Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance
Abstract
:1. Introduction
2. Traditional Medicine Uses of Euphorbia Plants
3. Euphorbia Plants: Essential Oil Composition and Activities
4. Antibacterial and Antifungal Activity of Euphorbia Plants
5. Other Biological Activity of Euphorbia Plants
5.1. In Vitro Studies
5.2. In Vivo Studies
5.3. Clinical Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- The Plant List. Available online: http://www.theplantlist.org/1.1/browse/A/Compositae/Inula/ (accessed on 3 June 2019).
- Govaerts, R.; Frodin, D.G.; Radcliffe-Smith, A. World Checklist and Bibliography of Euphorbiaceae (with Pandaceae); Royal Botanic Gardens: Kew, UK, 2000; Volume 2. [Google Scholar]
- IUCN Red List. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 1 June 2019).
- Kumar, S.; Malhotra, R.; Kumar, D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn. Rev. 2010, 4, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Nilsson, N.; Simonsen, H.T.; Rønsted, N. Global medicinal uses of Euphorbia L. (Euphorbiaceae). J. Ethnopharmacol. 2015, 176, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Pascal, O.A.; Bertrand, A.E.V.; Esaïe, T.; Sylvie, H.A.M.; Eloi, A.Y. A review of the ethnomedicinal uses, phytochemistry and pharmacology of the Euphorbia genus. Pharma Innov. J. 2017, 6, 34–39. [Google Scholar]
- Webster, G.L. Classification of the Euphorbiaceae. Ann. Mo. Bot. Gard. 2006, 81, 3. [Google Scholar] [CrossRef]
- Özbilgin, S.; Saltan Çitoǧlu, G. Uses of some Euphorbia species in traditional medicine in Turkey and their biological activities. Turk. J. Pharm. Sci. 2012, 9, 241–256. [Google Scholar]
- Jassbi, A.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry 2006, 67, 1977–1984. [Google Scholar] [CrossRef]
- Ma, Q.G.; Liu, W.Z.; Wu, X.Y.; Zhou, T.X.; Qin, G.W. Chemical studies of Lang-Du, a traditional Chinese medicine.1. Diterpenoids from Euphorbia fischeriana. Phytochemistry 1997, 44, 663–666. [Google Scholar]
- Hassan, A.; Yaqoob, U.; Nawchoo, I.A.; Gulzar, S.; Mohi-Ud-Din, G.; Nazir, S.; Ashraf, A. Conspectus of phytochemical constituents of Euphorbia wallichii Hook. F.: A Review. Res. Rev. J. Bot. 2016, 5, 24–31. [Google Scholar]
- Ravikanth, V.; Niranjan Reddy, V.L.; Prabhakar Rao, T.; Diwan, P.V.; Ramakrishna, S.; Venkateswarlu, Y. Macrocyclic diterpenes from Euphorbia nivulia. Phytochemistry 2002, 59, 331–335. [Google Scholar] [CrossRef]
- Öksüz, S.; Gürek, F.; Gil, R.R.; Pengsuparp, T.; Pezzuto, J.M.; Cordell, G.A. Four diterpene esters from Euphorbia myrsinites. Phytochemistry 1995, 38, 1457–1462. [Google Scholar] [CrossRef]
- Hohmann, J.; Rédei, D.; Evanics, F.; Kálmán, A.; Argay, G.; Bartók, T. Serrulatin A and B, new diterpene polyesters from Euphorbia serrulata. Tetrahedron 2000, 56, 3619–3623. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Kassem, S.M.I.; Doe, M.; Baba, M.; Nakatani, M. Diterpenoids from Euphorbia paralias. Phytochemistry 2001, 58, 1135–1139. [Google Scholar] [CrossRef]
- Lima, E.M.; Medeiros, J.M.; Davin, L.B. Pentacyclic triterpenes from Euphorbia stygiana. Phytochemistry 2003, 63, 421–425. [Google Scholar] [CrossRef]
- Fatope, M.O.; Zeng, L.; Ohayaga, J.E.; Shi, G.; McLaughlin, J.L. Selectively cytotoxic diterpenes from Euphorbia poisonii. J. Med. Chem. 1996, 39, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Wang, N.L.; Yao, X.S.; Miyata, S.; Kitanaka, S. Diterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of xenopus. J. Nat. Prod. 2002, 65, 1246–1251. [Google Scholar] [CrossRef]
- Betancur-Galvis, L.; Palomares, E.; Marco, J.A.; Estornell, E. Tigliane diterpenes from the latex of Euphorbia obtusifolia with inhibitory activity on the mammalian mitochondrial respiratory chain. J. Ethnopharmacol. 2003, 85, 279–282. [Google Scholar] [CrossRef]
- Hezareh, M. Prostratin as a new therapeutic agent targeting HIV viral reservoirs. Drug News Perspect. 2006, 18, 496–500. [Google Scholar] [CrossRef]
- Geng, D.; Yi, L.T.; Shi, Y.; Min, Z.D. Structure and antibacterial property of a new diterpenoid from Euphorbia helioscopia. Chin. J. Nat. Med. 2015, 13, 704–706. [Google Scholar] [CrossRef]
- Hohmann, J.; Rédei, D.; Forgo, P.; Molnár, J.; Dombi, G.; Zorig, T. Jatrophane diterpenoids from Euphorbia mongolica as modulators of the multidrug resistance of L5128 mouse lymphoma cells. J. Nat. Prod. 2003, 66, 976–979. [Google Scholar] [CrossRef]
- Berman, B. New developments in the treatment of actinic keratosis: Focus on ingenol mebutate gel. Clin. Cosmet. Investig. Dermatol. 2012, 5, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Frezza, C.; Venditti, A.; Sciubba, F.; Tomai, P.; Antonetti, M.; Franceschin, M.; Di Cocco, M.E.; Gentili, A.; Delfini, M.; Serafini, M.; et al. Phytochemical profile of Euphorbia peplus L. collected in Central Italy and NMR semi-quantitative analysis of the diterpenoid fraction. J. Pharm. Biomed. Anal. 2018, 160, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.M.; de Oliveira, L.F.; Zuravski, L.; de Souza, R.O.; Fischer, P.; Duarte, J.A.; Rocha, M.O.; Güez, C.M.; Boligon, A.A.; Athayde, M.L. Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes. An. Acad. Bras. Cienc. 2016, 88, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Prenner, G.; Rudall, P.J. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: Exploring the organ–flower–inflorescence boundary. Am. J. Bot. 2007, 94, 1612–1629. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.W.; van Ee, B.W.; Morawetz, J.J.; Riina, R.; Steinmann, V.W.; Berry, P.E.; Wurdack, K.J. Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Mol. Phylogenet. Evol. 2012, 63, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Rizk, A.F.M. The chemical constituents and economic plants of the Euphorbiaceae. Bot. J. Linn. Soc. 1987, 94, 293–326. [Google Scholar] [CrossRef]
- Jing, S.X.; Hua, J.; Li, S.H.; Liu, Y.; Luo, S.H.; Xiao, C.J. Chemical profile and defensive function of the latex of Euphorbia peplus. Phytochemistry 2017, 136, 56–64. [Google Scholar]
- Dabholkar, D.A.; Kaicker, P.K.; Diwan, R.K. Euphorbia latex—Its chemistry and industrial applications. 1. Res. Ind. 1991, 36, 126–131. [Google Scholar]
- Toro-Vazquez, J.F.; Morales-Rueda, J.A.; Dibildox-Alvarado, E.; Charó-Alonso, M.; Alonzo-Macias, M.; González-Chávez, M.M. Thermal and textural properties of organogels developed by candelilla wax in safflower oil. JAOCS J. Am. Oil Chem. Soc. 2007, 84, 989–1000. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food. Scientific opinion on the re-evaluation of candelilla wax (E 902) as a food additive. EFSA J. 2012, 10, 2946. Available online: www.efsa.europa.eu/efsajournal.htm (accessed on 28 January 2013). [CrossRef]
- Polygenis-bigendako, M.J.; Lejoly, J. Plantes employées dans le traitement des diarrhées en médecine traditionnelle au Burundi occidental. Bull. Société R. Bot. Belg. 1989, 122, 87–97. [Google Scholar]
- Osemeobo, G.J. Effects of common property resource utilization on wildlife conservation in Nigeria. GeoJournal 1991, 23, 241–248. [Google Scholar] [CrossRef]
- Gaioni, D.T. Medical choices in a Philippine highland community. Ethnomedical and biomedical dimensions of Bauko clinical reality. Anthropos 2002, 97, 505–518. [Google Scholar]
- Lai, X.Z.; Yang, Y.B.; Shan, X.L. The investigation of Euphorbiaceous medicinal plants in southern China. Econ. Bot. 2004, 28, S307. [Google Scholar] [CrossRef]
- Hargreaves, B.J. The spurges of Botswana. Botsw. Notes Rec. 1991, 23, 115–130. [Google Scholar]
- Manandhar, N.P. An inventory of some herbal drugs of Myagdi district, Nepal. Econ. Bot. 1995, 49, 371–379. [Google Scholar] [CrossRef]
- Van Sam, H.; Baas, P.; Keßler, P.J.A. Traditional medicinal plants in Ben En National Park, Vietnam. Blumea 2008, 53, 569–601. [Google Scholar] [CrossRef] [Green Version]
- Baslas, R.K. Agarwal, R. Isolation and characterisation of different constituents of Euphorbia hirta Linn. Curr. Sci. 1980, 49, 311–312. [Google Scholar]
- Colley, F.C. Traditional Indian medicine in Malaysia. J. Malays. Branch R. Asiat. Soc. 1978, 51, 77–109. [Google Scholar]
- Gopi, K.; Renu, K.; Sannanaik Vishwanath, B.; Jayaraman, G. Protective effect of Euphorbia hirta and its components against snake venom induced lethality. J. Ethnopharmacol. 2015, 165, 180–190. [Google Scholar] [CrossRef]
- Lammers, T.G. Systematics of Clermontia (Campanulaceae, Lobelioideae). Syst. Bot. Monogr. 1992, 32, 1–97. [Google Scholar] [CrossRef]
- Lu, J.; Li, G.; Huang, J.; Zhang, C.; Zhang, L.; Zhang, K.; Li, P.; Lin, R.; Wang, J. Lathyrane-type diterpenoids from the seeds of Euphorbia lathyris. Phytochemistry 2014, 104, 79–88. [Google Scholar] [CrossRef]
- Bard, C.L. A contribution to the history of medicine in southern California. J. Calif. Gt. Basin Anthropol. 2006, 26, 95–108. [Google Scholar]
- Kaval, I.; Behcet, L.; Cakilcioglu, U. Ethnobotanical study on medicinal plants in Gecitli and its surrounding (Hakkari-Turkey). J. Ethnopharmacol. 2014, 155, 171–184. [Google Scholar] [CrossRef]
- Mummed, B.; Abraha, A.; Feyera, T.; Nigusse, A.; Assefa, S. In vitro antibacterial activity of selected medicinal plants in the traditional treatment of skin and wound infections in eastern Ethiopia. BioMed Res. Int. 2018, 2018, 1862401. [Google Scholar] [CrossRef]
- Hsieh, W.T.; Lin, H.Y.; Chen, J.H.; Lin, W.C.; Kuo, Y.H.; Wood, W.G.; Lu, H.F.; Chung, J.G. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells. Environ. Toxicol. 2015, 30, 1205–1215. [Google Scholar] [CrossRef]
- Mali, P.Y.; Panchal, S.S. Euphorbia tirucalli L.: Review on morphology, medicinal uses, phytochemistry and pharmacological activities. Asian Pac. J. Trop. Biomed. 2017, 7, 603–613. [Google Scholar]
- Mali, P.Y.; Panchal, S.S. Euphorbia neriifolia L.: Review on botany, ethnomedicinal uses, phytochemistry and biological activities. Asian Pac. J. Trop. Biomed. 2017, 10, 430–438. [Google Scholar]
- Chen, H.; Wang, H.; Yang, B.; Jin, D.Q.; Yang, S.; Wang, M.; Xu, J.; Ohizumi, Y.; Guo, Y. Diterpenes inhibiting NO production from Euphorbia helioscopia. Fitoterapia 2014, 95, 133–138. [Google Scholar] [CrossRef]
- Wang, S.Y.; Li, G.Y.; Zhang, K.; Wang, H.Y.; Liang, H.G.; Huang, C.; Huang, J.; Wang, J.H.; Yang, B.F. New ingol-type diterpenes from the latex of Euphorbia resinifera. J. Asian Nat. Prod. Res. 2019, 1–8. [Google Scholar] [CrossRef]
- Jian, B.; Zhang, H.; Liu, J. Structural diversity and biological activities of diterpenoids derived from Euphorbia fischeriana Steud. Molecules 2018, 23, 935. [Google Scholar] [CrossRef]
- Ahmad, S.; Perveen, S.; Arshad, M.A.; Rehman, T. Pharmacological and nutritive potential of Euphorbia granulata. J. Complement. Integr. Med. 2019, in press. [Google Scholar] [CrossRef]
- Malik, S.; Ahmad, S.; Sadiq, A.; Alam, K.; Wariss, H.M.; Ahmad, I.; Hayat, M.K.; Anjum, S.; Mukhtar, M. A comparative ethno-botanical study of Cholistan (an arid area) and Pothwar (a semi-arid area) of Pakistan for traditional medicines. J. Ethnobiol. Ethnomed. 2015, 11, 31. [Google Scholar] [CrossRef]
- Bhatia, H.; Manhas, R.K.; Kumar, K.; Magotra, R. Traditional knowledge on poisonous plants of Udhampur district of Jammu and Kashmir, India. J. Ethnopharmacol. 2014, 152, 207–216. [Google Scholar] [CrossRef]
- Fokialakis, N.; Melliou, E.; Magiatis, P.; Harvala, C.; Mitaku, S. Composition of the steam volatiles of six Euphorbia spp. from Greece. Flavour Fragr. J. 2003, 18, 39–42. [Google Scholar] [CrossRef]
- Rojas, J.; Baldovino, S.; Vizcaya, M.; Rojas, L.B.; Morales, A. The chemical composition of the essential oils of Euphorbia caracasana and E. cotinifolia (Euphorbiaceae) from Venezuela. Nat. Prod. Commun. 2009, 4, 571–572. [Google Scholar] [CrossRef]
- Merza, J. Chemical composition of essential oil extracted from Euphorbia densa Schrenk and evaluation its antioxidant activity. Food Sci. Qual. Manag. 2018, 76, 31–34. [Google Scholar]
- Cui, J.; Yang, X.; Dong, A.; Cheng, D.; Wang, J.; Zhao, H.; Xu, R. Chemical composition and antioxidant activity of Euphorbia fischeriana essential oil from China. J. Med. Plants Res. 2015, 19, 4794–4798. [Google Scholar]
- Lokar, L.C.; Maurich, V.; Poldini, L. Chemical aspect of floral biology in Euphorbia fragifera. Folia Geobot. Phytotaxon. 1986, 21, 277–285. [Google Scholar] [CrossRef]
- Ertas, A.; Yilmaz, M.A.; Firat, M. Chemical profile by LC–MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Nat. Prod. Res. 2015, 29, 529–534. [Google Scholar] [CrossRef]
- Ndam, L.M.; Mih, A.M.; Tening, A.S.; Fongod, A.G.N.; Temenu, N.A.; Fujii, Y. Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina L.C. Wheeler (Euphorbiaceae Juss.): An unexplored medicinal herb reported from Cameroon. Springerplus 2016, 5, 264. [Google Scholar] [CrossRef]
- Akhgar, M.R.; Rajaei, P.; Aieen, S. Constituents of the essential oil of Euphorbia hebecarpa. Chem. Nat. Compd. 2014, 50, 929–930. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Çayan, G.; Duru, M.E. Investigation of chemical composition, antioxidant, anticholinesterase and anti-urease activities of Euphorbia helioscopia. Int. J. Second. Metab. 2018, 5, 259–269. [Google Scholar]
- Adedoyin, B.J.; Okeniyi, S.O.; Garba, S.; Salihu, L. Cytotoxicity, antioxidant and antimicrobial activities of essential oil extracted from Euphorbia heterophylla plant. Topclass J. Herb. Med. 2013, 2, 84–89. [Google Scholar]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El Gendy, A.E.N.G.; Assaeed, A.M. Chemical characterization of Euphorbia heterophylla L. essential oils and their antioxidant activity and allelopathic potential on Cenchrus echinatus L. Chem. Biodivers. 2019, 16, 1900051. [Google Scholar] [CrossRef]
- Ogunlesi, M.; Okiei, W.; Ofor, E.; Osibote, A. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. Afr. J. Biotechnol. 2009, 8, 7042–7050. [Google Scholar]
- Lin, J.; Dou, J.; Xu, J.; Aisa, H.A. Chemical composition, antimicrobial and antitumor activities of the essential oils and crude extracts of Euphorbia macrorrhiza. Molecules 2012, 17, 5030–5039. [Google Scholar] [CrossRef]
- Li, X.; Bai, G.; Wang, R.; Yang, J.; Yuan, M.; An, Y.; Wu, X. Study on the chemical components of volatile oil from Euphorbia pekinensis radix. Zhong Yao Cai 2013, 36, 237–239. [Google Scholar]
- Ram, C.; Joshi, P.; Prasad, K. Chemical composition of the essential oil of Euphorbia pilosa from Munsiari, Pithoragarh, India. Int. J. Res. Pharm. Pharm. Sci. 2018, 3, 1–4. [Google Scholar]
- Reda, E.; Saleh, I.; El Gendy, A.N.; Talaat, Z.; Hegazy, M.E.; Haggag, E. Chemical constituents of Euphorbia sanctae-catharinae Fayed essential oil: A comparative study of hydro-distillation and microwave-assisted extraction. J. Adv. Pharm. Res. 2017, 1, 155–159. [Google Scholar] [CrossRef]
- Feizbakhsh, A.; Bighdeli, M.; Tehrani, M.S.; Rustaiyan, A.; Masoudi, S. Chemical constituents of the essential oil of Euphorbia teheranica Boiss., a species endemic to Iran. J. Essent. Oil Res. 2004, 16, 40–41. [Google Scholar] [CrossRef]
- Prasad, K.; Bisht, G. Evaluation of nutritive minerals and antioxidants values of Euphorbia thymifolia Linn. Curr. Res. Chem. 2011, 3, 98–105. [Google Scholar] [CrossRef]
- Rahman, A.; Rahman, M.; Demirtas, I. Chemical composition and antioxidant potential of essential oil and organic extracts of Euphorbia tithymaloides L. from Kushtia Region. Anticancer Agents Med. Chem. 2018, 18, 1482–1488. [Google Scholar] [CrossRef]
- Sharanappa, R.; Vidyasagar, G.M. Anti-Candida activity of medicinal plants. A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 9–16. [Google Scholar]
- Kumari, I. A study of the antimicrobial effect of Euphorbia hirta L. against Escherichia coli. Vegetos 2018, 31, 123–125. [Google Scholar] [CrossRef]
- Siritapetawee, J.; Limphirat, W.; Wongviriya, W.; Maneesan, J.; Samosornsuk, W. Isolation and characterization of a galactose-specific lectin (EantH) with antimicrobial activity from Euphorbia antiquorum L. latex. Int. J. Biol. Macromol. 2018, 120, 1846–1854. [Google Scholar] [CrossRef]
- Diop, E.A.; Queiroz, E.F.; Kicka, S.; Rudaz, S.; Diop, T.; Soldati, T.; Wolfender, J.L. Survey on medicinal plants traditionally used in Senegal for the treatment of tuberculosis (TB) and assessment of their antimycobacterial activity. J. Ethnopharmacol. 2018, 216, 71–78. [Google Scholar] [CrossRef]
- Shamsabadipour, S.; Ghanadian, M.; Saeedi, H.; Rahimnejad, M.R.; Mohammadi-Kamalabadi, M.; Ayatollahi, S.M.; Salimzadeh, L. Triterpenes and Steroids from Euphorbia denticulata Lam. With Anti-Herpes Symplex Virus Activity. Iran. J. Pharm. Res. 2013, 12, 759–767. [Google Scholar]
- Zengin, G.; Uysal, A.; Aktumsek, A.; Mocan, A.; Mollica, A.; Locatelli, M.; Custodio, L.; Neng, N.R.; Nogueira, J.M.F.; Aumeeruddy-Elalfi, Z.; et al. Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomed. Pharmacother. 2017, 87, 27–36. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Rashid, M.A.; Shahid, M. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana) from Pakistan. J. Food Drug Anal. 2015, 23, 109–115. [Google Scholar] [CrossRef]
- Chanda, S.; Baravalia, Y. Screening of some plant extracts against some skin diseases caused by oxidative stress and microorganisms. Afr. J. Biotechnol. 2010, 9, 3210–3217. [Google Scholar]
- Kumara Swamy, M.; Pokharen, N.; Dahal, S.; Anuradha, M. Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. J. Med. Plant Res. 2011, 5, 5785–5788. [Google Scholar]
- Hlila, M.B.; Majouli, K.; Ben Jannet, H.; Aouni, M.; Mastouri, M.; Selmi, B. Antimicrobial activity of Tunisian Euphorbia paralias L. Asian Pac. J. Trop. Biomed. 2017, 7, 629–632. [Google Scholar] [CrossRef]
- Awaad, A.S.; Alothman, M.R.; Zain, Y.M.; Zain, G.M.; Alqasoumi, S.I.; Hassan, D.A. Comparative nutritional value and antimicrobial activities between three Euphorbia species growing in Saudi Arabia. Saudi Pharm. J. 2017, 25, 1226–1230. [Google Scholar] [CrossRef]
- Ogbulie, B.J.N.; Ogueke, C.C.; Okoli, I.C.; Anyanwu, B.N. Antibacterial activities and toxicological potentials of crude ethanolic extracts of Euphorbia hirta. J. Am. Sci. 2007, 3, 11–16. [Google Scholar]
- Perumal, S.; Mahmud, R.; Pillai, S.; Lee, W.C.; Ramanathan, S. Antimicrobial activity and cytotoxicity evaluation of Euphorbia hirta (L.) extracts from Malaysia. APCBEE Procedia 2012, 2, 80–85. [Google Scholar] [CrossRef]
- Pisano, M.B.; Cosentino, S.; Viale, S.; Spanò, D.; Corona, A.; Esposito, F.; Tramontano, E.; Montoro, P.; Tuberoso, C.I.G.; Medda, R.; et al. Biological activities of aerial parts extracts of Euphorbia characias. BioMed Res. Int. 2016, 2016, 1538703. [Google Scholar] [CrossRef]
- Kanunfre, C.C.; Leffers, T.; Cruz, L.S.; Luz, L.E.C.; Crisma, A.R.; Wang, M.; Avula, B.; Khan, I.A.; Beltrame, F.L. Euphorbia umbellata bark extracts—An in vitro cytotoxic study. Braz. J. Farmacogn. 2017, 27, 206–213. [Google Scholar] [CrossRef]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Valadão, A.L.C.; Pezzuto, P.; Silva, V.A.O.; Gonçalves, B.S.; Rossi, Á.D.; da Cunha, R.D.; Siani, A.C.; Tostes, J.B.F.; Trovó, M.; Damasco, P.; et al. Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS ONE 2018, 13, 0207664. [Google Scholar] [CrossRef]
- Fu, Z.; Han, X.; Du, J.; Han, X.; Liu, W.; Shao, S.; Liu, X. Euphorbia lunulata extract acts on multidrug resistant gastric cancer cells to inhibit cell proliferation, migration and invasion, arrest cell cycle progression, and induce apoptosis. J. Ethnopharmacol. 2018, 212, 8–17. [Google Scholar] [CrossRef]
- Liu, Y.; Murakami, N.; Ji, H.; Abreu, P.; Zhang, S. Antimalarial flavonol glycosides from Euphorbia hirta. Pharm. Biol. 2007, 45, 278–281. [Google Scholar] [CrossRef]
- Yan, S.L.; Li, Y.H.; Chen, X.Q.; Liu, D.; Chen, C.H.; Li, R.T. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry 2018, 145, 40–47. [Google Scholar] [CrossRef]
- Wang, P.; Lu, P.; Qu, X.; Shen, Y.; Zeng, H.; Zhu, X.; Zhu, Y.; Li, X.; Wu, H.; Xu, J.; et al. Reactivation of HIV-1 from latency by an ingenol derivative from Euphorbia kansui. Sci. Rep. 2017, 7, 9451. [Google Scholar] [CrossRef]
- Teng, Y.N.; Wang, Y.; Hsu, P.L.; Xin, G.; Zhang, Y.; Morris-Natschke, S.L.; Goto, M.; Lee, K.H. Mechanism of action of cytotoxic compounds from the seeds of Euphorbia lathyris. Phytomedicine 2018, 41, 62–66. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Guan, S.H.; Li, X.N.; Chen, G.T.; Zhang, J.Q.; Huang, H.L.; Liu, X.; Guo, D.A. Cytotoxic diterpenoids from Euphorbia helioscopia. J. Nat. Prod. 2008, 71, 873–876. [Google Scholar] [CrossRef]
- Safwat, N.A.; Kashef, M.T.; Aziz, R.K.; Amer, K.F.; Ramadan, M.A. Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L., inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis 2018, 108, 106–113. [Google Scholar] [CrossRef]
- Wang, A.H.; Tian, X.G.; Cui, Y.L.; Huo, X.K.; Zhang, B.J.; Deng, S.; Feng, L.; Ma, X.C.; Jia, J.M.; Wang, C. Diterpenoids from the roots of Euphorbia ebracteolata and their inhibitory effects on human carboxylesterase 2. Phytochemistry 2018, 146, 82–90. [Google Scholar] [CrossRef]
- Mai, Z.; Ni, G.; Liu, Y.; Zhang, Z.; Li, L.; Chen, N.; Yu, D. Helioscopianoids A–Q, bioactive jatrophane diterpenoid esters from Euphorbia helioscopia. Acta Pharm. Sin. B 2018, 8, 805–817. [Google Scholar] [CrossRef]
- Cruz, L.S.; de Oliveira, T.L.; Kanunfre, C.C.; Paludo, K.S.; Minozzo, B.R.; Prestes, A.P.; Wang, M.; Fernandes, D.; Santos, F.A.D.; Manda, V.K.; et al. Pharmacokinetics and cytotoxic study of euphol from Euphorbia umbellata (Bruyns) Pax latex. Phytomedicine 2018, 47, 105–112. [Google Scholar] [CrossRef]
- Silva, V.A.O.; Rosa, M.N.; Miranda-Gonçalves, V.; Costa, A.M.; Tansini, A.; Evangelista, A.F.; Martinho, O.; Carloni, A.C.; Jones, C.; Lima, J.P.; et al. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Investig. New Drugs 2019, 37, 223–237. [Google Scholar] [CrossRef]
- Galvez, J.; Zarzuelo, A.; Crespo, M.E.; Lorente, M.D.; Ocete, M.A.; Jimenez, J. Antidiarrhoeic activity of Euphorbia hirta extract and isolation of an active flavonoid constituent. Planta Med. 1993, 59, 333–336. [Google Scholar] [CrossRef]
- Gálvez, J.; Crespo, M.E.; Jiménez, J.; Suárez, A.; Zarzuelo, A. Antidiarrhoeic activity of quercitrin in mice and rats. J. Pharm. Pharmacol. 1993, 45, 157–159. [Google Scholar] [CrossRef]
- Johnson, P.B.; Abdurahman, E.M.; Tiam, E.A.; Abdu-Aguye, I.; Hussaini, I.M. Euphorbia hirta leaf extracts increase urine output and electrolytes in rats. J. Ethnopharmacol. 1999, 65, 63–69. [Google Scholar] [CrossRef]
- Ibrahim, E.H.; Shaker, K.H.; Kilany, M.; Ghramh, H.A. Cytokines/chemokines profile in rats treated with Euphorbia tirucalli extract. Arab. J. Sci. Eng. 2018, 43, 3443–3451. [Google Scholar] [CrossRef]
- Palit, P.; Mukherjee, D.; Mahanta, P.; Shadab, M.; Ali, N.; Roychoudhury, S.; Asad, M.; Mandal, S.C. Attenuation of nociceptive pain and inflammatory disorders by total steroid and terpenoid fraction of Euphorbia tirucalli Linn root in experimental in vitro and in vivo model. Inflammopharmacology 2018, 26, 235–250. [Google Scholar] [CrossRef]
- Lim, H.J.; Jeon, Y.D.; Kang, S.H.; Shin, M.K.; Lee, K.M.; Jung, S.E.; Cha, J.Y.; Lee, H.Y.; Kim, B.R.; Hwang, S.W.; et al. Inhibitory effects of Euphorbia supina on Propionibacterium acnes-induced skin inflammation in vitro and in vivo. BMC Complement. Altern. Med. 2018, 18, 263. [Google Scholar] [CrossRef]
- Özbilgin, S.; Akkol, E.K.; Süntar, İ.; Tekin, M.; İşcan, G.S. Wound-healing activity of some species of Euphorbia L. Rec. Nat. Prod. 2019, 13, 104–113. [Google Scholar] [CrossRef]
- Özbilgin, S.; Acıkara, Ö.B.; Akkol, E.K.; Süntar, I.; Keleş, H.; İşcan, G.S. In vivo wound-healing activity of Euphorbia characias subsp. wulfenii: Isolation and quantification of quercetin glycosides as bioactive compounds. J. Ethnopharmacol. 2018, 224, 400–408. [Google Scholar]
- Rehman, A.H.; Al Sharari, S.D.; Ahmad, M.; Akhtar, M.; Khan, Y.; Ashraf, M.N. Evaluation of anticonvulsant and antiepileptogenic activity of Euphorbia nivulia in PTZ-induced kindling model of epilepsy in mice. Pak. J. Pharm. Sci. 2019, 32, 675–681. [Google Scholar]
- Perera, S.D.; Jayawardena, U.A.; Jayasinghe, C.D. Potential use of Euphorbia hirta for dengue: A systematic review of scientific evidence. J. Trop. Med. 2018, 2018, 2048530. [Google Scholar] [CrossRef]
- Aleksandrov, M.; Maksimova, V.; Koleva Gudeva, L. Review of the anticancer and cytotoxic activity of some species from genus Euphorbia. Agric. Conspec. Sci. 2019, 84, 1–5. [Google Scholar]
- Mohamed, H.M.; Aly, M.S. Evaluation of genotoxicity of Euphorbia triaculeata Forssk. extract on mice bone marrow cells in vivo. Toxicol. Rep. 2018, 5, 625–631. [Google Scholar] [CrossRef]
- Li, J.; Li, H.H.; Wang, W.Q.; Song, W.B.; Wang, Y.P.; Xuan, L.J. Jatrophane diterpenoids from Euphorbia helioscopia and their lipid-lowering activities. Fitoterapia 2018, 128, 102–111. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, S.; Cheng, X.; Lu, C.; Tao, W.; Zhang, Y.; William, B.C.; Cao, X.; Yi, S.; Liu, Y.; et al. Euphorbia factor L2 alleviates lipopolysaccharide-induced acute lung injury and inflammation in mice through the suppression of NF-κB activation. Biochem. Pharmacol. 2018, 155, 444–454. [Google Scholar] [CrossRef]
- Lu, F.; Huayun, Z.; Weiwei, T.; Li, L.; Xin, S.; Ming, Z.; Dongdong, S. Euphorbia factor L2 inhibits TGF-β-induced cell growth and migration of hepatocellular carcinoma through AKT/STAT3. Phytomedecine 2019, 62, 152931. [Google Scholar]
- Barla, A.; Birman, H.B.; Kültür, S.; Öksüz, S. Secondary metabolites from Euphorbia helioscopia and their vasodepressor activity. Turk. J. Chem. 2006, 30, 325–332. [Google Scholar]
- Ramsay, J.R.; Suhrbier, A.; Aylward, J.H.; Ogbourne, S.; Cozzi, S.J.; Poulsen, M.G.; Baumann, K.C.; Welburn, P.; Redlich, G.L.; Parsons, P.G. The sap from Euphorbia peplus is effective against human nonmelanoma skin cancers. Br. J. Dermatol. 2011, 164, 633–636. [Google Scholar] [CrossRef]
- Mir, M.; Khurshid, R.; Aftab, R. Management of thrombocytopenia and flu-like symptoms in dengue patients with herbal water of Euphorbia hirta. J. Ayub Med. Coll. 2012, 24, 6–9. [Google Scholar]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/results?term=euphorbia&draw=1&rank=1#rowId0 (accessed on 22 June 2019).
- Gupta, P.J. The efficacy of Euphorbia prostrata in early grades of symptomatic haemorrhoids—A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 199–203. [Google Scholar]
Species | Origin | Raw Material | Extraction Method | Main Components a (%) | Most Relevant Biological Activities | Ref. |
---|---|---|---|---|---|---|
E. acanthothamnos Heldr. & Sart. ex Boiss. | Greece | Inflorescences | Steam distillation | Phytol (28.3), phytol acetate (9.3), β-caryophyllene (7.5) | not evaluated | [59] |
E. apios L. | Greece | Inflorescences | Steam distillation | Germacrene D (30.0), heptacosane (12.7), β-caryophyllene (10.0), tricosane (6.5), pentacosane (6.0) | not evaluated | [59] |
E. characias L. | Greece | Inflorescences | Steam distillation | Nonanal (22.8), phytol (13.5), pentacosane (8.5), heptacosane (7.4), palmitic acid (5.7), nonacosane (5.6) | not evaluated | [59] |
E. cotinifolia L. (syn. E. caracasana (Klotzsch & Garcke) Boiss.) | Venezuela | Leaves | Hydro-distillation | β-Caryophyllene (39.3), germacrene-D (21.5%), α-copaene (9.3), α-humulene (5.2) | not evaluated | [60] |
E. dendroides L. | Greece | Inflorescences | Steam distillation | Heptacosane (10.5), pentacosane (6.0), 4-terpineol (5.5), tricosane (5.0) | not evaluated | [59] |
E. densa Schrenk | Syria | Aerial parts | Hydro-distillation | 1,8-Cineole (18.87), linalool (13.61), carvacrol (13.32), (E)-caryophyllene (10.29) | Radical scavenging activity (EC50 = 0.35 µg/mL) lower than BHA (EC50 = 0.135 µg/mL) | [61] |
E. fischeriana Steud. | China | Roots | Steam distillation | Eudesmol (18.22), p-menth-8-en-2-ol (9.36), caryophyllene oxide (8.61), selinenol (6.83) | Radical scavenging activity (IC50 = 57.2 µg/mL) similar to ascorbic acid (IC50 = 63.1 µg/mL) but lower than BHT (IC50 = 26.1 µg/mL) | [62] |
E. fragifera Jan | Italy | Inflorescences | Steam distillation | Carvacrol (61.55), carvon (9.22), β-caryophyllene (5.80)/geraniol (59.65), β-caryophyllene (9.05) | not evaluated | [63] |
E. gaillardotii Boiss. & Blanche | Turkey | Aerial parts | Hydro-distillation | Arachidic acid (32), hexatriacontane (8.7), mint furanone (8.4), palmitic acid (8.0), tetratetracontane (6.2), octadecane (5.6), α-silenene (5.2) | Anti-lipid peroxidation activity (IC50 = 14.8 µg/mL) similar to α-tocopherol, but much lower radical scavenging activity than BHT. | [64] |
E. golondrina L.C.Wheeler | Cameroon | Leaves | Steam distillation | Caryophyllene oxide (14.16), 2-pentadecanone (13.78), camphor (9.41), phytol (5.75) | not evaluated | [65] |
E. hebecarpa Boiss. | Iran | Aerial parts | Hydro-distillation | α-Bisabolol (31.2), cis-cadin-4-en-7-ol (20.1), trans-piperitol (8.6), cis-p-menth-2-en-1-ol (6.4), trans-p-menth-2-en-1-ol (6.2) | not evaluated | [66] |
E. helioscopia L. | Greece | Inflorescences | Steam distillation | Phytol (21.2), β-caryophyllene (10.0), behenic acid methyl ester (8.1), myristic acid methyl ester (5.5) | not evaluated | [59] |
E. helioscopia L. | Turkey | Aerial parts | Hydro-distillation | β-Cubebene (19.3), palmitic acid (12.2), caryophyllene oxide (11.7), τ-elemene (9.3), spathulenol (9.3), phytol (6.9), hexahydrofarnesly acetone (5.3) | Low antioxidant and antiacetylcholinesterase activity, moderate butyrylcholinesterase and similar anti-urease activity to thiourea. | [67] |
E. heterophylla L. | Nigeria | Leaves | Hydro-distillation | 3,7,12,15-Tetramethyl-2-hexadecen-1-ol (12.30), stearic acid (11.21), oleic acid (10.42), linoleic acid (8.97), 1,2-epoxy-cyclododecane (7.91), 13-tetradece-11-yn-1-ol (7.83), 7,10-hexadecadienal (7.62), 1,2,15,16-diepoxyhexadecane (6.37), phytol (6.32), 2-monopalmitin (5.43) | Toxic to brine shrimp larvae (LC50 = 21.7 µg/mL). Radical scavenging activity similar to ascorbic acid, lower than BHA but higher than α-tocopherol at 250 µg/mL. | [68] |
E. heterophylla L. | Nigeria | Stems | Hydro-distillation | Stearic acid (11.21), oleic acid (10.42), linoleic acid (8.97), 1,2-epoxy-cyclododecane (7.91), 13-tetradece-11-yn-1-ol (7.83), 7,10-hexadecadienal (7.62), 1,2,15,16-diepoxyhexadecane (6.37), phytol (6.32), 2-monopalmitin (5.43), 2-aminoethoxyethynediyl methyl ester (5.40) | Very toxic to brine shrimp larvae (LC50 = 8.94 µg/mL). Radical scavenging activity similar to ascorbic acid, lower than BHA but higher than α-tocopherol at 250 µg/mL. | [68] |
E. heterophylla L. | Egypt | Aerial parts | Hydro-distillation | 1,8-Cineole (32.0), camphor (16.5), β-elemene (5.9 ) | Radical scavenging activity (IC50 325.3 µL/L) lower than ascorbic acid (204.4 µL/L). | [69] |
E. hirta L. | Lagos | Leaves | Hydro-distillation | Phytol and its isomeric forms (34.8), 6,10,14-trimethyl-2-pentadecanone (12.37), hexadecanal (7.63), palmitic acid (6.26) | not evaluated | [70] |
E. macroclada Boiss. | Turkey | Aerial parts | Hydro-distillation | Tetratetracontane (42.7), hexatriacontane (12), mint furanone (6.0) | Anti-lipid peroxidation activity (IC50 = 14.8 µg/mL) similar to α-tocopherol. Lower radical scavenging activity than BHT but higher than E. gaillardotii essential oil. | [64] |
E. macrorrhiza C.A.Mey. ex Ledeb. | China | Aerial parts | Hydro-distillation | Acorenone B (16.72), (+)-cycloisosativene (14.94), 3β-hydroxy-5α-androstane (10.62), β-cedrene (8.40), copaene (7.37), palmitic acid (5.68) | Cytotoxic activity against Caco-2 cell line (IC50 = 78.32 µg/mL), antibacterial activity against Staphyloccocus aureus (MIC = 5.6 µg/mL) but lower than ampicillin (MIC = 0.25 µg/mL) | [71] |
E. macrorrhiza C.A.Mey. ex Ledeb. | China | Roots | Hydro-distillation | Acorenone B (25.80), (+)-cycloisosativene (12.40), β-cedrene (7.98), copaene (6.29), 3β-hydroxy-5α-androstane (5.52) | Cytotoxic activity against Caco-2 cell line (IC50 = 11.86 µg/mL), antibacterial activity against Staphyloccocus aureus (MIC = 2.8 µg/mL) but lower than ampicillin (MIC = 0.25 µg/mL) | [71] |
E. pekinensis Rupr. | China | Roots | Steam distillation | Agarospirol (49.23), hedycargol (20.66) | not evaluated | [72] |
E. pilosa L. | India | Aerial parts | Hydro-distillation | Phytol (5.75), n-pentadecanal (5.12) | not evaluated | [73] |
E. rigida M.Bieb. | Greece | Inflorescences | Steam distillation | Heneicosane (13.8), heptacosane (12.7), β-caryophyllene (9.4), linalool (6.7), pentacosane (6.5) | not evaluated | [59] |
E. sanctae-caterinae Fayed | Egypt | Aerial parts | Hydro-distillation | Valencene (16.01), (+) spathulenol (15.41), (-)-caryophyllene oxide (10.50), limonene (7.66) | not evaluated | [74] |
E. sanctae-caterinae Fayed | Egypt | Aerial parts | Microwave-assisted | Butyl hydroxyl toluene (25.58), β-eudesmol (13.67), 6-epi-shyobunol (11.83), (+) spathulenol (10.32), thymol (7.00) | not evaluated | [74] |
E. teheranica Boiss. | Iran | Aerial parts | Hydro-distillation | Elemol (57.5), β-caryophyllene (8.1%), caryophyllene oxide (7.8%) | not evaluated | [75] |
E. thymifolia L. | India | Aerial parts | Steam distillation | Palmitic acid (33.03), phytol (10.367), myristic acid (6.58) | not evaluated | [76] |
E. tithymaloides L. | Bangladesh | Aerial parts | Steam distillation | Eugenol (22.52), phenyl ethyl alcohol (14.63), 3-pentanol (9.22), caryophyllene oxide (7.73), isoeugenol (7.32), pentadecanol (5.14), spathulenol (5.11) | Radical scavenging activity (DPPH IC50 = 13.67 µg/mL) higher than BHA (IC50 = 18.26 µg/mL). | [77] |
Euphorbia Species | Tested Extract | Activity against | Highest Level of Activity * | Ref. |
---|---|---|---|---|
E. royleana Boiss. | Water Methanol Hexane | Escherichia coli, Bacillus subtilis, Pasteurella multocida, Aspergillus niger, Fusarium solani | Hexane extract against A. niger 14.00 ± 1.00 mm (terbinafine: 25.66 ± 1.69 mm) | [84] |
E. hirta L. E. tirucalli L. E. neriifolia L. | Methanol | Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Cryptococcus luteolus, Candida albicans, Candida tropicalis, Candida neoformans | Extract of E. tirucalli against P. aeruginosa 14.00 ± 0.00 mm. | [85] |
E. neriifolia L. | Chloroform Ethanol Ethyl acetate Butanol Water | Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris, Pseudomonas fluorescents | Chloroform extract against P. vulgaris 8 ± 0.4 mm. | [86] |
E. paralias L. | Acetone Chloroform | Salmonella enterica, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans | Chloroform extract against B. subtilis MIC = MBC = 15 µg/mL (Gentamicin, MBC = 15 µg/mL) | [87] |
E. granulata Forssk. E. helioscopia L. E hirta L. | Ethanol | Klebsiella pneumonia, Proteus vulgaris, Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Geotrichum candidum, Microsporum canis, Trichophyton mentagrophytes, Aspergillus fumigatus, Candida albicans, Candida tropicalis | Extract of E. hirta against S. aureus and M. canis MIC 1.95 µg/mL (ampicillin MIC = 0.06 µg/mL; amphotericin B MIC = 1.95 µg/mL) | [88] |
E. hirta L. | Ethanol | Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis | Against S. aureus MIC = 22.55 mg/mL | [89] |
E. hirta L. | Hexane Dichloromethane Ethyl acetate Ethanol | Enterobacter aerogenes, Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Staphylococcus aureus, Bacillus subtilis | Ethanol extract against S. typhi MIC= 31 µg/mL (chloramphenicol MIC = 62 µg/mL) | [90] |
E. characias L. | Ethanol Water | Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, Candida albicans, Saccharomyces cerevisiae, Aspergillus flavus, Penicillium chrysogenum | Ethanol extract against B. cereus MIC = 312.5 µg/mL (ampicillin MIC = 10 µg/mL) | [91] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Iriti, M.; Vitalini, S.; Antolak, H.; Pawlikowska, E.; Kręgiel, D.; Sharifi-Rad, J.; Oyeleye, S.I.; Ademiluyi, A.O.; Czopek, K.; et al. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules 2019, 9, 337. https://doi.org/10.3390/biom9080337
Salehi B, Iriti M, Vitalini S, Antolak H, Pawlikowska E, Kręgiel D, Sharifi-Rad J, Oyeleye SI, Ademiluyi AO, Czopek K, et al. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules. 2019; 9(8):337. https://doi.org/10.3390/biom9080337
Chicago/Turabian StyleSalehi, Bahare, Marcello Iriti, Sara Vitalini, Hubert Antolak, Ewelina Pawlikowska, Dorota Kręgiel, Javad Sharifi-Rad, Sunday I. Oyeleye, Adedayo O. Ademiluyi, Katarzyna Czopek, and et al. 2019. "Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance" Biomolecules 9, no. 8: 337. https://doi.org/10.3390/biom9080337