Investigation of Biological Activities of Wild Bitter Melon (Momordica charantia Linn. Var. Abbreviata Ser.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. 1,1-Diphenyl-2-Picryl-Hydrazyl Assay
2.4. 2,2-Azinobis-3-Ethyl Benzothiazoline-6-Sulfonic Acid Assay
2.5. DNA Oxidative Assay
2.6. α-Amylase Inhibitory Assay
2.7. Cell Culture
2.8. Nitrid Oxide Production Assay
2.9. Cell Viability Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Free Radical Scavenging Activities of Wild Bitter Melon
3.2. Protective Effect of Wild Bitter Melon against H2O2-Induced DNA Damage
3.3. α-Amylase Inhibitory Activity of Wild Bitter Melon
3.4. The Inhibitory Activity of Wild Bitter Melon on Nitric Oxide Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.-S.; Ngo, D.-N.; Wijesekara, I.; Kim, S.-K. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int. J. Boil. Macromol. 2012, 51, 378–383. [Google Scholar] [CrossRef]
- Vo, T.-S.; Ngo, D.-H.; Kim, S.-K. Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process. Biochem. 2012, 47, 386–394. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, N.R.; Akerele, R.O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal Plants in Therapy. Bull. World Health Org. 1985, 63, 965–981. [Google Scholar] [CrossRef]
- Fabricant, D.S.; Farnsworth, N.R. The Value of Plants Used in Traditional Medicine for Drug Discovery. Environ. Heal. Perspect. 2001, 109, 69. [Google Scholar]
- De Oliveira, M.S.; da Costa, W.A.; Bezerra, F.W.F.; Araújo, M.E.; Ferreira, G.C.; Junior, R.C. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. Afr. J. Biotechnol. 2018, 17, 829–846. [Google Scholar]
- Grover, J.; Yadav, S. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 2004, 93, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Virdi, J.; Sivakami, S.; Shahani, S.; Suthar, A.; Banavalikar, M.; Biyani, M. Antihyperglycemic effects of three extracts from Momordica charantia. J. Ethnopharmacol. 2003, 88, 107–111. [Google Scholar] [CrossRef]
- Garau, C.; Cummings, E.; Phoenix, D.A.; Singh, J. Beneficial effect and mechanism of action of Momordica charantia in the treatment of diabetes mellitus: A mini review. Int. J. Diabetes Metab. 2003, 11, 46–55. [Google Scholar]
- Yin, R.V.; Lee, N.C.; Hirpara, H.; Phung, O.J. The effect of bitter melon (Mormordica charantia) in patients with diabetes mellitus: A systematic review and meta-analysis. Nutr. Diabetes 2014, 4, e145. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J.; Day, C.; Leatherdale, B.A. Traditional treatments for diabetes from Asia and the West Indies. Practical Diabetes Int. 1986, 3, 190–192. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-Y.; Chen, Y.-M.; Hsu, Y.-J.; Huang, C.-C.; Sung, H.-C.; Chen, S.-S. Supplementation with Hualian No. 4 wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) extract increases anti-fatigue activities and enhances exercise performance in mice. J. Vet. Med Sci. 2017, 79, 1110–1119. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Chen, E.C.-F.; Tsay, H.-S.; Huang, C.-J.; Chen, E.C. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutr. J. 2012, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-H.; Tseng, H.-C.; Liu, C.-T.; Huang, C.-J.; Chyuan, J.-H.; Sheen, L.-Y. Wild bitter gourd protects against alcoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct. 2014, 5, 1027–1037. [Google Scholar] [CrossRef]
- Hsu, C.; Tsai, T.-H.; Li, Y.-Y.; Wu, W.-H.; Huang, C.-J.; Tsai, P.-J. Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation. Food Chem. 2012, 135, 976–984. [Google Scholar] [CrossRef]
- Vo, T.S.; Le, P.U.; Ngo, D.H. The increased γ-aminobutyric acid content by optimizing fermentation conditions of bacteria from kimchi and investigation of its biological activities. EurAsia. J. BioSci. 2018, 12, 369–376. [Google Scholar]
- Vo, T.-S.; Ngo, D.-H.; Kim, J.-A.; Ryu, B.; Kim, S.-K. An Antihypertensive Peptide from Tilapia gelatin Diminishes Free Radical Formation in Murine Microglial Cells. J. Agric. Food Chem. 2011, 59, 12193–12197. [Google Scholar] [CrossRef]
- Daksha, G.; Chandrashekar; Lobo, R.; Nayak, Y.; Nilesh, G. In-vitro antidiabetic activity of stem bark of Bauhinia purpurea Linn. Pharm. Lett. 2012, 4, 614–619. [Google Scholar]
- Vo, T.S.; Ngo, D.H.; Ta, Q.V.; Wijesekara, I.; Kong, C.S.; Kim, S.K. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia. Cell. Immunol. 2012, 277, 14–21. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Rezaeizadeh, A.; Zuki, A.B.Z.; Abdollahi, M.; Goh, Y.M.; Noordin, M.M.; Hamid, M.; Azmi, T.I. Determination of antioxidant activity in methanolic and chloroformic extracts of Momordica charantia. Afr. J. Biotechnol. 2011, 10, 4932–4940. [Google Scholar]
- Aljohi, A.; Matou-Nasri, S.; Ahmed, N. Antiglycation and Antioxidant Properties of Momordica charantia. PLoS ONE 2016, 11, 0159985. [Google Scholar] [CrossRef]
- Mccord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Gin, H.; Rigalleau, V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes Metab. 2000, 26, 265–272. [Google Scholar]
- Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem. 2019, 120, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Kato, E.; Kushibiki, N.; Inagaki, Y.; Kurokawa, M.; Kawabata, J. Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat model via pancreatic alpha-amylase inhibition by highly condensed procyanidins. Biosci. Biotechnol. Biochem. 2017, 81, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). Complement. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-F.; Gan, C.-Y. Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. Int. J. Boil. Macromol. 2016, 85, 487–496. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacol. 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, D.; Singh, V.; Ali, M. Phytochemical and pharmacological profile of Momordica charantia: A review. In Biochemistry and Therapeutic Uses of Medicinal Plants; Mahdi, A.A., Sharma, Y.K., Abid, M., Khan, M.A., Eds.; Discovery Publishing House: New Delhi, India, 2017. [Google Scholar]
- Zhao, G.-T.; Liu, J.-Q.; Deng, Y.-Y.; Li, H.-Z.; Chen, J.-C.; Zhang, Z.-R.; Zhou, L.; Qiu, M.-H. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia. Fitoterapia 2014, 95, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Hui, Q.; Wang, Y. Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems. Nat. Prod. Res. 2008, 22, 1112–1119. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Liu, W.-Q.; Lu, L.; Qiu, M.-H.; Zheng, Y.-T.; Yang, L.-M.; Zhang, X.-M.; Zhou, L.; Li, Z.-R. Kuguacins F–S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry 2009, 70, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Haixia, Z.; Xiaozou, Z.; Yawei, W.; Mancanq, L.; Zhide, H. Analysis of vicine in bitter melon samples by polyglycol-C8 solid phase with high performance liquid chromatography. Chin. J. Anal. Chem. 2004, 3, 408–410. [Google Scholar]
- Han, C.; Wang, J. Optimization of Conditions for Charantin Extraction in PEG/Salt Aqueous Two-Phase Systems Using Response Surface Methodology. Open Complement. Med. J. 2009, 1, 46–50. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.M.H.; Ngo, D.-H.; Ngo, D.-N.; Vo, T.S. Investigation of Biological Activities of Wild Bitter Melon (Momordica charantia Linn. Var. Abbreviata Ser.). Biomolecules 2019, 9, 211. https://doi.org/10.3390/biom9060211
Pham TMH, Ngo D-H, Ngo D-N, Vo TS. Investigation of Biological Activities of Wild Bitter Melon (Momordica charantia Linn. Var. Abbreviata Ser.). Biomolecules. 2019; 9(6):211. https://doi.org/10.3390/biom9060211
Chicago/Turabian StylePham, Thi My Hanh, Dai-Hung Ngo, Dai-Nghiep Ngo, and Thanh Sang Vo. 2019. "Investigation of Biological Activities of Wild Bitter Melon (Momordica charantia Linn. Var. Abbreviata Ser.)" Biomolecules 9, no. 6: 211. https://doi.org/10.3390/biom9060211