Evaluation Method of Equalization of Basic Medical Services from the Spatial Perspective: The Case of Xinjiang, China
Abstract
:1. Introduction
1.1. Social Science
1.2. Health Geography
1.3. Current Limitations of Approaches
1.4. Our Contribution
2. Study Area and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Method
2.3.1. Design of Comprehensive Evaluation Indicator System
- (1)
- Development of Evaluation Indicators
- (2)
- The indicator value calculation
2.3.2. The Entropy Method
2.3.3. The TOPSIS Method
3. Results
3.1. Result of Indicator Value Analysis
3.1.1. Allocation Level of Medical Institution
3.1.2. Convenience of Medical Treatment
3.2. Indicator Weight Calculation
3.3. TOPSIS
3.4. Regional Statistics on the Level of Equalization of Basic Medical Services
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Statistical Unit | Medical Institutions | Grade II Hospitals | Grade III Hospitals | Number of Sickbeds per 10,000 People | Medical Staff | Health Risk Population |
---|---|---|---|---|---|---|
Urumqi | 1773 | 31 | 28 | 145 | 35,185 | 676,988 |
Karamay | 77 | 4 | 1 | 69 | 3140 | 87,975 |
Turpan | 433 | 9 | 1 | 62 | 3829 | 164,998 |
Hami | 447 | 7 | 1 | 57 | 5175 | 137,786 |
Changji | 1244 | 24 | 2 | 69 | 11,652 | 348,327 |
Bortala | 462 | 8 | 0 | 54 | 3793 | 111,495 |
Bayingol | 1011 | 20 | 3 | 77 | 10,828 | 312,154 |
Aksu | 1485 | 17 | 0 | 57 | 10,689 | 663,449 |
Kizilsu | 352 | 7 | 1 | 64 | 3619 | 170,796 |
Kashgar | 3190 | 28 | 2 | 58 | 18,640 | 1,240,992 |
Hotan | 1728 | 8 | 3 | 69 | 8439 | 616,029 |
Ili | 1454 | 26 | 4 | 54 | 17,836 | 677,179 |
Tarbagatay | 1132 | 19 | 1 | 59 | 7032 | 306,071 |
Altay | 695 | 11 | 0 | 53 | 4845 | 159,854 |
Statistical Unit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Urumqi | 73.78 | 76.49 | 91.86 | 97.18 | 54.71 | 81 | 92.62 | 54.66 | 80.96 | 92.58 | 131.82 |
Karamay | 42.64 | 67.91 | 76.14 | 62.94 | 27.2 | 60.62 | 56.09 | 27.25 | 60.74 | 55.9 | 106.15 |
Turpan | 66.16 | 32.08 | 87.88 | 0 | 19.97 | 44.11 | 0 | 20.03 | 44.22 | 0 | 58.63 |
Hami | 68.4 | 40.08 | 77.08 | 82.99 | 32.52 | 50.03 | 62.55 | 32.57 | 49.99 | 62.36 | 83.89 |
Changji | 70.76 | 34.04 | 81.2 | 48.3 | 27.36 | 40.16 | 27.29 | 27.34 | 40.13 | 27.32 | 82.49 |
Bortala | 56 | 32.67 | 80.67 | 0 | 24.12 | 34.62 | 0 | 24.34 | 34.86 | 0 | 76.8 |
Bayingol | 47.92 | 30.4 | 80.21 | 14.58 | 24.95 | 54.1 | 22.95 | 25.01 | 54.17 | 22.92 | 77.41 |
Aksu | 80.36 | 12 | 91.07 | 0 | 18.61 | 37.99 | 0 | 18.65 | 38.03 | 0 | 42.24 |
Kizilsu | 63.83 | 17.99 | 91.49 | 38.3 | 18.02 | 39.36 | 26.88 | 17.93 | 39.41 | 26.95 | 60.68 |
Kashgar | 76.86 | 20.91 | 90.91 | 47.11 | 24.73 | 39.3 | 21.6 | 24.69 | 39.33 | 21.64 | 41.53 |
Hotan | 80.22 | 19.97 | 45.05 | 41.76 | 15.38 | 12.85 | 35.74 | 15.39 | 12.85 | 35.67 | 37.37 |
Ili | 60.35 | 32.81 | 84.57 | 60.35 | 26.32 | 44.63 | 38.85 | 26.24 | 44.62 | 38.95 | 59.27 |
Tarbagatay | 67.84 | 15.58 | 73.47 | 16.43 | 26.74 | 40.13 | 11.71 | 26.66 | 40.1 | 11.72 | 66.88 |
Altay | 67.86 | 12.91 | 89.29 | 0 | 24.17 | 34.36 | 0 | 24.01 | 34.26 | 0 | 71.69 |
Statistical Unit | Average Number of Hospitals within the Residential Areas‘ Service Radius (1200 m) | Average Number of Hospitals within the Administrative Village Service Radius (3800 m) | Number of Residential Areas | Number of Administrative Villages | Population (10,000 People) |
---|---|---|---|---|---|
Urumqi | 3.16 | 5.58 | 1473 | 1021 | 222.26 |
Karamay | 0.71 | 2.72 | 197 | 134 | 30.77 |
Turpan | 2.35 | 1.65 | 198 | 240 | 63.34 |
Hami | 1.85 | 3.66 | 290 | 247 | 55.94 |
Changji | 2.27 | 3.18 | 623 | 642 | 139.37 |
Bortala | 2.13 | 2.07 | 150 | 300 | 47.85 |
Bayingol | 0.76 | 0.96 | 97 | 601 | 124.21 |
Aksu | 2.71 | 0.77 | 149 | 1250 | 256.17 |
Kizilsu | 1.06 | 0.53 | 47 | 289 | 62.45 |
Kashgar | 3.11 | 1.96 | 282 | 2604 | 463.38 |
Hotan | 2.27 | 1.27 | 91 | 1517 | 253.06 |
Ili | 1.44 | 3.63 | 543 | 894 | 293.06 |
Tarbagatay | 1.26 | 0.55 | 522 | 918 | 99.25 |
Altay | 0.96 | 0.25 | 76 | 609 | 65.95 |
Region\Indicator | Accessibility | Distance of Nearest Medical Treatment |
---|---|---|
Urumqi | 1.42 | 1.87 |
Karamay | 0.25 | 2.62 |
Turpan | 0.17 | 3.14 |
Hami | 0.3 | 2.05 |
Changji | 0.34 | 1.84 |
Bortala | 0.21 | 2.43 |
Bayingol | 0.07 | 1.82 |
Aksu | 0.11 | 4.02 |
Kizilsu | 0.05 | 2.77 |
Kashgar | 0.18 | 1.06 |
Hotan | 0.16 | 1.07 |
Ili | 0.13 | 1.87 |
Tarbagatay | 0.15 | 2.25 |
Altay | 0.07 | 4.53 |
Indicator\Regions | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urumqi | 0.0018 | 0.0344 | 0.0015 | 0.1018 | 0.0111 | 0.0112 | 0.1278 | 0.0111 | 0.0112 | 0.1278 | 0.0108 | 0.1777 | 0.0062 |
Karamay | 0.0010 | 0.0305 | 0.0012 | 0.0660 | 0.0055 | 0.0084 | 0.0774 | 0.0055 | 0.0084 | 0.0772 | 0.0087 | 0.0313 | 0.0087 |
Turpan | 0.0016 | 0.0144 | 0.0014 | 0.0000 | 0.0041 | 0.0061 | 0.0000 | 0.0041 | 0.0061 | 0.0000 | 0.0048 | 0.0213 | 0.0105 |
Hami | 0.0016 | 0.0180 | 0.0013 | 0.0870 | 0.0066 | 0.0069 | 0.0863 | 0.0066 | 0.0069 | 0.0861 | 0.0068 | 0.0375 | 0.0068 |
Changji | 0.0017 | 0.0153 | 0.0013 | 0.0506 | 0.0056 | 0.0056 | 0.0376 | 0.0056 | 0.0056 | 0.0377 | 0.0067 | 0.0425 | 0.0061 |
Bortala | 0.0013 | 0.0147 | 0.0013 | 0.0000 | 0.0049 | 0.0048 | 0.0000 | 0.0050 | 0.0048 | 0.0000 | 0.0063 | 0.0263 | 0.0081 |
Bayingol | 0.0012 | 0.0137 | 0.0013 | 0.0153 | 0.0051 | 0.0075 | 0.0317 | 0.0051 | 0.0075 | 0.0316 | 0.0063 | 0.0088 | 0.0061 |
Aksu | 0.0019 | 0.0054 | 0.0015 | 0.0000 | 0.0038 | 0.0053 | 0.0000 | 0.0038 | 0.0053 | 0.0000 | 0.0034 | 0.0138 | 0.0134 |
Kizilsu | 0.0015 | 0.0081 | 0.0015 | 0.0401 | 0.0037 | 0.0055 | 0.0371 | 0.0036 | 0.0055 | 0.0372 | 0.0049 | 0.0063 | 0.0092 |
Kashgar | 0.0018 | 0.0094 | 0.0015 | 0.0494 | 0.0050 | 0.0055 | 0.0298 | 0.0050 | 0.0055 | 0.0299 | 0.0034 | 0.0225 | 0.0035 |
Hotan | 0.0019 | 0.0090 | 0.0007 | 0.0438 | 0.0031 | 0.0018 | 0.0493 | 0.0031 | 0.0018 | 0.0493 | 0.0030 | 0.0200 | 0.0036 |
Ili | 0.0014 | 0.0147 | 0.0014 | 0.0632 | 0.0054 | 0.0062 | 0.0536 | 0.0053 | 0.0062 | 0.0538 | 0.0048 | 0.0163 | 0.0062 |
Tarbagatay | 0.0016 | 0.0070 | 0.0012 | 0.0172 | 0.0054 | 0.0056 | 0.0162 | 0.0054 | 0.0056 | 0.0162 | 0.0055 | 0.0188 | 0.0075 |
Altay | 0.0016 | 0.0058 | 0.0014 | 0.0000 | 0.0049 | 0.0048 | 0.0000 | 0.0049 | 0.0048 | 0.0000 | 0.0058 | 0.0088 | 0.0151 |
Appendix B
References
- Yang, D.H.; Goerge, R.; Mullner, R. Comparing GIS-Based Methods of Measuring Spatial Accessibility to Health Services. J. Med. Syst. 2006, 30, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Meihong, L. Research on the Equalization of Basic Medical Services in China. Doctoral Dissertation, Capital Normal University, Beijing, China, 2011. [Google Scholar]
- Guindo, L.A.; Wagner, M.; Baltussen, R.; Rindress, D.; Janine van Til3, P.K.; Goetghebeur, M.M. From efficacy to equity: Literature review of decision criteria for resource allocation and healthcare decisionmaking. Cost Eff. Resour Alloc. 2012, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Pulse Survey on Continuity of Essential Health Services during the COVID-19 Pandemic. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS_continuity-survey-2020.1 (accessed on 27 August 2020).
- Ferranna, M.; Cadarette, D.; Bloom, D.E. COVID-19 Vaccine Allocation: Modeling Health Outcomes and Equity Implications of Alternative Strategies. Engineering 2021, 7, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Erqou, S.; Shah, N.; Nazir, U.; Morrison, A.R.; Choudhary, G.; Wu, W.-C. Association of poor housing conditions with COVID-19 incidence and mortality across US counties. PLoS ONE 2020, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Finch, W.H.; Finch, M.E.H. Poverty and Covid-19 Rates of Incidence and Deaths in the United States During the First 10 Weeks of the Pandemic. Front. Sociol. 2020, 5, 47. [Google Scholar] [CrossRef]
- Woo, B.; Jun, J. COVID-19 Racial Discrimination and Depressive Symptoms among Asians Americans: Does Communication about the Incident Matter? J. Immigr. Minor. Health 2022, 24, 78–85. [Google Scholar] [CrossRef]
- Mahendradhata, Y.; Andayani, N.; Hasri, E.T.; Arifi, M.D.; Siahaan, R.G.M.; Solikha, D.A.; Ali, P.B. The Capacity of the Indonesian Healthcare System to Respond to COVID-19. Front. Public Health 2021, 9, 887. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Ma, H.; Dong, X.; Xie, G.; Ye, S.; Du, J. Application of telemedicine in the COVID-19 epidemic: An analysis of Gansu Province in China. PLoS ONE 2021, 16, e0249872. [Google Scholar] [CrossRef]
- Yang, T.-C.; Kim, S.; Zhao, Y.; EmilyChoi, S.-W. Examining spatial inequality in COVID-19 positivity rates across New York City ZIP codes. Health Place 2021, 69, 102574. [Google Scholar] [CrossRef]
- Qian, X.; Qiu, S.; Zhang, G. The impact of COVID-19 on housing price Evidence from China. Financ. Res. Lett. 2021, 2021, 101944. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Wittbold, K.A.; Dadabhoy, F.Z.; Sato, R.; Landman, A.B.; Schwamm, L.H.; He, S.; Patel, R.; Wei, N.; Zuccotti, G.; et al. Digital triage: Novel strategies for population health management in response to the COVID-19 pandemic. Healthcare (Amst) 2020, 8, 100493. [Google Scholar] [CrossRef] [PubMed]
- Beckett, C.D.; Zadvinskis, I.M.; Dean, J.; Iseler, J.; Powell, J.M. An Integrative Review of Team Nursing and Delegation: Implications for Nurse Staffing during COVID- 19. Worldviews Evid.-Based Nurs. 2021, 18, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Mishra, A.; Basumallick, S.; Lu, A.; Chiu, H.; Shah, M.A.; Shukla, Y.; Tiwari, A. The healthier healthcare management models for COVID-19. J Infect Public Health 2021, 14, 927–937. [Google Scholar] [CrossRef]
- Khoja, T.A.M.; Qidwai, W.; Rawaf, S.; Alnaser, F.A.; Nanji, K.; Khoja, A.; Kurashi, N.Y.A.; Saad, N.E.S.; Halasa, W.; Farahat, T.M.; et al. Primary Health Care in Pandemics: Barriers, Challenges and Opportunities. World Fam. Med. 2021, 19, 6–11. [Google Scholar] [CrossRef]
- Marten, R.; McIntyre, D.; Travassos, C.; Shishkin, S.; Longde, W.; Reddy, S.; Vega, J. An assessment of progress towards universal health coverage in Brazil, Russia, India, China, and South Africa (BRICS). Lancet 2014, 384, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.; Xiang, X.; Wu, Q.; Jiang, Z. Evaluation method of medical service system based on DEMATEL and the information entropy: A case study of hypertension diagnosis and treatment in China. PLoS ONE 2020, 15, e0243832. [Google Scholar] [CrossRef]
- Yang, G.; Xue, Y.; Ma, Y. Social Organization Participation, Government Governance and the Equalization of Basic Public Services: Evidence from China. Int. J. Envron. Res. Public Health 2019, 16, 2996. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tang, S. Current Situation of the Equalization of Basic Medical Services in China: Based on TOPSIS Method and Rank Sum Ratio Method. Chin. Gen. Pract. 2016, 19, 3078–3081. [Google Scholar] [CrossRef]
- Kehrer, B.H.; Andersen, R.; Glaser, W.A. A Behavioral Model of Families’ Use of Health Services. J. Hum. Resour. 1972, 7, 125. [Google Scholar] [CrossRef]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Political Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Johnston, R.; Gregory, D.; Smith, D. The Dictionary of Human Geography, 3rd ed.; Blacwell: Oxford, UK, 2004. [Google Scholar]
- Wiles, J. Culture/Place/Health. New Zealand Geogr. 2002, 58, 79. [Google Scholar] [CrossRef]
- Horev, T.; Pesis-Katz, I.; Mukamel, D.B. Trends in geographic disparities in allocation of health care resources in the US. Health Policy 2004, 68, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Shallcross, D. Geographic distribution of hospital beds throughout China: A county-level econometric analysis. Int. J. Equity Health 2016, 15, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandi, T.E.; Cho, Y.; Akam, A.J.; Afoh, C.O.; Ryu, S.H.; Choi, M.S.; Kim, K.; Choi, J.W. Cameroon public health sector: Shortage and inequalities in geographic distribution of health personnel. Int. J. Equity Health 2015, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Barr, B.; Bambra, C.; Whitehead, M. The impact of NHS resource allocation policy on health inequalities in England 2001-11: Longitudinal ecological study. BMJ 2014, 348, g3231. [Google Scholar] [CrossRef] [Green Version]
- Anselmi, L.; Lagarde, M.; Hanson, K. Going beyond horizontal equity: An analysis of health expenditure allocation across geographic areas in Mozambique. Soc. Sci. Med. 2015, 130, 216–224. [Google Scholar] [CrossRef]
- Ensor, T.; Cooper, S. Overcoming barriers to health service access: Influencing the demand side. Health Policy Plan 2004, 19, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.E.; Mulholland, K.; Hill, P.C. How access to health care relates to under-five mortality in sub-Saharan Africa: Systematic review. Trop Med. Int. Health 2010, 15, 508–519. [Google Scholar] [CrossRef]
- Shinjo, D.; Aramaki, T. Geographic distribution of healthcare resources, healthcare service provision, and patient flow in Japan: A cross sectional study. Soc. Sci. Med. 2012, 75, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Rong, X.; Zhao, M. Do High-Speed Rails Improve the Allocation Level of Medical Resources? Front. Sustain. Cities 2022, 4, 68. [Google Scholar] [CrossRef]
- Aoun, N.; Matsuda, H.; Sekiyama, M. Geographical accessibility to healthcare and malnutrition in Rwanda. Soc. Sci. Med. 2015, 130, 135–145. [Google Scholar] [CrossRef]
- Wensheng, Z.; Huaxiong, J.; Hongru, A.I.; Jing, L.; Xiaofang, W. Analysis of regional inequalities of basic medical resources supply in China. Geogr. Res. 2015, 34, 2049–2060. [Google Scholar] [CrossRef]
- Pulver, A.; Wei, R. Optimizing the spatial location of medical drones. Appl. Geogr. 2018, 90, 9–16. [Google Scholar] [CrossRef]
- Delen, D.; Erraguntla, M.; Mayer, R.J.; Wu, C.-N. Better management of blood supply-chain with GIS-based analytics. Ann. Oper. Res. 2011, 185, 181–193. [Google Scholar] [CrossRef]
- Nasrabadi, A.M.; Najafi, M.; Zolfagharinia, H. Considering short-term and long-term uncertainties in location and capacity planning of public healthcare facilities. Eur. J. Oper. Res. 2020, 281, 152–173. [Google Scholar] [CrossRef]
- Ahmadi-Javid, A.; Seyedi, P.; Syam, S.S. A survey of healthcare facility location. Comput. Oper. Res. 2017, 79, 223–263. [Google Scholar] [CrossRef]
- Li, F.U.; Yong, W.; Biao, Z.; Yong, M.; Min, G. Spatial Accessibility of Medical Facilities in Beibei District based on Modified Two-step Floating Catchment Area Method. J. Geo-Inf. Sci. 2019, 21, 1565–1575. [Google Scholar] [CrossRef]
- John, R.; Lan, M. Spatial Decompositions, Modeling and Mapping Service Regions to Predict Access to Social Programs. Geogr. Inf. Sci. 2000, 6, 105–112. [Google Scholar] [CrossRef]
- Wang, F.; Luo, W. Assessing spatial and nonspatial factors for healthcare access: Towards an integrated approach to defining health professional shortage areas. Health Place 2005, 11, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Wenyu, D.; Yinghui, X.; Zhouling, H.U.; Qingming, Z. Rural Emergency Shelter Accessibility Using Gaussian Based 2-step Floating Catchment Area Method. J. Geo-Inf. Sci. 2018, 20, 1412–1421. [Google Scholar] [CrossRef]
- Wang, F. From 2SFCA to i2SFCA: Integration, derivation and validation. Int. J. Geogr. Inf. Sci. 2021, 35, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, S.; Xu, Z. A Multi-factor Spatial Optimization Approach for Emergency Medical Facilities in Beijing. ISPRS Int. J. Geo-Inf. 2020, 9, 361. [Google Scholar] [CrossRef]
- Commission, N.D.A.R. Notice on the Issuance of the 14th Five-Year Plan for Public Services. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202201/t20220110_1311622.html?code=&state=123 (accessed on 1 October 2022).
- Yang, F.; Yang, D. The measurement of basic public services quality and the analysis of their differences among prefectures: A case of Xinjiang. J. Arid Land Resour. Environ. 2014, 5, 37–42. [Google Scholar] [CrossRef]
- Li, D.; Peng, M. Transformation Between Urban Spatial Information Irregular Grid and Regular Grid. Geomat. Inf. Sci. Wuhan Univ. 2007, 32, 95–99. [Google Scholar] [CrossRef]
- Zhengdong, H. Data Integration for Urban Transport Planning. Doctoral Dissertation, Utrecht University, Utrecht, The Netherlands, 2003. [Google Scholar]
- Spiekermann, K.; Wegener, M. Freedom from the Tyranny of Zones Towards New GIS-Based Spatial Models; Fotheringham, A.S., Wegener, M., Eds.; Taylor & Francis: London, UK, 2000. [Google Scholar]
- Wegener, M. New spatial planning models. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 224–237. [Google Scholar] [CrossRef]
- Okabe, A.; Sadahiro, Y. Variation in count data transferred from a set of irregular zones to a set of regular zones through the point-in-polygon method. Int. J. Geogr. Inf. Sci. 2001, 11, 93–106. [Google Scholar] [CrossRef]
- Lam, N.S.-N. Spatial Interpolation Methods: A Review. Am. Cartogr. 1983, 10, 129–150. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Lam, N.S.-N. Areal Interpolation: A Variant of the Traditional Spatial Problem. Geo-processing 1980, 1, 297–312. [Google Scholar]
- Flowerdew, R.; Green, M. Areal Interpolation and Types of Data; Stewart Fotheringham, A., Rogerson, P.A., Eds.; Taylor & Francis: London, UK, 1994. [Google Scholar]
- Tobler, W.R. Smooth Pycnophylactic Interpolation for Geographical Regions. J. Am. Stat. Assoc. 1979, 74, 519–530. [Google Scholar] [CrossRef]
- Gregory, I.N. The accuracy of areal interpolation techniques: Standardizing 19th and 20th-century census data to allow long-term comparisons. Comput. Environ. Urban Syst. 2002, 26, 293–314. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. Measuring spatial accessibility to primary care in rural areas: Improving the effectiveness of the two-step floating catchment area method. Appl. Geogr. 2009, 29, 533–541. [Google Scholar] [CrossRef]
- Wen, Z.; Lili, X.; Xiaolin, Z. Research in Spatial Pattern of Accessibility to Community Service Facilities and Spatial Deprivation of Low Income Community in Nanjing. Hum. Geogr. 2017, 32, 73–79. [Google Scholar] [CrossRef]
- Yintao, L.; De, W. Walkability Measuring in America and Its Enlightenment. Urban Plan. Int. 2012, 27, 10–15. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Li, Y.; Yan, X.; Xu, W. Evaluating and mapping the walking accessibility, bus availability and car dependence in urban space: A case study of Xiamen, China. Acta Geogr. Sin. 2013, 68, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Lovett, A.; Haynes, R.; Sünnenberg, G.; Galeb, S. Car travel time and accessibility by bus to general practitioner services:a study using patient registers and GIS. Soc. Sci. Med. 2002, 55, 97–111. [Google Scholar] [CrossRef]
- Siegel, M.; Koller, D.; Vogt, V.; Sundmacher, L. Developing a composite index of spatial accessibility across different health care sectors: A German example. Health Policy 2016, 120, 205–212. [Google Scholar] [CrossRef]
- Luo, W. Using a GIS-based floating catchment method to assess areas with shortage of physicians. Health Place 2004, 10, 1–11. [Google Scholar] [CrossRef]
- Chukwumaobi, O.; Akinlabi, E.T.; Njoku, H.O. Selection of phase change material for Improved performance of Trombe wall systems using the entropy weight and TOPSIS methodology. Energy Build. 2020, 217, 109967. [Google Scholar] [CrossRef]
- Zhihong, Z.; Yi, Y.; Jingnan, S. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1994; p. XI, 269. [Google Scholar] [CrossRef]
- Chen, P. Effects of normalization on the entropy-based TOPSIS method. Expert Syst. Appl. 2019, 136, 33–41. [Google Scholar] [CrossRef]
- Mody, P.; Joshi, P.H.; Khera, A.; Ayers, C.R.; Rohatgi, A. Beyond Coronary Calcification, Family History, and C-Reactive Protein. J. Am. Coll. Cardiol. 2016, 67, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, J.; Zhu, B.; Mao, Y. Evaluation Study on Equalization of Basic Medical and Health Services in China. Value Health 2015, 18, A553. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Tao, L.; Yang, T. Construction of evaluation index system for equalization of basic public health services. J. Cent. South Univ. (Med. Sci.) 2014, 39, 511–516. [Google Scholar] [CrossRef]
- Oppong, J.R.; Hodgson, M.J. Spatial Accessibility to Health Care Facilities in Suhum District, Ghana. Prof. Geogr. 2010, 46, 199–209. [Google Scholar] [CrossRef]
- Cowell, F. Measuring Inequality, 3rd ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
Data Name | Source | Data Format | Time |
---|---|---|---|
Surface coverage classification data | 2019 Xinjiang Oasis regional geographical situation monitoring data | .shp | December 2019 |
Geographic factor data | 2019 Xinjiang Oasis regional geographical situation monitoring data | .shp | December 2019 |
Population data | Xinjiang Statistical Yearbook 2019 | .xlsx | December 2018 |
Hospital data at all levels | 2019 Xinjiang Oasis regional geographical situation monitoring data | .shp | June 2019 |
Health worker data | Xinjiang Statistical Yearbook 2019 | .xlsx | December 2018 |
Health risk population data | Xinjiang Statistical Yearbook 2019 | .xlsx | December 2018 |
Road network data | 2019 Xinjiang Oasis regional geographical situation monitoring data | .shp | June 2018 |
First Indicator Layer | Secondary Indicator Layer |
---|---|
Allocation level of medical institution | ) |
) | |
) | |
) | |
) | |
) | |
) | |
) | |
) | |
) | |
Convenience of Medical Treatment | ) |
) |
Hospital Level | Time (min) | Path Distance (km) |
---|---|---|
Grade I hospital | 15 | 1.2 |
Grade II hospital | 9 | 6 |
Grade III hospital | 36 | 24 |
Township health center | 11.5 | 3.8 |
Indicators | Description of the Calculation Method | Unit | Indicator Meaning |
---|---|---|---|
The ratio of the number of residential areas covered within the hospital’s service radius (1200 m) to the number of residential areas within the prefecture-level region. | % | Reflects the distribution and coverage of the hospital | |
The ratio of the number of administrative villages covered within hospital service radius (3800 m) to the number of administrative villages within the prefecture-level region. | % | Reflects the distribution and coverage of the hospital | |
The ratio of the number of residential areas covered within Grade II hospital‘s service radius (6000 m) to the number of residential areas within the prefecture-level region. | % | Reflects the distribution and coverage of Grade II hospitals | |
The ratio of the number of residential areas covered within Grade III hospital‘s service radius (24,000 m) to the number of residential areas within the prefecture-level region. | % | Reflects the distribution and coverage of Grade III hospitals | |
The ratio of the population covered within hospital’s service radius (1200 m) to the population within the prefecture-level region. | % | Reflects the situation of the health risk population served by hospitals. | |
The ratio of the population covered within Grade II hospital‘s service radius (6000 m) to the population within the prefecture-level region. | % | Reflects the situation of the health risk population served by Grade III hospitals. | |
The ratio of the population covered within Grade III hospital service radius (24,000 m) to the population within the prefecture-level region. | % | Reflects the situation of the health risk population served by Grade III hospitals. | |
The ratio of the health-risk population covered within hospital‘s service radius (1200 m) to the health-risk population of the prefecture-level region. | % | Reflects the situation of the population served by hospitals. | |
The ratio of the health risk population covered within Grade II hospital‘s service radius (6000 m) to the health risk population of the prefecture-level region. | % | Reflects the situation of the population served by Grade III hospitals. | |
The ratio of the health risk population covered within Grade III hospital‘s service radius (24,000 m) to the health risk population of the prefecture-level region. | % | Reflects the situation of the population served by Grade III hospitals. | |
The ratio of the total number of medical staff to the number of population per 10,000 people within the prefecture-level region | people/10,000 people | Reflects the matching status of medical staff and service staff. | |
See Equation (3). | Reflects the opportunities and convenience of residents to enjoy medical services. | ||
The ratio of the sum of the transportation distance from each residential area to the nearest hospital to the number of residential areas within the prefecture-level region | m | Reflects the convenience of medical treatment for residents |
Indicator\Region | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urumqi | 0.080 | 0.172 | 0.081 | 0.191 | 0.150 | 0.132 | 0.234 | 0.150 | 0.132 | 0.234 | 0.132 | 0.391 | 0.056 |
Karamay | 0.046 | 0.152 | 0.067 | 0.123 | 0.075 | 0.099 | 0.142 | 0.075 | 0.099 | 0.141 | 0.106 | 0.070 | 0.079 |
Turpan | 0.072 | 0.072 | 0.077 | 0 | 0.055 | 0.072 | 0 | 0.055 | 0.072 | 0 | 0.059 | 0.047 | 0.094 |
Hami | 0.074 | 0.090 | 0.068 | 0.163 | 0.089 | 0.082 | 0.158 | 0.089 | 0.081 | 0.157 | 0.084 | 0.083 | 0.061 |
Changji | 0.077 | 0.076 | 0.071 | 0.095 | 0.075 | 0.065 | 0.069 | 0.075 | 0.065 | 0.069 | 0.083 | 0.094 | 0.055 |
Bortala | 0.061 | 0.073 | 0.071 | 0 | 0.066 | 0.056 | 0 | 0.067 | 0.057 | 0 | 0.077 | 0.059 | 0.073 |
Bayingol | 0.052 | 0.068 | 0.070 | 0.029 | 0.068 | 0.088 | 0.058 | 0.069 | 0.088 | 0.058 | 0.078 | 0.020 | 0.055 |
Aksu | 0.087 | 0.027 | 0.080 | 0 | 0.051 | 0.062 | 0 | 0.051 | 0.062 | 0 | 0.042 | 0.030 | 0.121 |
Kizilsu | 0.069 | 0.040 | 0.080 | 0.075 | 0.049 | 0.064 | 0.068 | 0.049 | 0.064 | 0.068 | 0.061 | 0.015 | 0.083 |
Kashgar | 0.083 | 0.047 | 0.080 | 0.092 | 0.068 | 0.064 | 0.055 | 0.068 | 0.064 | 0.055 | 0.042 | 0.050 | 0.032 |
Hotan | 0.087 | 0.045 | 0.039 | 0.082 | 0.042 | 0.021 | 0.090 | 0.042 | 0.021 | 0.090 | 0.037 | 0.043 | 0.032 |
Ili | 0.065 | 0.074 | 0.074 | 0.118 | 0.072 | 0.073 | 0.098 | 0.072 | 0.073 | 0.098 | 0.059 | 0.037 | 0.056 |
Tarbagatay | 0.074 | 0.035 | 0.064 | 0.032 | 0.073 | 0.065 | 0.030 | 0.073 | 0.065 | 0.030 | 0.067 | 0.043 | 0.067 |
Altay | 0.074 | 0.029 | 0.078 | 0 | 0.066 | 0.056 | 0 | 0.066 | 0.056 | 0 | 0.072 | 0.018 | 0.136 |
Indicator\ Parameter | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.995 | 0.942 | 0.996 | 0.825 | 0.980 | 0.978 | 0.814 | 0.980 | 0.978 | 0.814 | 0.978 | 0.816 | 0.971 | |
0.005 | 0.058 | 0.004 | 0.175 | 0.020 | 0.022 | 0.186 | 0.020 | 0.022 | 0.186 | 0.022 | 0.184 | 0.029 | |
0.006 | 0.062 | 0.005 | 0.188 | 0.021 | 0.024 | 0.200 | 0.021 | 0.024 | 0.200 | 0.023 | 0.197 | 0.032 |
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V+ | 0.0019 | 0.0344 | 0.0015 | 0.1018 | 0.0111 | 0.0112 | 0.1278 | 0.0111 | 0.0112 | 0.1278 | 0.0108 | 0.1777 | 0.0151 |
V− | 0.0010 | 0.0054 | 0.0007 | 0 | 0.0031 | 0.0018 | 0 | 0.0031 | 0.0018 | 0 | 0.003 | 0.0063 | 0.0035 |
Region\Value | |||
---|---|---|---|
Urumqi | 0.009 | 0.271 | 0.968 |
Karamay | 0.167 | 0.133 | 0.443 |
Turpan | 0.261 | 0.020 | 0.071 |
Hami | 0.154 | 0.160 | 0.509 |
Changji | 0.194 | 0.083 | 0.299 |
Bortala | 0.258 | 0.023 | 0.083 |
Bayingol | 0.235 | 0.049 | 0.173 |
Aksu | 0.266 | 0.013 | 0.048 |
Kizilsu | 0.225 | 0.067 | 0.229 |
Kashgar | 0.217 | 0.067 | 0.237 |
Hotan | 0.204 | 0.084 | 0.290 |
Ili | 0.198 | 0.100 | 0.336 |
Tarbagatay | 0.241 | 0.032 | 0.118 |
Altay | 0.269 | 0.013 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, L.; Li, N.; Li, C.; Sang, X.; Ma, J. Evaluation Method of Equalization of Basic Medical Services from the Spatial Perspective: The Case of Xinjiang, China. ISPRS Int. J. Geo-Inf. 2022, 11, 612. https://doi.org/10.3390/ijgi11120612
Zhan L, Li N, Li C, Sang X, Ma J. Evaluation Method of Equalization of Basic Medical Services from the Spatial Perspective: The Case of Xinjiang, China. ISPRS International Journal of Geo-Information. 2022; 11(12):612. https://doi.org/10.3390/ijgi11120612
Chicago/Turabian StyleZhan, Liang, Nana Li, Chune Li, Xuejia Sang, and Jun Ma. 2022. "Evaluation Method of Equalization of Basic Medical Services from the Spatial Perspective: The Case of Xinjiang, China" ISPRS International Journal of Geo-Information 11, no. 12: 612. https://doi.org/10.3390/ijgi11120612
APA StyleZhan, L., Li, N., Li, C., Sang, X., & Ma, J. (2022). Evaluation Method of Equalization of Basic Medical Services from the Spatial Perspective: The Case of Xinjiang, China. ISPRS International Journal of Geo-Information, 11(12), 612. https://doi.org/10.3390/ijgi11120612