N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Treatment
2.2. Behavioral Testing
2.2.1. Open Field Test
2.2.2. Elevated Plus Maze Test
2.2.3. Video Recording System and Analysis
2.3. Oxidative Stress Markers Determination
2.4. Quantification of Expression of Apoptotic Genes: RT PCR Analysis of Genes Involved in the Regulation of Cellular Apoptosis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, 16, 1813–1825. [Google Scholar] [CrossRef] [Green Version]
- Jangra, A.; Kwatra, M.; Singh, T.; Pant, R.; Kushwah, P.; Ahmed, S.; Dwivedi, D.; Saroha, B.; Lahkar, M. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur. J. Pharmacol. 2016, 791, 51–61. [Google Scholar] [CrossRef]
- Lomeli, N.; Di, K.; Czerniawski, J.; Guzowski, J.F.; Bota, D.A. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic. Bio. Med. 2017, 102, 274–286. [Google Scholar] [CrossRef]
- Tanida, S.; Mizoshita, T.; Ozeki, K.; Tsukamoto, H.; Kamiya, T.; Kataoka, H.; Sakamuro, D.; Joh, T. Mechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment. Int. J. Surg. Oncol. 2012, 2012, 862879. [Google Scholar] [CrossRef]
- Manohar, S.; Jamesdaniel, S.; Salvi, R. Cisplatin inhibits hippocampal cell proliferation and alters the expression of apoptotic genes. Neurotox. Res. 2014, 25, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Rosic, G.; Joksimovic, J.; Selakovic, D.; Jakovljevic, V.; Zivkovic, V.; Srejovic, I.; Djuric, M.; Djuric, D. The Beneficial Effects of Sulfur-containing Amino Acids on Cisplatin induced Cardiotoxicity and Neurotoxicity in Rodents. Curr. Med. Chem. 2018, 25, 391–403. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Rosic, G.; Selakovic, D.; Joksimovic, J.; Srejovic, I.; Zivkovic, V.; Tatalović, N.; Orescanin-Dusic, Z.; Mitrovic, S.; Ilic, M.; Jakovljevic, V. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol. Lett. 2016, 242, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Sancho-Martínez, S.M.; Prieto-García, L.; Prieto, M.; Fuentes-Calvo, I.; López-Novoa, J.M.; Morales, A.I.; Martínez-Salgado, C.; López-Hernández, F.J. N-acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicol. Appl. Pharmacol. 2018, 349, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effect of drugs on anxiety-like behaviours: A review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ann. Clin. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the auto-oxidation of epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [PubMed]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [PubMed]
- Ellman, G.L. Tissue sulphydryl group. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.L.; Farr, A.L.; Randall, R.I. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.M.; Moussa, F.I. Neuroprotective effect of N-acetylcysteine against cisplatin-induced toxicity in rat brain by modulation of oxidative stress and inflammation. Drug Des. Devel. Ther. 2019, 13, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Owoeye, O.; Adedara, I.A.; Farombi, E.O. Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed. Pharmacother. 2018, 102, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kumburovic, I.; Selakovic, D.; Juric, T.; Jovicic, N.; Mihailovic, V.; Stankovic, J.K.; Sreckovic, N.; Kumburovic, D.; Jakovljevic, V.; Rosic, G. Antioxidant Effects of Satureja hortensis L. Attenuate the Anxiogenic Effect of Cisplatin in Rats. Oxid. Med. Cell. Long. 2019, 2019, 8307196. [Google Scholar]
- Shabani, M.; Nazeri, M.; Parsania, S.; Razavinasab, M.; Zangiabadi, N.; Esmaeilpour, K.; Abareghi, F. Walnut consumption protects rats against cisplatin-induced neurotoxicity. Neurotoxicology 2012, 33, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, R.; Ghosh, S.; Neumann, W.L.; Jamesdaniel, S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Dis. 2015, 1, 15052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donzelli, E.; Carfì, M.; Miloso, M.; Strada, A.; Galbiati, S.; Bayssas, M.; Griffon-Etienne, G.; Cavaletti, G.; Petruccioli, M.G.; Tredici, G. Neurotoxicity of platinum compounds: Comparison of the effects of cisplatin and oxaliplatin on the human neuroblastoma cell line SH-SY5Y. J. Neurooncol. 2004, 6, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Gopal, K.V.; Wu, C.; Shrestha, B.; Campbell, K.C.; Moore, E.J.; Gross, G.W. D-Methionine protects against cisplatin-induced neurotoxicity in cortical networks. Neurotoxicol. Teratol. 2012, 34, 495–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, M.R.; Johnson, D.A.; Sirkis, D.W.; Messing, A.; Johnson, J.A. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J. Neurosci. 2008, 28, 13574–13581. [Google Scholar] [CrossRef]
- Wang, W.F.; Wu, S.L.; Liou, Y.M.; Wang, A.L.; Pawlak, C.R.; Ho, Y.J. MPTP lesion causes neuroinflammation and deficits in object recognition in Wistar rats. Behav. Neurosci. 2009, 123, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Sulakhiya, K.; Keshavlal, G.P.; Bezbaruah, B.B.; Dwivedi, S.; Gurjar, S.S.; Munde, N.; Jangra, A.; Lahkar, M.; Gogoi, R. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci. Lett. 2016, 611, 106–111. [Google Scholar] [CrossRef]
- Eisch, A.J. Adult neurogenesis: Implications for psychiatry. Prog. Brain Res. 2002, 138, 315–342. [Google Scholar]
- Mattson, M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 2000, 1, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, D.F.; Deak, T. Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala. Brain Res. 2019, 1723, 146392. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, J.P.; Sànchez-Santed, F.; Heinsbroek, R.P.; Donker, A.; Postmes, P. A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: Evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res. 1994, 652, 323–333. [Google Scholar] [CrossRef]
- Scotton, E.; Colombo, R.; Reis, J.C.; Possebon, G.M.P.; Hizo, G.H.; Valiati, F.E.; Géa, L.P.; Bristot, G.; Salvador, M.; Silva, T.M.; et al. BDNF prevents central oxidative damage in a chronic unpredictable mild stress model: The possible role of PRDX-1 in anhedonic behavior. Behav. Brain Res. 2019, 378, 112245. [Google Scholar] [CrossRef] [PubMed]
- Selakovic, D.; Joksimovic, J.; Jovicic, N.; Mitrovic, S.; Mihailovic, V.; Katanic, J.; Milovanovic, D.; Pantovic, S.; Mijailovic, N.; Rosic, G. The Impact of Hippocampal Sex Hormones Receptors in Modulation of Depressive-Like Behavior Following Chronic Anabolic Androgenic Steroids and Exercise Protocols in Rats. Front. Behav. Neurosci. 2019, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Hicham, E.M.; Tariq, T.; Abderrahim, L.; Bilal, E.K.; Ali, O.; Aboubake, E.; Abdelhalim, M. Argan Oil Supplementation Reverses Anxiety and Depressive-Like Behaviors, Neurodegeneration and Oxidative Stress in Amygdala Induced by Chronic Mild Stress in Rats. J. Depress. Anxiety 2018, 7, 319. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, S.J.; Oh, C.S. Treadmill exercise exerts ameliorating effect on isolation-induced depression via neuronal activation. J. Exerc. Rehabil. 2013, 9, 234–242. [Google Scholar] [CrossRef]
- Zaki, S.M.; Mohamed, E.A.; Motawie, A.G.; Abdel Fattah, S. N-Acetylcysteine versus progesterone on the cisplatin-induced peripheral neurotoxicity. Folia Morphol. (Warsz) 2018, 77, 234–245. [Google Scholar] [CrossRef]
- Stajic, D.; Selakovic, D.; Jovicic, N.; Joksimovic, J.; Arsenijevic, N.; Lukic, M.L.; Rosic, G. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav. Immun. 2019, 78, 177–187. [Google Scholar] [CrossRef]
Group | Day 1 | Day 5 | Day 10 |
---|---|---|---|
Control | saline (2 mL, i.p.) | saline (2 mL, i.p.) | testing and sacrifice |
CIS | saline (2 mL, i.p.) | cisplatin (7.5 mg/kg, i.p.) | testing and sacrifice |
NAC | NAC (500 mg/kg, i.p.) | NAC (500 mg/kg, i.p.) | testing and sacrifice |
CIS + NAC | NAC (500 mg/kg, i.p.) | cisplatin (7.5 mg/kg, i.p.) + NAC (500 mg/kg, i.p.) | testing and sacrifice |
Name | Sequence (5′ to 3′) | |
---|---|---|
β-actin | F | GATCAGCAAGCAGGAGTACGAT |
R | GTAACAGTCCGCCTAGAAGCAT | |
Bax | F | GCTACAGGGTTTCATCCAGGAT |
R | ATGTTGTTGTCCAGTTCATCGC | |
Bcl-2 | F | GCAAAGCACATCCAATAAAAGCG |
R | GTACTTCATCACGATCTCCCGG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukovic, R.; Kumburovic, I.; Joksimovic Jovic, J.; Jovicic, N.; Katanic Stankovic, J.S.; Mihailovic, V.; Djuric, M.; Velickovic, S.; Arnaut, A.; Selakovic, D.; et al. N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules 2019, 9, 892. https://doi.org/10.3390/biom9120892
Vukovic R, Kumburovic I, Joksimovic Jovic J, Jovicic N, Katanic Stankovic JS, Mihailovic V, Djuric M, Velickovic S, Arnaut A, Selakovic D, et al. N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules. 2019; 9(12):892. https://doi.org/10.3390/biom9120892
Chicago/Turabian StyleVukovic, Rade, Igor Kumburovic, Jovana Joksimovic Jovic, Nemanja Jovicic, Jelena S. Katanic Stankovic, Vladimir Mihailovic, Milos Djuric, Stefan Velickovic, Aleksandra Arnaut, Dragica Selakovic, and et al. 2019. "N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats" Biomolecules 9, no. 12: 892. https://doi.org/10.3390/biom9120892
APA StyleVukovic, R., Kumburovic, I., Joksimovic Jovic, J., Jovicic, N., Katanic Stankovic, J. S., Mihailovic, V., Djuric, M., Velickovic, S., Arnaut, A., Selakovic, D., & Rosic, G. (2019). N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules, 9(12), 892. https://doi.org/10.3390/biom9120892