Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality †
Abstract
:1. Introduction
1.1. Contribution of Statically Balanced Mechanisms
1.2. Static Balancing of Parallelogram Linkages
1.3. Static Balancing of Diversified Mechanical Archtitectures
1.4. Objectives
2. Kinematics of the Statically Balanced Mechanism
2.1. Definition of the Mechanism Concept
2.2. Kinematic of the Position Mechanism
2.3. Kinematic of the Orientation Mechanism
3. Static Balancing of the Position Mechanism
3.1. Static Balancing of the Multi-Directional Parallelogram Mechanism
3.2. Mechanical Concept for the Uniformization of the Position Mechanism Static Balancing
3.3. Results
4. Static Balancing of the Orientation Mechanism
4.1. Evolution of the Gravitational Potential Energy
4.2. Mechanical Concepts for the Orientation Mechanism Static Balancing
4.3. Results
5. Mechanical Design of the Statically Balanced Mechanism
5.1. Design of the Mechanism Prototype
5.2. Identification of the Mechanical Parameters
5.3. Simulation and Prototype Testing
5.4. Limitations and Potiential Persectives
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.-J.; Lee, S.-C. Technical and Instrumental Prerequisites for Single-Port Laparoscopic Solo Surgery: State of Art. World J. Gastoenterol. 2015, 21, 4440–4446. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Ramanathan, R.; Seliktar, R.; Harwin, W. A Simple Technique to Passively Gravity-Balance Articulated Mechanisms. ASME J. Mech. Des. 1995, 117, 655–658. [Google Scholar] [CrossRef]
- Agrawal, A.; Agrawal, A.K. Design of Gravity Balancing Leg Orthosis Using Non-zero Free Length Springs. Mech. Mach. Theory 2005, 40, 693–709. [Google Scholar] [CrossRef]
- Banala, S.K.; Agrawa, S.K.; Fattah, A.; Krishnamoorthy, V.; Hsu, W.-L.; Scholz, J.; Rudolh, K. Gravity-Balancing Leg Orthosis and Its Performance Evaluation. IEEE Trans. Robot. 2006, 22, 1228–1239. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Lai, S.-J. Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation. ASME J. Mech. Robot. 2016, 8. [Google Scholar] [CrossRef]
- Cho, C.-H.; Lee, W. Design of a Static Balancer with Equivalent Mapping. Mech. Mach. Theory 2016, 101, 36–49. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, C.; Liu, G.; Zhu, Y.; Zhao, J.; Cai, H. Gravity Balance Mechanism for a Spatial Robotic Manipulator. J. Mech. Sci. Technol. 2016, 30, 865–869. [Google Scholar] [CrossRef]
- Gosselin, C.M.; Wang, J. On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms. In Proceedings of the IEEE International Conference of Robotics and Automation, Leuven, Belgium, 16–20 May 1998; Volume 3, pp. 2287–2294. [Google Scholar]
- Wang, J.; Gosselin, C.M. Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms. Mech. Mach. Theory 2000, 35, 563–592. [Google Scholar] [CrossRef]
- Russo, A.; Sinatra, R.; Xi, F. Static Balancing of Parallel Robots. Mech. Mach. Theory 2005, 40, 191–202. [Google Scholar] [CrossRef]
- Lessard, S.; Bigras, P.; Bonev, I.A. A New Medical Parallel Robot and its Static Balancing Optimization. ASME J. Med. Devices 2007, 1, 272–278. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Shieh, W.-B.; Chen, D.-Z. A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators. Mech. Mach. Theory 2010, 45, 1877–1891. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Shieh, W.-B.; Chen, D.-Z. Design of Statically Balanced Planar Articulated Manipulators with Spring Suspension. IEEE Trans. Robot. 2012, 28, 12–21. [Google Scholar] [CrossRef]
- Jhuang, C.-S.; Kao, Y.-Y.; Chen, D.-Z. Design of one DOF closed-loop statically balanced planar linkage with link-collinear spring arrangement. Mech. Mach. Theory 2018, 130, 301–312. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Lin, C.-Y.; Kuo, C.-H. Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules. ASME J. Mech. Robot. 2020, 12. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Lin, C.-Y.; Kuo, C.-H. Gravity compensation design of Delta parallel robots using gear-spring modules. Mech. Mach. Theory 2020, 154, 104046. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Dai, J.S.; Dasgupta, P. Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview. Int. J. Med. Robot. Comput. Assist. Surg. 2012, 8, 127–145. [Google Scholar] [CrossRef] [PubMed]
- Essomba, T.; Laribi, M.A.; Nouaille, L.; Zeghloul, S.; Poisson, G.; Vieyres, P. A specific performances comparative study of two spherical robots for tele-echography application. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 3419–3429. [Google Scholar] [CrossRef]
- Essomba, T.; Nguyen, V.L. Kinematic Analysis of a New Five-Bar Spherical Decoupled Mechanism with Two-Degrees of Freedom Remote Center of Motion. Mech. Mach. Theory 2018, 119, 184–197. [Google Scholar] [CrossRef]
- Essomba, T.; Nguyen Vu, L.; Wu, C.-T. Optimization of a Spherical Decoupled Mechanism for Neuro-Endoscopy Based on Experimental Kinematic Data. J. Mech. 2020, 36, 133–147. [Google Scholar] [CrossRef]
- Wu, C.; Liu, X.-J.; Wang, L.; Wang, J. Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility. ASME J. Mech. Des. 2010, 132. [Google Scholar] [CrossRef]
- Gosselin, C. Static Balancing of Spherical 3-DOF Parallel Mechanisms and Manipulators. Int. J. Robot. Res. 1999, 18, 819–829. [Google Scholar] [CrossRef]
Variables | Values |
---|---|
l | 540 mm |
l11 | 50 mm |
l12 | 95 mm |
l21 | 50 mm |
l22 | 95 mm |
mL1 | 537.34 g |
mL2 | 575.29 g |
Variables | Values | Variables | Values |
---|---|---|---|
[ax ay az] | [80.03 −99.21 0] | c1 | 40 mm |
[bx by bz] | [−99.18 80.28 0] | c2 | 60 mm |
[cx cy cz] | [72.63 −66.44 0] | d1 | 40 mm |
[dx dy dz] | [−61.36 69.72 0] | d2 | 60 mm |
a1 | 75 mm | mA | 197.48 g |
a2 | 20 mm | mB | 197.48 g |
b1 | 75 mm | mC | 48.74 g |
b2 | 20 mm | mD | 48.52 g |
Spring Stiffnesses | Theoretical Values | Available Values |
---|---|---|
kA | 0.1281 N/mm | 0.13 N/mm |
kB | 0.1281 N/mm | 0.13 N/mm |
kC | 0.0132 N/mm | 0.02 N/mm |
kD | 0.0122 N/mm | 0.02 N/mm |
Refined Parameters | Original Values | Refined Values | Selected Values |
---|---|---|---|
a1 | 75 mm | 73.90 mm | 74 mm |
b1 | 75 mm | 73.90 mm | 74 mm |
c1 | 40 mm | 26.50 mm | 26 mm |
d1 | 40 mm | 24.34 mm | 24 mm |
Spring Stiffnesses | Theoretical Values | Available Values |
---|---|---|
k1 | 3.7013 N/mm | 3.73 N/mm |
k2 | 2.4605 N/mm | 2.39 N/mm |
Refined Parameters | Original Values | Refined Values | Selected Values |
---|---|---|---|
l12 | 95 mm | 94.30 mm | 94 mm |
l22 | 95 mm | 97.8 mm | 98 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essomba, T. Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality. Robotics 2021, 10, 11. https://doi.org/10.3390/robotics10010011
Essomba T. Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality. Robotics. 2021; 10(1):11. https://doi.org/10.3390/robotics10010011
Chicago/Turabian StyleEssomba, Terence. 2021. "Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality" Robotics 10, no. 1: 11. https://doi.org/10.3390/robotics10010011
APA StyleEssomba, T. (2021). Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality. Robotics, 10(1), 11. https://doi.org/10.3390/robotics10010011