Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine
Abstract
:1. Introduction
- Propose a novel and rapid workflow based on Sentinel-2 images to produce UGS maps with a 10 m spatial resolution and high accuracy and use the sample migrating method to produce up-to-date UGS maps annually.
- Evaluate the spatiotemporal distribution and quality of UGS at the pixel level from 2016 to 2020 by using six landscape pattern indicators.
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Extraction and Classification of UGS
- i.
- Spectral features and vegetation indices
- ii.
- Textural features
- iii.
- Image reduction
- iv.
- Otsu’s algorithm
- v.
- Machine learning classification
2.2.2. Accuracy Assessment of UGS Maps
2.2.3. Time Series Rapid Mapping by Training Sample Migration
2.2.4. Dynamic Evaluation of UGS by Quality Indicators
3. Results
3.1. UGS Classification Maps and the Accuracy Assessment Results
3.1.1. Comparative Classification Accuracy of Different Input Feature Configurations
3.1.2. Accuracy Assessment for Differentiating Vegetation Type Using Different Supervised Classifiers
3.1.3. Time Series Classification Result Using Migrated Training Samples
3.2. Temporal Changes in the Spatial Distribution of UGS from 2016 to 2020
3.3. Annual Dynamic Evaluation of the Quality of UGS by Using UGI and SHDI at Pixel Level
3.3.1. Urban Green Index (UGI)
3.3.2. Shannon’s Diversity Index (SHDI)
4. Discussion
4.1. Spatial Correlation between UGS and Population Density
4.2. Distinction between Private and Public Green Spaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Abbreviation | Description |
---|---|---|
Spectral value | B2 | Blue band |
B3 | Green band | |
B4 | Red band | |
B5 | Red Edge band 1 | |
B6 | Red Edge band 2 | |
B7 | Red Edge band 3 | |
B8 | NIR band | |
Hue | Hue | HSI color space Hue |
Intensity | Int | Brightness of HSI color space |
Brightness | Bri | The spectral mean of 4 bands |
Contribution rate | Rat1 | Blue band contribution (ratio of Blue band spectral values to the sum of all band spectral values) |
Rat2 | Red band contribution (ratio of Red band spectral values to the sum of all band spectral values) | |
Rat3 | Green band contribution (ratio of Green band spectral values to the sum of all band spectral values) | |
Rat4 | NIR band contribution (ratio of NIR band spectral values to the sum of all band spectral values) |
Vegetation Indices | Formula |
---|---|
Normalized Difference Vegetation Index (NDVI) | |
Greenness index (GI) | |
Ratio vegetation index (RVI) | |
Difference vegetation index (DVI) | |
Soil-adjusted vegetation index (SAVI) |
Number | Features | Formula |
---|---|---|
1 | Angular Second Moment (ASM) | |
2 | CONTRAST (Contrast) | |
3 | Correlation (CORR) | |
4 | Variance (VAR) | |
5 | Difference Moment (IDM) | |
6 | Sum Average (SAVG) | |
7 | Sum Variance (SVAR) | |
8 | Sum Entropy (SENT) | |
9 | Entropy (ENT) | |
10 | DVAR, Difference variance (DVAR) | |
11 | Difference entropy (DENT) | |
12 | Information Measure of Corr. 1 (IMCORR1) | |
13 | Information Measure of Corr. 2 (IMORR2) | |
14 | Maximal Correlation Coefficient | |
15 | Dissimilarity (DISS) | |
16 | Inertia (INERTIA) | |
17 | Cluster Shade (SHADE) | |
18 | Cluster prominence (PROM) |
References
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Lo, A.Y.; Jim, C.Y. Citizen attitude and expectation towards greenspace provision in compact urban milieu. Land Use Policy 2012, 29, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Sathyakumar, V.; Ramsankaran, R.; Bardhan, R. Geospatial approach for assessing spatiotemporal dynamics of urban green space distribution among neighbourhoods: A demonstration in Mumbai. Urban For. Urban Green. 2020, 48, 126585. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, Y.; Yin, K.; Zhang, F.; Huang, H.; Chen, F. Landscape Pattern Theoretical Optimization of Urban Green Space Based on Ecosystem Service Supply and Demand. ISPRS Int. J. Geo-Inf. 2021, 10, 263. [Google Scholar] [CrossRef]
- Schebella, M.; Weber, D.; Schultz, L.; Weinstein, P. The Wellbeing Benefits Associated with Perceived and Measured Biodiversity in Australian Urban Green Spaces. Sustainability 2019, 11, 802. [Google Scholar] [CrossRef] [Green Version]
- Chun, B.; Guldmann, J.-M. Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Shin, J.C.; Kwan, M.P.; Grigsby-Toussaint, D.S. Do Spatial Boundaries Matter for Exploring the Impact of Community Green Spaces on Health? Int. J. Env. Res Public Health 2020, 17, 7529. [Google Scholar] [CrossRef]
- Wiese, D.; Stroup, A.M.; Maiti, A.; Harris, G.; Lynch, S.M.; Vucetic, S.; Gutierrez-Velez, V.H.; Henry, K.A. Measuring Neighborhood Landscapes: Associations between a Neighborhood’s Landscape Characteristics and Colon Cancer Survival. Int. J. Env. Res. Public Health 2021, 18, 4728. [Google Scholar] [CrossRef]
- Xie, Y.; Xiang, H.; Di, N.; Mao, Z.; Hou, J.; Liu, X.; Huo, W.; Yang, B.; Dong, G.; Wang, C. Association between residential greenness and sleep quality in Chinese rural population. Environ. Int. 2020, 145, 106100. [Google Scholar] [CrossRef]
- De Sousa Silva, C.; Viegas, I.; Panagopoulos, Τ.; Bell, S. Environmental justice in accessibility to green infrastructure in two European cities. Land 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.E.; Kubzansky, L.D.; Li, J.; Shmool, J.L.; Clougherty, J.E. It’s not easy assessing greenness: A comparison of NDVI datasets and neighborhood types and their associations with self-rated health in New York City. Health Place 2018, 54, 92–101. [Google Scholar] [CrossRef]
- Fan, P.; Xu, L.; Yue, W.; Chen, J. Accessibility of public urban green space in an urban periphery: The case of Shanghai. Landsc. Urban Plan. 2017, 165, 177–192. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Cao, G.; Wang, S.; Guan, Q. Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS J. Photogramm. Remote Sens. 2019, 154, 202–215. [Google Scholar] [CrossRef]
- Ji, J.S.; Zhu, A.; Bai, C.; James, P.; Yan, L.; Zeng, Y.; Wu, C.-D. Residential greenness and mortality in oldest-old women and men in China: A prospective cohort study. Lancet 2018, 392, S65. [Google Scholar] [CrossRef]
- Rugel, E.J.; Carpiano, R.M.; Henderson, S.B.; Brauer, M. Exposure to natural space, sense of community belonging, and adverse mental health outcomes across an urban region. Environ. Res. 2019, 171, 365–377. [Google Scholar] [CrossRef]
- Yang, L.; Ho, J.Y.; Wong, F.K.; Chang, K.K.; Chan, K.L.; Wong, M.S.; Ho, H.C.; Yuen, J.W.; Huang, J.; Siu, J.Y. Neighbourhood green space, perceived stress and sleep quality in an urban population. Urban For. Urban Green. 2020, 54, 126763. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2018, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Liu, C.; Liang, L.; Li, C.; Gong, P. The migration of training samples towards dynamic global land cover mapping. ISPRS J. Photogramm. Remote Sens. 2020, 161, 27–36. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth Engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.-S.; Shen, H. An urban water extraction method combining deep learning and google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 769–782. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Coltin, B.; McMichael, S.; Smith, T.; Fong, T. Automatic boosted flood mapping from satellite data. Int. J. Remote Sens. 2016, 37, 993–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdianpari, M.; Brisco, B.; Granger, J.E.; Mohammadimanesh, F.; Salehi, B.; Banks, S.; Homayouni, S.; Bourgeau-Chavez, L.; Weng, Q. The second generation Canadian wetland inventory map at 10 meters resolution using Google Earth Engine. Can. J. Remote Sens. 2020, 46, 360–375. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Clinton, N.; Yu, L.; Huang, H.; Dronova, I.; Jin, J. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 2021, 16, 064072. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing impacts of urban form on landscape structure of urban green spaces in China using Landsat images based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Tan, M.; Guo, Y.; Wang, X.; Xin, L. Understanding the spatial distribution of urban forests in China using Sentinel-2 images with Google Earth Engine. Forests 2019, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Gilani, H.; Naz, H.I.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 2021, 249. [Google Scholar] [CrossRef]
- Stessens, P.; Khan, A.Z.; Huysmans, M.; Canters, F. Analysing urban green space accessibility and quality: A GIS-based model as spatial decision support for urban ecosystem services in Brussels. Ecosyst. Serv. 2017, 28, 328–340. [Google Scholar] [CrossRef]
- Honold, J.; Lakes, T.; Beyer, R.; van der Meer, E. Restoration in urban spaces: Nature views from home, greenways, and public parks. Environ. Behav. 2016, 48, 796–825. [Google Scholar] [CrossRef]
- Atasoy, M. Monitoring the urban green spaces and landscape fragmentation using remote sensing: A case study in Osmaniye, Turkey. Environ. Monit. Assess. 2018, 190, 713. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Ngigi, T.; Tateishi, R. On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation. Int. J. Remote Sens. 2006, 27, 73–104. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, S.; Matsuoka, M.; Baja, S.; Rampisela, D.A. Object-based image analysis for sago palm classification: The most important features from high-resolution satellite imagery. Remote Sens. 2018, 10, 1319. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. of Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van De Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Change 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.I.; Yue, C.R. Remote Sensing Image Classification Based on CART Decision Tree Method. For. Inventory Plan. 2011, 36, 62–66. [Google Scholar]
- Ustuner, M.; Sanli, F.B.; Dixon, B. Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis. Eur. J. Remote Sens. 2017, 48, 403–422. [Google Scholar] [CrossRef]
- Kranjčić, N.; Medak, D.; Župan, R.; Rezo, M. Support vector machine accuracy assessment for extracting green urban areas in towns. Remote Sens. 2019, 11, 655. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Sarah, B.; Koreen, M.; Jon, P.; Murray, R.; Wang, H.; Jason, D. Assessing the Potential to Operationalize Shoreline Sensitivity Mapping: Classifying Multiple Wide Fine Quadrature Polarized RADARSAT-2 and Landsat 5 Scenes with a Single Random Forest Model. Remote Sens. 2015, 7, 13528–13563. [Google Scholar]
- Du, L.; Feng, Y.; Lu, W.; Kong, L.; Yang, Z. Evolutionary game analysis of stakeholders’ decision-making behaviours in construction and demolition waste management. Environ. Impact Assess. Rev. 2020, 84, 106408. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Gill, E. Full and simulated compact polarimetry sar responses to canadian wetlands: Separability analysis and classification. Remote Sens. 2019, 11, 516. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Li, H.; Yan, L.; Liu, Z.; Blaschke, T.; Soergel, U. An object-based semantic classification method for high resolution remote sensing imagery using ontology. Remote Sens. 2017, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Ghani, W.A.W.A.K.; Samsatli, S.; Prince, H.M.; Yusuf, B.; Hamud, A.M. Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform. Int. J. Remote Sens. 2019, 40, 7459–7476. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated training sample extraction for global land cover mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Geng, X.; Sun, K.; Zhao, Y.; Gong, P. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water 2015, 7, 794–817. [Google Scholar] [CrossRef] [Green Version]
- Carvalho Júnior, O.A.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A. A new approach to change vector analysis using distance and similarity measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; van Den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- De la Barrera, F.; Reyes-Paecke, S.; Banzhaf, E. Indicators for green spaces in contrasting urban settings. Ecol. Indic. 2016, 62, 212–219. [Google Scholar] [CrossRef]
- Hong, K.Y.; Tsin, P.K.; van den Bosch, M.; Brauer, M.; Henderson, S.B. Urban greenness extracted from pedestrian video and its relationship with surrounding air temperatures. Urban For. Urban Green. 2019, 38, 280–285. [Google Scholar] [CrossRef]
- You, H. Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Kondo, K. Hot and cold spot analysis using Stata. Stata J. 2016, 16, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, C.; Hecht, R.; Lautenbach, S.; Schorcht, M.; Zipf, A. Mapping Public Urban Green Spaces Based on OpenStreetMap and Sentinel-2 Imagery Using Belief Functions. ISPRS Int. J. Geo-Inf. 2021, 10, 251. [Google Scholar] [CrossRef]
- Guagliardo, M.F. Spatial accessibility of primary care: Concepts, methods and challenges. Int. J. Health Geogr. 2004, 3, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, H.; Li, C.; Yu, Y.; Peng, Z. Urban Public Green Space Equity against the Context of High-Speed Urbanization in Wuhan, Central China. Sustainability 2020, 12, 9394. [Google Scholar] [CrossRef]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar]
Metrics | Formula | Description | Units and Range |
---|---|---|---|
PD | where n is the number of UGS patches in the district, and AD is the area of the district | number per km2; PD ≥ 0 | |
AREA_MN | where AUGS is the area of UGS (in m2) in the district, and n is the number of UGS patches in the district | ha; Area_MN ≥ 0 | |
FRAC_AM | where ai and pi denote the area (in m2) and perimeter (in m) of a UGS patch i, n is the number of UGS patches in the district, and AUGS is the area (in m2) of UGS in the district | 1 ≤ FRAC_AM ≤ 2 FRAC_AM =1 if the patches are square-shaped FRAC_AM =2 if the patches are highly convoluted | |
AI | where J is the number of connections between pixels of UGS patches in the district based on the single-count method, and max J is the maximum possible value of J | Percent; 0 ≤ AI ≤ 100 AI = 0 if the patches are maximally disaggregated AI = 100 if the patches are maximally compact | |
UGI | the UGI of a pixel is defined as the ratio of the number of green pixels near the pixel (in 300 m linear distance) (NUGS) to the number of all pixels nearby (NTNN) | Represents the vegetation coverage around the pixel | |
SHDI | where m represents the total number of vegetation-type patches nearby (in 300 m liner distance), and pi represents the area proportion of the patch i | Represents the diversity around the pixel |
Numbers of Input Features | RF Classifier | |
---|---|---|
OA(%) | KC(%) | |
12 | 93.06 | 88.98 |
20 | 96.60 | 94.40 |
25 | 94.49 | 94.16 |
39 | 92.60 | 88.00 |
Classifier | RF | SVM | CART | |||
---|---|---|---|---|---|---|
Accuracy | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) |
Urban trees | 90.40 | 98.80 | 92.10 | 95.30 | 91.00 | 94.20 |
Low plants | 95.70 | 71.00 | 85.70 | 77.40 | 85.20 | 74.20 |
Forest | 100 | 100 | 100 | 100 | 98.00 | 100 |
OA (%) | 94.00 | 93.04 | 92.20 | |||
KC (%) | 89.90 | 89.00 | 87.00 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) |
Urban trees | 93.18 | 97.62 | 97.70 | 96.59 | 95.73 | 94.12 | 97.94 | 98.96 | 97.73 | 94.51 |
Low plants | 97.50 | 95.12 | 94.28 | 91.67 | 92.31 | 94.74 | 100 | 95.24 | 85.71 | 93.75 |
Forest | 100 | 98.04 | 100 | 96.08 | 92.42 | 63.85 | 98.31 | 100 | 100 | 100 |
OA(%) | 97.01 | 96.53 | 94.40 | 98.47 | 95.93 | |||||
KC(%) | 95.50 | 94.39 | 90.48 | 97.55 | 93.31 |
Year | UGS Distribution Indicators | |||||
---|---|---|---|---|---|---|
AUGS (km2) | PUGS (%) | Area_MN | FRAC_AM | AI | PD | |
2016 | 671.59 | 48.48 | 0.24 | 1.29 | 77.117 | 193.99 |
2020 | 720.21 | 51.99 | 0.27 | 1.27 | 77.82 | 182.58 |
District | UGS Distribution Indicators | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUGS (km2) | PUGS (%) | Area_MN | FRAC_AM | AI | PD | |||||||
2016 | 2020 | 2016 | 2020 | 2016 | 2020 | 2016 | 2020 | 2016 | 2020 | 2016 | 2020 | |
Chaoyang | 207.30 | 234.13 | 44.03 | 49.73 | 0.22 | 0.26 | 1.28 | 1.27 | 74.56 | 76.43 | 198.64 | 184.72 |
Dongcheng | 15.88 | 15.60 | 37.96 | 37.29 | 0.20 | 0.20 | 1.27 | 1.26 | 73.45 | 72.17 | 187.75 | 176.49 |
Fengtai | 136.23 | 156.59 | 44.52 | 51.17 | 0.23 | 0.26 | 1.28 | 1.27 | 77.11 | 75.84 | 190.75 | 189.26 |
Haidian | 251.18 | 247.28 | 58.31 | 57.4 | 0.29 | 0.31 | 1.30 | 1.28 | 79.20 | 80.81 | 199.37 | 179.71 |
Shijingshan | 41.8 | 46.33 | 48.75 | 54.03 | 0.29 | 0.27 | 1.28 | 1.27 | 81.29 | 80.51 | 168.48 | 195.62 |
Xicheng | 19.2 | 20.28 | 37.86 | 40.00 | 0.20 | 0.25 | 1.28 | 1.28 | 72.05 | 71.62 | 185.78 | 146.65 |
UGI | Lowest | Low | Medium | High | Highest |
---|---|---|---|---|---|
Chaoyang | 369,478 | 599,888 | 664,165 | 524,885 | 1,275,174 |
Dongcheng | 49,036 | 186,980 | 264,324 | 152,743 | 195,402 |
Fengtai | 265,572 | 383,028 | 418,559 | 306,491 | 706,531 |
Haidian | 451,659 | 675,769 | 600,579 | 414,273 | 929,945 |
Shijingshan | 79,478 | 125,627 | 120,443 | 97,853 | 181,602 |
Xicheng | 30,399 | 132,756 | 362,650 | 346,407 | 324,878 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhong, C.; Jing, C.; Li, Y.; Cao, B.; Cheng, Q. Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 670. https://doi.org/10.3390/ijgi10100670
Chen Q, Zhong C, Jing C, Li Y, Cao B, Cheng Q. Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine. ISPRS International Journal of Geo-Information. 2021; 10(10):670. https://doi.org/10.3390/ijgi10100670
Chicago/Turabian StyleChen, Qiang, Cuiping Zhong, Changfeng Jing, Yuanyuan Li, Beilei Cao, and Qianhao Cheng. 2021. "Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine" ISPRS International Journal of Geo-Information 10, no. 10: 670. https://doi.org/10.3390/ijgi10100670
APA StyleChen, Q., Zhong, C., Jing, C., Li, Y., Cao, B., & Cheng, Q. (2021). Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine. ISPRS International Journal of Geo-Information, 10(10), 670. https://doi.org/10.3390/ijgi10100670