.; Wang, L.; Gai, L.; Dai, M. Intelligent Digital System in Urban Natural Hazard Mitigation. In Proceedings of the 2009 WRI World Congress on Software Engineering, Xiamen, China, 9–21 May 2009; pp. 355–359. [Google Scholar] [CrossRef]
- Nichols, E.N.; Bradley, D.L.; Zhang, X.; Faruque, F.S.; Duhe, R.J. The geographic distribution of mammography resources in Mississippi. Online J. Public Health Inform. 2014, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Alparslan, E.; Ince, F.; Erkan, B.; Aydöner, C.; Özen, H.; Dönertaş, A.; Ergintav, S.; Yaǧsan, F.S.; Zateroǧullari, A.; Eroǧlu, I.; et al. A GIS model for settlement suitability regarding disaster mitigation, a case study in Bolu Turkey. Eng. Geol. 2008, 96, 126–140. [Google Scholar] [CrossRef]
- ESRI. GIS and Emergency Management in Indian Ocean Earthquake/Tsunami Disaster; Environmental Systems Research Institute: New York, NY, USA, 2006; pp. 1–40. [Google Scholar]
- Ai, F.; Comfort, L.K.; Dong, Y.; Znati, T. A dynamic decision support system based on geographical information and mobile social networks: A model for tsunami risk mitigation in Padang, Indonesia. Saf. Sci. 2016, 90, 62–74. [Google Scholar] [CrossRef]
- Miraliakbari, A.; Hahn, M.; Maas, H.G. Development of a multi-sensor system for road condition mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 265–272. [Google Scholar] [CrossRef]
- Levinson, D.R. Hospital Emergency Preparedness and Response during Superstorm Sandy; American Hospital Association: Washinton, DC, USA, 2014; pp. 1–39. [Google Scholar]
- World Health Organization United Kingdom Health Protection Agency and Partners Disaster Risk Management for Health SAFE HOSPITALS. PREPARED FOR EMERGENCIES AND DISASTERS. Disaster Risk Management Health Fact Sheet; United Kingdom. 2011, pp. 1–2. Available online: https://www.who.int/hac/events/drm_fact_sheet_safe_hospitals.pdf?ua=1 (accessed on 1 March 2022).
- Murad, A. Using GIS for determining variations in health access in jeddah city, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2018, 7, 254. [Google Scholar] [CrossRef] [Green Version]
- Gingerich, B.S. A Performance Review of FEMA’s Disaster Management Activities in Response to Hurricane Katrina. Home Health Care Manag. 2006, 20, 352–353. [Google Scholar] [CrossRef]
- George, D.; Haddow, J.A.B.; Coppola, D.P. Introduction to Emergency Management Fourth Edition; Elsevier: Burlington, VT, USA, 2011; pp. 1–423. [Google Scholar]
- Chu, H.J.; Lin, B.C.; Yu, M.R.; Chan, T.C. Minimizing spatial variability of healthcare spatial accessibility—the case of a dengue fever outbreak. Int. J. Environ. Res. Public Health 2016, 13, 1235. [Google Scholar] [CrossRef]
- Jotshi, A.; Gong, Q.; Batta, R. Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socioecon. Plann. Sci. 2009, 43, 1–24. [Google Scholar] [CrossRef]
- Dong, S.; Wang, H.; Mostafavi, A.; Gao, J. Robust component: A robustness measure that incorporates access to critical facilities under disruptions. J. R. Soc. Interface 2019, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Esmalian, A.; Farahmand, H.; Mostafavi, A. An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tolerance in urban flooding. Comput. Environ. Urban Syst. 2020, 80, 101443. [Google Scholar] [CrossRef]
- Alamdar, F.; Kalantari, M.; Rajabifard, A. Towards multi-agency sensor information integration for disaster management. Comput. Environ. Urban Syst. 2016, 56, 68–85. [Google Scholar] [CrossRef]
- Rekha, R.S.; Wajid, S.; Radhakrishnan, N.; Mathew, S. Accessibility Analysis of Health care facility using Geospatial Techniques. Transp. Res. Procedia 2017, 27, 1163–1170. [Google Scholar] [CrossRef]
- Guth, J.; Wursthorn, S.; Keller, S. Multi-parameter estimation of average speed in road networks using fuzzy control. ISPRS Int. J. Geo-Inf. 2020, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Winn, M.T. A Road Network Shortest Path AnalysisL Applying Time-Varying Travel-Time Costs for Emergency Response Vehicle Routing. Master’s Thesis, Northwest Missouri State University, Marryville, MO, USA, January 2014. [Google Scholar]
- Bhanumurthy, V.; Bothale, V.M.; Kumar, B.; Urkude, N.; Shukla, R. Route Analysis for Decesion Support System in Emergency Management Through Gis Technologies. Int. J. Adv. Eng. Glob. Technol. 2015, 3, 345–350. [Google Scholar]
- Nicoara, P.-S.; Haidu, I. A Gis Based Network Analysis for the Identification of Shortest Route Access To Emergency Medical Facilities. Geogr. Tech. 2014, 09, 60–67. [Google Scholar]
- Girres, J.; Touya, G. Quality Assessment of the French OpenStreetMap dataset. Trans. GIS 2019, 14, 435–459. [Google Scholar] [CrossRef]
- Jackson, S.P.; Mullen, W.; Agouris, P.; Crooks, A.; Croitoru, A.; Stefanidis, A. Assessing completeness and spatial error of features in volunteered geographic information. ISPRS Int. J. Geo-Inf. 2013, 2, 507–530. [Google Scholar] [CrossRef]
- UNFPA; BNPB; BPS. Guidelines for the Use of Population Data in Disaster; United Nations Population Fund: Jakata, Indonesia, 2014; pp. 1–95.
- Chu, J. A statistical analysis of the novel coronavirus (COVID-19) in Italy and Spain. PLoS ONE 2021, 16, e0249037. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Sun, Y.; Huang, R.; Hu, Q.; Wang, J.; Gao, F. Planning emergency shelters for urban disaster resilience: An integrated location-allocation modeling approach. Sustainability 2017, 9, 2098. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Fang, Y.; Zhai, Q.; Wang, W.; Zhang, Y. Assessing emergency shelter demand using POI data and evacuation simulation. ISPRS Int. J. Geo-Inf. 2020, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, Y.; Yao, T.; Wong, K.; Tsou, J.Y.; Zhang, Y. A GIS-based system for spatial-temporal availability evaluation of the open spaces used as emergency shelters: The case of Victoria, British Columbia, Canada. ISPRS Int. J. Geo-Inf. 2021, 10, 63. [Google Scholar] [CrossRef]
- BPS Rata-Rata Tinggi Wilayah di Atas Permukaan Air Laut (DPL) Menurut Pos Hujan di Kabupaten/Kota di Provinsi Jawa Timur. Available online: https://jatim.bps.go.id/linkTabelStatis/view/id/105 (accessed on 24 February 2022).
- Watik, N.; Jaelani, L.M. Flood evacuation routes mapping based on derived-flood impact analysis from landsat 8 imagery using network analyst method. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 455–460. [Google Scholar] [CrossRef] [Green Version]
- University of Southampton Open Spatial Demographic Data and Research. Available online: https://www.worldpop.org/ (accessed on 21 January 2020).
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating census data for population mapping using Random forests with remotely-sensed and ancillary data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [Green Version]
- BIG Indonesia Geospatial Portal. Available online: https://tanahair.indonesia.go.id/portal-web (accessed on 22 February 2019).
- Xu, H. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Faqe, G.R.; Id, I.; Hameed, H.M. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Rovins, J.E.; Wilson, T.M.; Hayes, J.; Jensen, S.J.; Dohaney, J.; Mitchell, J.; Johnston, D.M.; Davies, A. Risk Assessment Handbook. 2015. ISBN 9780908349357. Available online: https://www.researchgate.net/publication/290883771_Risk_Assessment_Handbook (accessed on 1 March 2022).
- Cardona, O.; Van Aalst, M.K.; Birkmann, J.; Fordham, M.; Mc Gregor, G.; Rosa, P.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H. Determinants of Risk: Exposure and Vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar] [CrossRef] [Green Version]
- BNPB. Indeks Resiko Bencana Indonesia; Direktorat Pengurangan Risiko Bencana Badan National Penanggulangan Bencana: Jakarta, Indonesia, 2018; pp. 1–328.
- Sari, F.; Erdi, A. A Network Analyst Design for Providing the Shortest Intervention Time of the Emergency Vehicles as Like Ambulance and Fire Fighting to the Emergency Events, a Case Study Konya. In Proceedings of the FIG Working Week, Roma, Italy, 6–10 May 2012. [Google Scholar]
- Wang, S.X. The improved Dijkstra’s shortest path algorithm and its application. Procedia Eng. 2012, 29, 1186–1190. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A. The Origin-Destination Matrix Estimation Problem: Analysis and Computations. Ph.D. Thesis, Department of Science and Technology, Linköpings Universitet, Norrköping, Sweden, May 2007. [Google Scholar]
- Wang, Y.; Ma, X.; Liu, Y.; Gong, K.; Henricakson, K.C.; Xu, M.; Wang, Y. A two-stage algorithm for origin-destination matrices estimation considering dynamic dispersion parameter for route choice. PLoS ONE 2016, 11, e0149827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranke, U. Natural Disaster Risk Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-11473-1. [Google Scholar]
- Russo, F.; Rindone, C.; Trecozzi, M.R. The role of training in evacuation. WIT Trans. Inf. Commun. Technol. 2012, 44, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Tascón-González, L.; Ferrer-Julià, M.; Ruiz, M. Eduardo García-Meléndez Social Vulnerability Assessment for Flood. Water 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, J.; Liu, X.; Sun, C.; Duan, Z. Use of shared-mobility services to accomplish emergency evacuation in urban areas via reduction in intermediate trips-Case study in Xi’an, China. Sustainability 2018, 10, 4862. [Google Scholar] [CrossRef] [Green Version]
- Carley, K.M.; Malik, M.; Landwehr, P.M.; Pfeffer, J.; Kowalchuck, M. Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia. Saf. Sci. 2016, 90, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.P.; Lee, J. Emergency response after 9/11: The potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Comput. Environ. Urban Syst. 2005, 29, 93–113. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Y. Emergency logistics in a large-scale disaster context: Achievements and challenges. Int. J. Environ. Res. Public Health 2019, 16, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdziej, J. A Web-based spatial decision support system for accessibility analysis- concepts and methods. Appl Geomat 2012, 4, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Leiser, C.L.; Anderson, R.E.; Martin, C.; Hanson, H.A.; O’Neil, B. Combining Drive Time and Urologist Density to Understand Access to Urologic Care. Urology 2020, 139, 78–83. [Google Scholar] [CrossRef] [PubMed]
District | Impacted Bridge | Road Class | Impacted Road | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Benowo | 1 | 1 | 0 | 0 | 0 | 0 | 11 | 44 | 27 |
Asemrowo | 5 | 3 | 19 | 0 | 0 | 0 | 37 | 15 | 103 |
Sukomanunggal | 9 | 8 | 0 | 0 | 2 | 2 | 111 | 23 | 146 |
Tandes | 2 | 0 | 6 | 0 | 0 | 10 | 110 | 39 | 165 |
Sambikerep | 1 | 0 | 0 | 0 | 1 | 11 | 73 | 28 | 113 |
Lakarsantri | 1 | 0 | 0 | 1 | 1 | 3 | 96 | 43 | 144 |
Indicator | Calculation | Value | Spatial Scale |
---|---|---|---|
Population density | % Population/pixel = y = (x − x max)/(x max − x min) × 100 | 0–100% 0% = 0, 100% = 100 | Parcel level |
Gender ratio | % Number of men/100 women | District Level | |
Elderly and Children | (Population over 65 years+ population under 15 years)/total population × 100 | District Level |
District | Slight | Moderate | High | Extreme | Total |
---|---|---|---|---|---|
Asemrowo | 81 | 3874 | 12,681 | 7393 | 24,029 |
Benowo | 12,861 | 15,034 | 1636 | - | 29,531 |
Sukomanunggal | - | - | 89 | 13,555 | 13,644 |
Tandes | 99 | 2219 | 6509 | 12,586 | 21,413 |
Sambikerep | 869 | 4955 | 10,851 | - | 16,675 |
Lakarsantri | 406 | 16,703 | 11,264 | - | 28,373 |
Total | 14,316 | 42,785 | 43,030 | 33,534 | 133,665 |
Cut-Off Time | Before Flood (km2) | After the Flood (km2) | Changes (km2) |
---|---|---|---|
5 min | 26.04 | 13.47 | 12.57 |
10 min | 38.74 | 22.24 | 16.5 |
15 min | 43.53 | 16.47 | 27.06 |
District | Before Flood | After Flood | ||||
---|---|---|---|---|---|---|
5 Min | 10 Min | 15 Min | 5 Min | 10 Min | 15 Min | |
Asemrowo | 3633 | 9827 | 6353 | - | 120 | 380 |
Benowo | 6395 | 4976 | 10,724 | 1456 | 875 | - |
Sukomanunggal | 13,555 | 89 | - | 2034 | 4204 | 5091 |
Tandes | 2248 | 10,977 | 8904 | 224 | 2217 | 3942 |
Sambikerep | - | 3245 | 15,991 | - | 800 | 7557 |
Lakarsantri | 1038 | 7756 | 8121 | 583 | 4030 | 3948 |
Name | Population ID | Healthcare ID | Ranking | Total Time (Minutes) | Pop | Bed Capacity |
---|---|---|---|---|---|---|
Location 1–Location 2 | 9 | 2 | 1 | 10.894 | 1219 | 166 |
Location 1–Location 8 | 9 | 8 | 2 | 12.323 | 222 | |
Location 2–Location 1 | 10 | 1 | 1 | 13.256 | 623 | 166 |
Location 2–Location 2 | 10 | 2 | 2 | 15.578 | 166 | |
Location 3–Location 8 | 11 | 8 | 1 | 1.883 | 325 | 222 |
Location 3–Location 7 | 11 | 7 | 2 | 10.774 | 114 | |
Location 4–Location 2 | 12 | 2 | 1 | 10,167 | 2976 | 166 |
Location 4–Location 8 | 12 | 8 | 2 | 12,824 | 222 | |
Location 5–Location 2 | 13 | 2 | 1 | 6.615 | 3811 | 166 |
Location 5–Location 1 | 13 | 1 | 2 | 10.358 | 166 | |
Location 6–Location 8 | 14 | 8 | 1 | 12.617 | 859 | 222 |
Location 6–Location 5 | 14 | 5 | 2 | 15.535 | 60 | |
Location 7–Location 8 | 15 | 8 | 1 | 7.874 | 468 | 222 |
Location 7–Location 2 | 15 | 2 | 2 | 16.006 | 166 | |
Location 8–Location 5 | 16 | 5 | 1 | 10.317 | 677 | 60 |
Location 8–Location 8 | 16 | 8 | 2 | 19.209 | 222 | |
Location 10–Location 5 | 18 | 5 | 1 | 3.952 | 484 | 60 |
Location 10–Location 4 | 18 | 4 | 2 | 22.894 | 60 | |
Location 11–Location 4 | 19 | 4 | 1 | 14.898 | 508 | 60 |
Location 11–Location 2 | 19 | 2 | 2 | 14.994 | 166 | |
Location 12–Location 1 | 20 | 1 | 1 | 11.733 | 103 | 166 |
Location 12–Location 3 | 20 | 3 | 2 | 14.203 | 60 | |
Location 13–Location 1 | 21 | 1 | 1 | 9.431 | 266 | 166 |
Location 13–Location 2 | 21 | 2 | 2 | 11.847 | 166 | |
Location 14–Location 1 | 22 | 1 | 1 | 13.285 | 562 | 166 |
Location 14–Location 2 | 22 | 2 | 2 | 15.701 | 166 | |
Location 15–Location 1 | 23 | 1 | 1 | 4.636 | 849 | 166 |
Location 15–Location 3 | 23 | 3 | 2 | 5.927 | 60 | |
Location 16–Location 1 | 24 | 1 | 1 | 12.936 | 94 | 166 |
Location 16–Location 2 | 24 | 2 | 2 | 13.386 | 166 | |
Location 17–Location 1 | 25 | 1 | 1 | 7.841 | 118 | 166 |
Location 17–Location 2 | 25 | 2 | 2 | 10.258 | 166 | |
Location 18–Location 1 | 26 | 1 | 1 | 6.796 | 238 | 166 |
Location 18–Location 2 | 26 | 2 | 2 | 9.213 | 166 | |
Location 19–Location 2 | 27 | 2 | 1 | 13.721 | 119 | 166 |
Location 19–Location 1 | 27 | 1 | 2 | 14.669 | 166 | |
Location 20–Location 4 | 28 | 4 | 1 | 2.920 | 335 | 60 |
Location 20–Location 2 | 28 | 2 | 2 | 6.369 | 166 |
Name | Population ID | Healthcare ID | Ranking | Pop | Total Time (Minutes) | Change Dest. |
---|---|---|---|---|---|---|
Location 1–Location 8 | 1 | 8 | 1 | 1219 | 12.324 | Yes |
Location 1–Location 7 | 1 | 7 | 2 | 21.215 | Yes | |
Location 2–Location 6 | 2 | 6 | 1 | 623 | 23.943 | Yes |
Location 2–Location 7 | 2 | 7 | 2 | 25.066 | Yes | |
Location 3–Location 8 | 3 | 8 | 1 | 325 | 1.883 | No |
Location 3–Location 7 | 3 | 7 | 2 | 10.774 | No | |
Location 4–Location 8 | 4 | 8 | 1 | 2976 | 12.824 | No |
Location 4–Location 2 | 4 | 2 | 2 | 20.613 | No | |
Location 5–Location 2 | 5 | 2 | 1 | 3811 | 14.423 | No |
Location 5–Location 3 | 5 | 3 | 2 | 22.787 | Yes | |
Location 6–Location 8 | 6 | 8 | 1 | 859 | 12,617 | No |
Location 6–Location 5 | 6 | 5 | 2 | 16.204 | No | |
Location 7–Location 8 | 7 | 8 | 1 | 468 | 7.874 | No |
Location 7–Location 7 | 7 | 7 | 2 | 18.389 | Yes | |
Location 8–Location 5 | 8 | 5 | 1 | 677 | 10.317 | No |
Location 8–Location 8 | 8 | 8 | 2 | 25.111 | No | |
Location 10–Location 5 | 10 | 5 | 1 | 484 | 3.953 | No |
Location 10–Location 8 | 10 | 8 | 2 | 25.593 | Yes | |
Location 12–Location 1 | 12 | 1 | 1 | 103 | 11.734 | No |
Location 12–Location 2 | 12 | 2 | 2 | 20.527 | Yes | |
Location 15–Location 1 | 15 | 1 | 1 | 849 | 7.465 | No |
Location 15–Location 3 | 15 | 3 | 2 | 8.296 | No | |
Location 16–Location 8 | 16 | 8 | 1 | 94 | 23.236 | Yes |
Location 16–Location 7 | 16 | 7 | 2 | 32.127 | Yes | |
Location 18–Location 1 | 18 | 1 | 1 | 238 | 6.796 | No |
Location 18–Location 2 | 18 | 2 | 2 | 15.59 | No | |
Location 19–Location 1 | 19 | 1 | 1 | 119 | 14.669 | Yes |
Location 19–Location 2 | 19 | 2 | 2 | 23.463 | No | |
Location 20–Location 2 | 20 | 2 | 1 | 335 | 6.369 | Yes |
Location 20–Location 3 | 20 | 3 | 2 | 7.632 | Yes |
Name | Population ID | Healthcare ID | Before Flood (min) | After Flood (min) | Time Gap |
---|---|---|---|---|---|
Location 3–Location 8 | 3 | 8 | 1.883 | 1.883 | 0 |
Location 3–Location 7 | 3 | 7 | 10.774 | 10.774 | 0 |
Location 4–Location 8 | 4 | 8 | 12.824 | 12.824 | 0 |
Location 4–Location 2 | 4 | 2 | 10.167 | 20.613 | −10.446 |
Location 5–Location 2 | 5 | 2 | 6.615 | 14.423 | −7.808 |
Location 6–Location 8 | 6 | 8 | 12.617 | 12.617 | 0 |
Location 6–Location 5 | 6 | 5 | 15.535 | 16.204 | −0.669 |
Location 7–Location 8 | 7 | 8 | 7.874 | 7.874 | 0 |
Location 8–Location 8 | 8 | 8 | 19.209 | 25.111 | −5.902 |
Location 10–Location 5 | 10 | 5 | 3.952 | 3.953 | −0.001 |
Location 12–Location 1 | 12 | 1 | 11.733 | 11.734 | −0.001 |
Location 15–Location 1 | 15 | 1 | 4.636 | 7.465 | −2.829 |
Location 15–Location 3 | 15 | 3 | 5.927 | 8.296 | −2.369 |
Location 18–Location 1 | 18 | 1 | 6.796 | 6.796 | 0 |
Location 18–Location 2 | 18 | 2 | 9.213 | 15.59 | −6.377 |
Location 19–Location 2 | 19 | 2 | 13.721 | 23.463 | −9.742 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurwatik, N.; Hong, J.-H.; Jaelani, L.M.; Handayani, H.H.; Cahyono, A.B.; Darminto, M.R. Using GIS to Understand Healthcare Access Variations in Flood Situation in Surabaya. ISPRS Int. J. Geo-Inf. 2022, 11, 235. https://doi.org/10.3390/ijgi11040235
Nurwatik N, Hong J-H, Jaelani LM, Handayani HH, Cahyono AB, Darminto MR. Using GIS to Understand Healthcare Access Variations in Flood Situation in Surabaya. ISPRS International Journal of Geo-Information. 2022; 11(4):235. https://doi.org/10.3390/ijgi11040235
Chicago/Turabian StyleNurwatik, Nurwatik, Jung-Hong Hong, Lalu Muhamad Jaelani, Hepi Hapsari Handayani, Agung Budi Cahyono, and Mohammad Rohmaneo Darminto. 2022. "Using GIS to Understand Healthcare Access Variations in Flood Situation in Surabaya" ISPRS International Journal of Geo-Information 11, no. 4: 235. https://doi.org/10.3390/ijgi11040235
APA StyleNurwatik, N., Hong, J.-H., Jaelani, L. M., Handayani, H. H., Cahyono, A. B., & Darminto, M. R. (2022). Using GIS to Understand Healthcare Access Variations in Flood Situation in Surabaya. ISPRS International Journal of Geo-Information, 11(4), 235. https://doi.org/10.3390/ijgi11040235