Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Maintenance of Trichoderma and Pathogenic Organisms
2.2. Preparation of Fungal Extracts
2.3. Biosynthesis of Selenium Nanoparticles (SeNPs)
2.4. Antifungal Activity of SeNPs
2.5. In Vitro Leaflet Assay
2.6. Bioactivity Guided Characterization of SeNPs
2.7. Inhibitory Action of Selenium Nanoparticles Against P. infestans
2.8. Statistical Analysis
3. Results
3.1. Biosynthesis of Selenium Nanoparticles
3.2. Antifungal Activity
3.3. In Vitro Leaflet Assay
3.4. Bioactivity Guided Characterization of SeNPs
3.5. Inhibitory Action of Selenium Nanoparticles Against P. infestans
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elmer, W.; White, J.C. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018, 56, 111–133. [Google Scholar] [CrossRef]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Mishra, S.; Keswani, C.; Abhilash, P.C.; Fraceto, L.F.; Singh, H.B. Integrated Approach of Agri-nanotechnology: Challenges and Future Trends. Front. Plant Sci. 2017, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Jogaiah, S.; Kurjogi, M.; Abdelrahman, M.; Hanumanthappa, N.; Tran, L.S.P. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011, 82, 489–494. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Kumar, S.; Srivastava, A.K.; Sharma, A.K. Myconanotechnology in agriculture: A perspective. World J. Microbiol. Biotechnol. 2013, 29, 191–207. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Yu, H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radic. Biol. Med. 2007, 42, 1524–1533. [Google Scholar] [CrossRef]
- Xia, Y.Y. Synthesis of selenium nanoparticles in the presence of silk fibroin. Mater. Lett. 2007, 61, 4321–4324. [Google Scholar] [CrossRef]
- Vrcek, I.V. Selenium nanoparticles: Biomedical applications. In Selenium; Bernhard, M., Ed.; Springer International Publishing: Berlin, Germany, 2018; pp. 393–412. [Google Scholar]
- Nuttall, K.L. Evaluating selenium poisoning. Ann. Clin. Lab. Sci. 2006, 36, 409–420. [Google Scholar]
- Dhanjal, S.; Cameotra, S.S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb. Cell Factories 2010, 9, 52. [Google Scholar] [CrossRef]
- Tran, P.A.; Webster, T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011, 6, 1553–1558. [Google Scholar]
- Srivastava, N.; Mukhopadhyay, M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 2015, 38, 1723–1730. [Google Scholar] [CrossRef]
- Khiralla, G.M.; El-Deeb, B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci. Technol. 2015, 63, 1001–1007. [Google Scholar] [CrossRef]
- Forootanfar, H.; Adeli-Sardou, M.; Nikkhoo, M.; Mehrabani, M.; Amir-Heidari, B.; Shahverdi, A.R.; Shakibaie, M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J. Trace Elem. Med. Biol. 2014, 28, 75–79. [Google Scholar] [CrossRef]
- Messarah, M.; Klibet, F.; Boumendjel, A.; Abdennour, C.; Bouzerna, N.; Boulakoud, M.S.; El Feki, A. Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp. Toxicol. Pathol. 2012, 64, 167–174. [Google Scholar] [CrossRef]
- Nandini, B.; Hariprasad, P.; Prakash, H.S.; Shetty, H.S.; Geetha, N. Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci. Rep. 2017, 7, 2612. [Google Scholar] [CrossRef]
- Jogaiah, S.; Mostafa, A.; Tran, L.S.P.; Ito, S.-I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J. Exp. Bot. 2013, 64, 3829–3842. [Google Scholar] [CrossRef] [Green Version]
- Jogaiah, S.; Abdelrahman, M.; Tran, L.S.P.; Ito, S.-I. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol. Plant Pathol. 2018, 19, 870–882. [Google Scholar] [CrossRef]
- Nagaraju, A.; Jogaiah, S.; Murthy, M.S.; Ito, S.-I. Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Aust. J. Plant Path. 2012, 41, 609–620. [Google Scholar] [CrossRef]
- Lanzuise, S.; Ruocco, M.; Scala, V.; Woo, S.L.; Scala, F.; Vinale, F.; Lorito, M. Cloning of ABC transporter-encoding genes in Trichoderma spp. to determine their involvement in biocontrol. J. Plant Pathol. 2002, 84, 184. [Google Scholar]
- Chowdappa, P.; Nirmal Kumar, B.J.; Madhura, S.; Mohan Kumar, S.P.; Myers, K.L.; Fry, W.E.; Cooke, D.E.L. Severe outbreaks of late blight on potato and tomato in South India caused by recent changes in the Phytophthora infestans population. Plant Pathol. 2015, 64, 191–199. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Manikandan, A. Chitosan nanoparticle induced defense responses in finger millet plants against blast disease caused by Pyriculariagrisea (Cke.) Sacc. Carbohydr. Polym. 2016, 154, 241–246. [Google Scholar] [CrossRef]
- Jogaiah, S.; Shetty, H.S.; Ito, S.I.; Tran, L.S.P. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiol. Biochem. 2016, 105, 109–117. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Yadav, A.; Bridge, P.; Gade, A. Myconanotechnology: A new and emerging science. In Applied Mycology; Rai, M.K., Bridge, P.D., Eds.; CAB International: New York, NY, USA, 2009; pp. 258–267. [Google Scholar]
- Moaveni, P.; Karimi, K.; Valojerdi, M.Z. The nanoparticles in plants: Review. J. Nano Struct. Chem. 2011, 2, 59–78. [Google Scholar]
- Zare, B.; Babaie, S.; Setayesh, N.; Shahverdi, A.R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed. J. 2013, 1, 13–19. [Google Scholar]
- Sarkar, J.; Dey, P.; Saha, S.; Acharya, K. Mycosynthesis of selenium nanoparticles. Micro Nano Lett. 2011, 6, 599–602. [Google Scholar] [CrossRef]
- Vetchinkina, E.; Loshchinina, E.; Kursky, V.; Nikitina, V. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J. Microbiol. 2013, 51, 829–835. [Google Scholar] [CrossRef]
- Gharieb, M.M.; Wilkinson, S.C.; Gadd, G.M. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: Cellular location of reduced selenium and implications for tolerance. J. Ind. Microbiol. 1995, 14, 300–311. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, H.; Bai, J.; Li, Y.; Yang, J.; Ma, Q.; Yuanyuan, Q. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 9–16. [Google Scholar] [CrossRef]
- Torres, S.K.; Campos, V.L.; León, C.G.; Rodríguez-Llamazares, S.M.; Rojas, S.M.; Gonzalez, M.; Mondaca, M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 2012, 14, 1236. [Google Scholar] [CrossRef]
- Hardham, A.R. The cell biology behind Phytophthora pathogenicity. Australas. Plant Pathol. 2001, 30, 91–98. [Google Scholar] [CrossRef]
- Hardham, A.R.; Cahill, D.M.; Cope, M.; Gabor, B.K.; Gubler, F.; Hyde, G.J. Cell surface antigens of Phytophthora spores: Biological and taxonomic characterization. Protoplasma 1994, 181, 213–232. [Google Scholar] [CrossRef]
- Wang, H.; Gu, L.; Lin, Y.; Lu, F.; Meziani, M.J.; Luo, P.G.; Sun, Y.P. Unique Aggregation of Anthrax (Bacillus anthracis) Spores by Sugar-Coated Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2006, 128, 13364–13365. [Google Scholar] [CrossRef]
Conc. of SeNP (ppm) | Mycelial Diameter (mm) | % of Inhibition |
---|---|---|
0 (control) | 77.2 ± 2.1 d | − |
50 | 64.0 ± 1.4 b,c | 17.1 ± 0.4 c |
100 | 52.4 ± 2.0 b | 32.12 ± 1.1 b |
200 | 36.8 ± 1.6 a | 52.33 ± 0.9 a |
SeNPs | Z-Average Size (nm) | Zeta Potential (mV) |
---|---|---|
CF | 98.5 ± 2.9 a | −49.3 ± 1.8 a |
CL | 93.6 ± 2.1 b | −43.7 ± 0.9 b |
CW | 93.2 ± 1.7 b | −48.7 ± 2.5 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, S.M.; De Britto, S.; Jogaiah, S.; Ito, S.-i. Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Biomolecules 2019, 9, 419. https://doi.org/10.3390/biom9090419
Joshi SM, De Britto S, Jogaiah S, Ito S-i. Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Biomolecules. 2019; 9(9):419. https://doi.org/10.3390/biom9090419
Chicago/Turabian StyleJoshi, Shreya M., Savitha De Britto, Sudisha Jogaiah, and Shin-ichi Ito. 2019. "Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules" Biomolecules 9, no. 9: 419. https://doi.org/10.3390/biom9090419
APA StyleJoshi, S. M., De Britto, S., Jogaiah, S., & Ito, S.-i. (2019). Mycogenic Selenium Nanoparticles as Potential New Generation Broad Spectrum Antifungal Molecules. Biomolecules, 9(9), 419. https://doi.org/10.3390/biom9090419