Design of a Mechanism with Embedded Suspension to Reconfigure the Agri_q Locomotion Layout †
Abstract
:1. Introduction
2. The Reconfiguration Mechanism
2.1. Working Principle
2.2. Kinematic Requirements
3. Kinematic Analysis
3.1. Amplification of the Output Range of Rotation
3.2. Actuation of the Mechanism
3.3. Kinematic Results
4. Dynamic Analysis
4.1. Suspension Force Reduction
4.2. Front Box Model
4.3. Linear Model
4.4. Roll Vibration Reduction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidoni, R.; Gallo, R.; Ristorto, G.; Carabin, G.; Mazzetto, F.; Scalera, L.; Gasparetto, A. ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; Volume 4A: Dynamics, Vibration, and Control. [Google Scholar]
- Wang, Y.; Lan, Y.; Zheng, Y.; Lee, K.; Cui, S.; Lian, J.-A. A UGV-based laser scanner system for measuring tree geometric characteristics. In Proceedings of the 5th International Symposium on Photoelectronic Detection and Imaging, Beijing, China, 25–27 June 2013. [Google Scholar]
- Zaman, S.; Comba, L.; Biglia, A.; Aimonino, D.R.; Barge, P.; Gay, P. Cost-effective visual odometry system for vehicle motion control in agricultural environments. Comput. Electron. Agric. 2019, 162, 82–94. [Google Scholar] [CrossRef]
- Shafiekhani, A.; Kadam, S.; Fritschi, F.B.; DeSouza, G.N. Vinobot and vinoculer: Two robotic platforms for high-throughput field phenotyping. Sensors 2017, 17, 214. [Google Scholar] [CrossRef]
- Chatzimichali, A.P.; Georgilas, I.P.; Tourassis, V.D. Design of an advanced prototype robot for white asparagus harvesting. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 887–892. [Google Scholar]
- Aljanobi, A.A.; Al-Hamed, S.A.; Al-Suhaibani, S.A. A setup of mobile robotic unit for fruit harvesting. In Proceedings of the 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010), Budapest, Hungary, 24–26 June 2010; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Tabile, R.A.; Godoy, E.P.; Pereira, R.R.D.; Tangerino, G.T.; Porto AJ, V.; Inamasu, R.Y. Design and development of the architecture of an agricultural mobile robot. Eng. Agrícola 2011, 31, 130–142. [Google Scholar] [CrossRef]
- Lin, H.; Dong, S.; Liu, Z.; Yi, C. Study and experiment on a wheat precision seeding robot. J. Robot. 2015, 2015, 696301. [Google Scholar]
- Utstumo, T.; Urdal, F.; Brevik, A.; Dørum, J.; Netland, J.; Overskeid, Ø.; Berge, T.W.; Gravdahl, J.T. Robotic in-row weed control in vegetables. Comput. Electron. Agric. 2018, 154, 36–45. [Google Scholar] [CrossRef]
- Underwood, J.; Wendel, A.; Schofield, B.; McMurray, L.; Kimber, R. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J. Field Robot. 2017, 34, 1061–1083. [Google Scholar] [CrossRef]
- Aoki, T.; Murayama, Y.; Hirose, S. Development of a transformable three-wheeled lunar rover: Tri-star IV. J. Field Robot. 2014, 31, 206–223. [Google Scholar] [CrossRef]
- Michaud, F.; Létourneau, D.; Arsenault, M.; Bergeron, Y.; Cadrin, R.; Gagnon, F.; Legault, M.-A.; Millette, M.; Pare, J.-F.; Tremblay, M.-C.; et al. AZIMUT, a leg-track-wheel robot. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; pp. 2553–2558. [Google Scholar]
- Grand, C.; Benamar, F.; Plumet, F.; Bidaud, P. Stability and traction optimization of a reconfigurable wheel-legged robot. Int. J. Robot. Res. 2004, 23, 1041–1058. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, G.; Zeng, W.; Gao, F.; Chong, K. Lateral stability of a mobile robot utilizing an active adjustable suspension. Appl. Sci. 2019, 9, 4410. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Jing, X. A tracked robot with novel bio-inspired passive “legs”. Robot. Biomim. 2017, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimstad, L.; From, P.J. The Thorvald II agricultural robotic system. Robotics 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Bawden, O.; Ball, D.; Kulk, J.; Perez, T.; Russell, R. A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. In Proceedings of the Australian Conference on Robotics and Automation (ACRA 2014), Melbourne, Australia, 2–4 December 2014; Australian Robotics & Automation Association ARAA: Broadway, Australia, 2014. [Google Scholar]
- Bickler, D. Roving over Mars. Mech. Eng. 1998, 120, 74–77. [Google Scholar] [CrossRef]
- Maimone, M.; Johnson, A.; Willson, R.; Matthies, L. Autonomous navigation results from the Mars exploration rover (MER) mission. Exp. Robot. 2006, IX, 3–13. [Google Scholar]
- Quaglia, G.; Cavallone, P.; Visconte, C. Agri_q: Agriculture UGV for monitoring and drone landing. In Mechanism Design for Robotics—Mechanism and Machine Science; Gasparetto, A., Ceccarelli, M., Eds.; Springer Nature Switzerland AG.: Cham, Switzerland, 2019; Volume 66, pp. 413–423. [Google Scholar]
- Quaglia, G.; Visconte, C.; Scimmi, L.S.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Design of the positioning mechanism of an unmanned ground vehicle for precision agriculture. In Advances in Mechanism and Machine Science—Mechanism and Machine Science; Uhl, T., Ed.; Springer Nature Switzerland AG.: Cham, Switzerland, 2019; Volume 73, pp. 3531–3540. [Google Scholar]
- Quaglia, G.; Visconte, C.; Scimmi, L.S.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Robot arm and control architecture integration on a UGV for precision agriculture. In Advances in Mechanism and Machine Science—Mechanism and Machine Science; Uhl, T., Ed.; Springer Nature Switzerland AG.: Cham, Switzerland, 2019; Volume 73, pp. 2339–2348. [Google Scholar]
- Visconte, C.; Cavallone, P.; Carbonari, L.; Botta, A.; Quaglia, G. Mechanism for the locomotion layout reconfiguration of the Agri_q mobile robot. In Advances in Service and Industrial Robotics—Mechanism and Machine Science; Zeghloul, S., Laribi, M.A., Arevalo, S.J.S., Eds.; Springer Nature Switzerland AG.: Cham, Switzerland, 2020; Volume 84, pp. 390–399. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visconte, C.; Cavallone, P.; Carbonari, L.; Botta, A.; Quaglia, G. Design of a Mechanism with Embedded Suspension to Reconfigure the Agri_q Locomotion Layout. Robotics 2021, 10, 15. https://doi.org/10.3390/robotics10010015
Visconte C, Cavallone P, Carbonari L, Botta A, Quaglia G. Design of a Mechanism with Embedded Suspension to Reconfigure the Agri_q Locomotion Layout. Robotics. 2021; 10(1):15. https://doi.org/10.3390/robotics10010015
Chicago/Turabian StyleVisconte, Carmen, Paride Cavallone, Luca Carbonari, Andrea Botta, and Giuseppe Quaglia. 2021. "Design of a Mechanism with Embedded Suspension to Reconfigure the Agri_q Locomotion Layout" Robotics 10, no. 1: 15. https://doi.org/10.3390/robotics10010015
APA StyleVisconte, C., Cavallone, P., Carbonari, L., Botta, A., & Quaglia, G. (2021). Design of a Mechanism with Embedded Suspension to Reconfigure the Agri_q Locomotion Layout. Robotics, 10(1), 15. https://doi.org/10.3390/robotics10010015