The Effects of Counter-Ions on Peptide Structure, Activity, and Applications
Abstract
1. Introduction
2. Types of Counter-Ions
3. Effects of Counter-Ions on Peptides
3.1. Peptide Structure Modulation
3.2. Positive Effects
3.3. Toxicity
4. Selectivity of Peptides Toward Counter-Ions
5. Counter-Ions in Peptide Delivery
5.1. Nanoemulsion Delivery Systems
5.2. Self-Emulsifying Drug Delivery System (SEDDs)
5.3. Solid Lipid Nanoparticles System (SLNs)
5.4. Nanostructured Lipid Carriers System (NLCs)
5.5. Liposomes and Micelles
5.6. Comparative Analysis of Delivery Platforms
6. Counter-Ions in Chromatography
7. Determination and Separation of Counter-Ions
7.1. Determination Methods
7.2. Separation Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CE | Capillary electrophoresis |
| DF | Diclofenac |
| DMPG | Dimyristoyl phosphatidylglycerol |
| DSS | Dextran sulfate sodium |
| ELSD | Evaporative light scattering detection |
| ESI-MS | Electrospray ionization mass spectrometry |
| FA | Formic acid |
| FDA | Food and Drug Administration |
| HILIC | Hydrophilic interaction chromatography |
| HIP | Hydrophobic ion pairing |
| HPLC | High-performance liquid chromatography |
| IC | Ion chromatography |
| INS | Insulin |
| ITP | Isotachophoresis |
| LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
| MOG | Myelin oligodendrocyte glycoprotein |
| MS | Mass spectrometry |
| NaCl | Sodium chloride |
| NLCs | Nanostructured lipid carriers |
| PAA | Polyacrylic acid |
| POMs | Polyoxometalates |
| RP-HPLC | Reversed-phase high-performance liquid chromatography |
| RPLC | Reverse-phase liquid chromatography |
| SDS | Sodium dodecyl sulfate |
| SEDDS | Self-emulsifying drug delivery systems |
| SLNs | Solid lipid nanoparticles |
| TFA | Trifluoroacetic acid |
| UV | Ultraviolet |
References
- Banting, F.G.; Best, C.H.; Collip, J.B.; Campbell, W.R.; Fletcher, A.A. Pancreatic Extracts in the Treatment of Diabetes Mellitus. Can. Med. Assoc. J. 1922, 12, 141–146. [Google Scholar] [PubMed] [PubMed Central]
- du Vigneaud, V.; Ressler, C.; Swan, J.M.; Roberts, C.W.; Katsoyannis, P.G. The Synthesis of Oxytocin1. J. Am. Chem. Soc. 1954, 76, 3115–3121. [Google Scholar] [CrossRef]
- Jain, S.; Gupta, S.; Patiyal, S.; Raghava, G.P.S. THPdb2: Compilation of FDA approved therapeutic peptides and proteins. Drug Discov. Today 2024, 29, 104047. [Google Scholar] [CrossRef]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Lin, C.Q.; Xiao, C.L.; Mulvey, T.B.; Cooper, G.J.; Reid, I.R. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. Am. J. Physiol. 1999, 277, E779–E783. [Google Scholar] [CrossRef] [PubMed]
- Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097. [Google Scholar] [CrossRef] [PubMed]
- García, M.C. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry. J. Chromatogr. B 2005, 825, 111–123. [Google Scholar] [CrossRef]
- Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Migoń, D.; Kamysz, W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals 2020, 13, 442. [Google Scholar] [CrossRef]
- Maha, A.H.; AS, A.-D.E. Hydrophobic Ion-Paired Drug Delivery System: A Review. Indian. Drugs 2020, 57, 7–18. [Google Scholar] [CrossRef]
- Bharate, S.S. Carboxylic Acid Counterions in FDA-Approved Pharmaceutical Salts. Pharm. Res. 2021, 38, 1307–1326. [Google Scholar] [CrossRef]
- Bharate, S.S. Modulation of biopharmaceutical properties of acidic drugs using cationic counterions: A critical analysis of FDA-approved pharmaceutical salts. Int. J. Pharm. 2021, 607, 120993. [Google Scholar] [CrossRef]
- Johansson, J.; Gudmundsson, G.H.; Rottenberg, M.N.E.; Berndt, K.D.; Agerberth, B. Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37. J. Biol. Chem. 1998, 273, 3718–3724. [Google Scholar] [CrossRef]
- Gaussier, H.; Lefevre, T.; Subirade, M. Binding of pediocin PA-1 with anionic lipid induces model membrane destabilization. Appl. Environ. Microb. 2003, 69, 6777–6784. [Google Scholar] [CrossRef]
- Kubik, S. Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. Acc. Chem. Res. 2017, 50, 2870–2878. [Google Scholar] [CrossRef]
- Cross, K.J.; Huq, N.L.; Bicknell, W.; Reynolds, E.C. Cation-dependent structural features of beta-casein-(1-25). Biochem. J. 2001, 356, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Borders, D.B.; Leese, R.A.; Jarolmen, H.; Francis, N.D.; Fantini, A.A.; Falla, T.; Fiddes, J.C.; Aumelas, A. Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core. J. Nat. Prod. 2007, 70, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Rembert, K.B.; Paterová, J.; Heyda, J.; Hilty, C.; Jungwirth, P.; Cremer, P.S. Molecular mechanisms of ion-specific effects on proteins. J. Am. Chem. Soc. 2012, 134, 10039–10046. [Google Scholar] [CrossRef]
- Chudoba, R.; Heyda, J.; Dzubiella, J. Tuning the collapse transition of weakly charged polymers by ion-specific screening and adsorption. Soft Matter 2018, 14, 9631–9642. [Google Scholar] [CrossRef]
- Shao, Q.; Fan, Y.; Yang, L.; Gao, Y.Q. Counterion Effects on the Denaturing Activity of Guanidinium Cation to Protein. Chem. Theory Comput. 2012, 8, 4364–4373. [Google Scholar] [CrossRef] [PubMed]
- Heyda, J.; Vincent, J.C.; Tobias, D.J.; Dzubiella, J.; Jungwirth, P. Ion Specificity at the Peptide Bond: Molecular Dynamics Simulations of N-Methylacetamide in Aqueous Salt Solutions. Phys. Chem. B 2010, 114, 1213–1220. [Google Scholar] [CrossRef]
- Lange, C.; Rudolph, R. Suppression of Protein Aggregation by L-Arginine. Curr. Pharm. Biotechno 2009, 10, 408–414. [Google Scholar] [CrossRef]
- Niece, K.L.; Hartgerink, J.D.; Donners, J.J.J.M.; Stupp, S.I. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 2003, 125, 7146–7147. [Google Scholar] [CrossRef]
- Kleijn, L.H.J.; Oppedijk, S.F.; t Hart, P.; van Harten, R.M.; Martin-Visscher, L.A.; Kemmink, J.; Breukink, E.; Martin, N.I. Total Synthesis of Laspartomycin C and Characterization of Its Antibacterial Mechanism of Action. J. Med. Chem. 2016, 59, 3569–3574. [Google Scholar] [CrossRef]
- Huang, X.; Wu, B.; Jia, C.; Hay, B.P.; Li, M.; Yang, X.J. Stepwise encapsulation of sulfate ions by ferrocenyl-functionalized tripodal hexaurea receptors. Angew. Chem. Weinheim Bergstr. Ger. 2013, 19, 9034–9041. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Pandit, G.; Debnath, S.; Chatterjee, S.; Satpati, P. Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding. RSC Advances 2021, 11, 36836–36849. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duan, F.; Liu, X.; Li, B. Cations Modulated Assembly of Triol-Ligand Modified Cu-Centered Anderson-Evans Polyanions. Molecules 2022, 27, 2933. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Bussat, M.C.; Klinguer-Hamour, C.; Goetsch, L.; Aubry, J.P.; Champion, T.; Julien, E.; Haeuw, J.F.; Bonnefoy, J.Y.; Corvaia, N. Stability and CTL activity of N-terminal glutamic acid containing peptides. J. Pept. Res. 2001, 57, 528–538. [Google Scholar] [CrossRef]
- Kubik, S.; Kirchner, R.; Nolting, D.; Seidel, J. A Molecular Oyster: A Neutral Anion Receptor Containing Two Cyclopeptide Subunits with a Remarkable Sulfate Affinity in Aqueous Solution. J. Am. Chem. Soc. 2002, 124, 12752–12760. [Google Scholar] [CrossRef]
- Meyer, J.D.; Manning, M.C. Hydrophobic Ion Pairing: Altering the Solubility Properties of Biomolecules. Pharm. Res. 1998, 15, 188–193. [Google Scholar] [CrossRef]
- Cristofoli, M.; Hadgraft, J.; Lane, M.E.; Sil, B.C. A preliminary investigation into the use of amino acids as potential ion pairs for diclofenac transdermal delivery. Int. J. Pharm. 2022, 623, 121906. [Google Scholar] [CrossRef]
- Boullerne, A.I.; Polak, P.E.; Braun, D.; Sharp, A.; Pelligrino, D.; Feinstein, D.L. Effects of peptide fraction and counter ion on the development of clinical signs in experimental autoimmune encephalomyelitis. J. Neurochem. 2014, 129, 696–703. [Google Scholar] [CrossRef]
- Pini, A.; Lozzi, L.; Bernini, A.; Brunetti, J.; Falciani, C.; Scali, S.; Bindi, S.; Di Maggio, T.; Rossolini, G.M.; Niccolai, N.; et al. Efficacy and toxicity of the antimicrobial peptide M33 produced with different counter-ions. Amino Acids 2012, 43, 467–473. [Google Scholar] [CrossRef]
- Ma, T.G.; Ling, Y.H.; McClure, G.D.; Tseng, M.T. Effects of trifluoroacetic acid, a halothane metabolite, on C6 glioma cells. J. Toxicol. Environ. Health 1990, 31, 147–158. [Google Scholar] [CrossRef]
- Johnson, B.M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N.A. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J. Med. Chem. 2020, 63, 6315–6386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Separation and detection methods for covalent drug–protein adducts. J. Chromatogr. B 2003, 797, 63–90. [Google Scholar] [CrossRef] [PubMed]
- Trudell, J.R.; Ardies, C.M.; Anderson, W.R. Antibodies raised against trifluoroacetyl-protein adducts bind to N-trifluoroacetyl-phosphatidylethanolamine in hexagonal phase phospholipid micelles. J. Pharmacol. Exp. Ther. 1991, 257, 657–662. [Google Scholar] [CrossRef]
- Pajewski, R.; Ferdani, R.; Schlesinger, P.H.; Gokel, G.W. Chloride complexation by heptapeptides: Influence of C- and N-terminal sidechains and counterion. Chem. Commun. 2004, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Parkanzky, P.D.; Bodner, M.L.; Duskin, C.A.; Weliky, D.P. Application of REDOR Subtraction for Filtered MAS Observation of Labeled Backbone Carbons of Membrane-Bound Fusion Peptides. J. Magn. Reson. 2002, 159, 101–110. [Google Scholar] [CrossRef]
- Schaly, A.; Belda, R.; García-España, E.; Kubik, S. Selective recognition of sulfate anions by a cyclopeptide-derived receptor in aqueous phosphate buffer. Org. Lett. 2013, 15, 6238–6241. [Google Scholar] [CrossRef]
- Elmes, R.B.P.; Jolliffe, K.A. Anion recognition by cyclic peptides. Chem. Commun. 2015, 51, 4951–4968. [Google Scholar] [CrossRef]
- Apte, S. Excipient counterion dependent mechanisms in Pharmaceutical Development: A review. J. Pain. Palliat. Care Pharmacother. 2011, 2, 28–40. [Google Scholar]
- Sandmeier, M.; Ricci, F.; To, D.; Lindner, S.; Stengel, D.; Schifferle, M.; Koz, S.; Bernkop-Schnürch, A. Design of self-emulsifying oral delivery systems for semaglutide: Reverse micelles versus hydrophobic ion pairs. Drug Deliv. Transl. Re 2025, 15, 2146–2161. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Rasul, A.; Abbas, G.; Shah, M.A.; Nazir, I. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLoS ONE 2023, 18, e0286668. [Google Scholar] [CrossRef]
- da Silva, B.D.; do Rosário, D.K.A.; Neto, L.T.; Lelis, C.A.; Conte-Junior, C.A. Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions. Foods 2023, 12, 1901. [Google Scholar] [CrossRef]
- Lei, F.; Zeng, F.; Yu, X.; Deng, Y.; Zhang, Z.; Xu, M.; Ding, N.; Tian, J.; Li, C. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J. Nanobiotechnol 2023, 21, 275. [Google Scholar] [CrossRef] [PubMed]
- Akram, S.; Anton, N.; Omran, Z.; Vandamme, T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics 2021, 13, 1030. [Google Scholar] [CrossRef] [PubMed]
- Raviadaran, R.; Ng, M.H.; Manickam, S.; Chandran, D. Ultrasound-assisted water-in-palm oil nano-emulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability. Ultrason. Sonochem 2019, 52, 353–363. [Google Scholar] [CrossRef]
- Xu, B.; Liu, C.; Sun, H.; Wang, X.; Huang, F. Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids Surf. B Biointerfaces 2020, 187, 110646. [Google Scholar] [CrossRef]
- Claus, V.; Spleis, H.; Federer, C.; Zöller, K.; Wibel, R.; Laffleur, F.; Dumont, C.; Caisse, P.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems (SEDDS): In vivo-proof of concept for oral delivery of insulin glargine. Int. J. Pharm. 2023, 639, 122964. [Google Scholar] [CrossRef]
- Haddadzadegan, S.; To, D.; Matteo Jörgensen, A.; Wibel, R.; Laffleur, F.; Bernkop-Schnürch, A. Comparative Analysis of PEG-Free and PEG-Based Self-Emulsifying Drug Delivery Systems for Enhanced Oral Bioavailability of Therapeutic (Poly) Peptides. Small 2024, 20, 2307618. [Google Scholar] [CrossRef]
- Hintzen, F.; Perera, G.; Hauptstein, S.; Müller, C.; Laffleur, F.; Bernkop-Schnürch, A. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int. J. Pharm. 2014, 472, 20–26. [Google Scholar] [CrossRef]
- Karamanidou, T.; Karidi, K.; Bourganis, V.; Kontonikola, K.; Kammona, O.; Kiparissides, C. Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur. J. Pharm. Biopharm. 2015, 97, 223–229. [Google Scholar] [CrossRef]
- Zupančič, O.; Leonaviciute, G.; Lam, H.T.; Partenhauser, A.; Podričnik, S.; Bernkop-Schnürch, A. Development and in vitro evaluation of an oral SEDDS for desmopressin. Drug Deliv. 2016, 23, 2074–2083. [Google Scholar] [CrossRef]
- Hetényi, G.; Griesser, J.; Moser, M.; Demarne, F.; Jannin, V.; Bernkop-Schnürch, A. Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. Int. J. Pharm. 2017, 523, 357–365. [Google Scholar] [CrossRef]
- Gallarate, M.; Battaglia, L.; Peira, E.; Trotta, M. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique. Int. J. Chem. Eng. 2011, 2011, 132435. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Liu, Z.; Ren, H.; Meng, Z.; Liu, K.; Liu, Z.; Yong, J.; Wang, Y.; Li, X. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur. J. Pharm. Biopharm. 2019, 144, 217–229. [Google Scholar] [CrossRef]
- Sağıroğlu, A.A.; Aydın, B.S.; Demirel, F. Enhanced Topical Delivery of Rosehip Oil (RO) through Nanostructured Lipid Carriers (NLC). Haydarpasa Numune Med. J. 2024, 64, 97. [Google Scholar] [CrossRef]
- Knoll, P.; Hörmann, N.; Nguyen Le, N.-M.; Wibel, R.; Gust, R.; Bernkop-Schnürch, A. Charge converting nanostructured lipid carriers containing a cell-penetrating peptide for enhanced cellular uptake. Colloid. Interface Sci. 2022, 628, 463–475. [Google Scholar] [CrossRef]
- Lu, H.D.; Rummaneethorn, P.; Ristroph, K.D.; Prud’homme, R.K. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations. Mol. Pharm. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Dumont, C.; Bourgeois, S.; Fessi, H.; Jannin, V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int. J. Pharm. 2018, 541, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, D.; Sano, C.; AlSawaftah, N.; El-Awady, R.; Husseini, G.A.; Paul, V. Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review. Recent. Pat. Anticancer. Drug Discov. 2021, 16, 498–520. [Google Scholar] [CrossRef]
- Ishida, N.; Kamada, K.; Omatsu, T.; Maeda, K.; Yoshida, Y. Uphill Accumulation of Ionic Species into a Lipid Vesicle by the Concentration Gradient of Counter Ions. Langmuir 2022, 38, 14208–14216. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, M.; Sampat, M.P.; Baburao, P.P.; Babar, V.B. A Novel Drug Delivery: Nanocochleates. Int. J. Pharm. Sci. Rev. Res. 2024, 12, 73–80. [Google Scholar] [CrossRef]
- Shibue, M.; Mant, C.T.; Hodges, R.S. The perchlorate anion is more effective than the trifluoroacetate anion as an ion-pairing reagent for reversed-phase chromatography of peptides. J. Chromatogr. A 2005, 1080, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Mant, C.T.; Hodges, R.S. Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-resolution liquid chromatography. J. Chromatogr. A 1987, 386, 205–222. [Google Scholar] [CrossRef]
- Chen, Y.; Mant, C.T.; Hodges, R.S. Selectivity differences in the separation of amphipathic α-helical peptides during reversed-phase liquid chromatography at pHs 2.0 and 7.0: Effects of different packings, mobile phase conditions and temperature. J. Chromatogr. A 2004, 1043, 99–111. [Google Scholar] [CrossRef]
- Huang, X.; Barnard, J.; Spitznagel, T.M.; Krishnamurthy, R. Protein Covalent Dimer Formation Induced by Reversed-Phase HPLC Conditions. Pharm. Sci. 2013, 102, 842–851. [Google Scholar] [CrossRef]
- Bobály, B.; Tóth, E.; Drahos, L.; Zsila, F.; Visy, J.; Fekete, J.; Vékey, K. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography. J. Chromatogr. A 2014, 1325, 155–162. [Google Scholar] [CrossRef]
- Grodner, B.; Jelińska, M. The method of direct determination of manganese in fresh parsley leaves and roots using capillary electrophoresis method. Prospect. Pharm. Sci. 2023, 21, 5–8. [Google Scholar] [CrossRef]
- Zhou, L.; Dovletoglou, A. Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide. J. Chromatogr. A 1997, 763, 279–284. [Google Scholar] [CrossRef]
- Hiissa, T.; Sirén, H.; Kotiaho, T.; Snellman, M.; Hautojärvi, A. Quantification of anions and cations in environmental water samples: Measurements with capillary electrophoresis and indirect-UV detection. J. Chromatogr. A 1999, 853, 403–411. [Google Scholar] [CrossRef]
- Mai, T.D.; Hauser, P.C. Simultaneous separations of cations and anions by capillary electrophoresis with contactless conductivity detection employing a sequential injection analysis manifold for flexible manipulation of sample plugs. J. Chromatogr. A 2012, 1267, 266–272. [Google Scholar] [CrossRef]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R.; Pecyna-Utylska, P.; Kernert, J. Ion Chromatography and Related Techniques in Carboxylic Acids Analysis. Crit. Rev. Anal. Chem. 2021, 51, 549–564. [Google Scholar] [CrossRef]
- Kaiser, E.; Rohrer, J. Determination of residual trifluoroacetate in protein purification buffers and peptide preparations by ion chromatography. J. Chromatogr. A 2004, 1039, 113–117. [Google Scholar] [CrossRef]
- Cao, L.; Li, X.; Fan, L.; Zheng, L.; Wu, M.; Zhang, S.; Huang, Q. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Marine Drugs 2017, 15, 51. [Google Scholar] [CrossRef]
- Melzer, T.; Wimmer, B.; Bock, S.; Posch, T.N.; Huhn, C. Challenges and applications of isotachophoresis coupled to mass spectrometry: A review. Electrophoresis 2020, 41, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Mrozik, W.; Markowska, A.; Guzik, L.; Kraska, B.; Kamysz, W. Determination of counter-ions in synthetic peptides by ion chromatography, capillary isotachophoresis and capillary electrophoresis. J. Pept. Sci. 2012, 18, 192–198. [Google Scholar] [CrossRef]
- Merli, D.; Profumo, A.; Dossi, C. An analytical method for Fe(II) and Fe(III) determination in pharmaceutical grade iron sucrose complex and sodium ferric gluconate complex. Pharm. Anal. 2012, 2, 450–453. [Google Scholar] [CrossRef]
- Qasem, R.J.; Farh, I.K.; Al Essa, M.A. A novel LC-MS/MS method for the quantitative measurement of the acetate content in pharmaceutical peptides. J. Pharm. Biomed. Anal. 2017, 146, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xiao, X.; Chou, T.-M.; Libera, M. Analytical Cryo-Scanning Electron Microscopy of Hydrated Polymers and Microgels. Acc. Chem. Res. 2021, 54, 2386–2396. [Google Scholar] [CrossRef] [PubMed]
- Streuli, A.; Coxon, C.R.; Steuer, C. Simultaneous Quantification of Commonly Used Counter Ions in Peptides and Active Pharmaceutical Ingredients by Mixed Mode Chromatography and Evaporative Light Scattering Detection. Pharm. Sci. 2021, 110, 2997–3003. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.; Lämmerhofer, M.; Lindner, W. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J. Chromatogr. A 2005, 1089, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Pack, B.W.; Risley, D.S. Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions. J. Chromatogr. A 2005, 1073, 269–275. [Google Scholar] [CrossRef]
- Sikora, K.; Neubauer, D.; Jaśkiewicz, M.; Kamysz, W. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach. Int. J. Pept. Res. Ther. 2018, 24, 265–270. [Google Scholar] [CrossRef]








| Feature | Inorganic Counter-Ions | Organic Counter-Ions |
|---|---|---|
| Key Characteristics | Small size, high charge density, strong electrostatic | Large size, functional groups, specific interactions |
| Typical Effects on Peptides | Enhances stability, effective charge screening | Modulates solubility via HIP and enhances permeation |
| Advantages | High stability, cost-effective, well-established | Tunable properties, functional, targets specific delivery |
| Disadvantages | Limited tunability, basic functionality | Complex synthesis, higher cost, potential conformational risk |
| Technique | Applications | Advantages | Limitations |
|---|---|---|---|
| CE | Broad ion analysis | High efficiency, minimal sample | Moderate sensitivity |
| IC | Universal ion detection | High sensitivity, robust | Specific columns required |
| ITP | Sample preconcentration | Excellent focusing capability | Method complexity |
| LC-MS/LC-ELSD | Specific ion quantification | High specificity, universal | Costly instrumentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Huang, Y.; Yang, L.; Gao, Y.; Jia, Z.; Liu, T.; Su, B.; Wang, C.; Jin, L.; Zhang, D. The Effects of Counter-Ions on Peptide Structure, Activity, and Applications. Biomolecules 2025, 15, 1567. https://doi.org/10.3390/biom15111567
Liu Y, Huang Y, Yang L, Gao Y, Jia Z, Liu T, Su B, Wang C, Jin L, Zhang D. The Effects of Counter-Ions on Peptide Structure, Activity, and Applications. Biomolecules. 2025; 15(11):1567. https://doi.org/10.3390/biom15111567
Chicago/Turabian StyleLiu, Ying, Yi Huang, Lan Yang, Yu Gao, Zheng Jia, Tingting Liu, Baoling Su, Chuyuan Wang, Lili Jin, and Dianbao Zhang. 2025. "The Effects of Counter-Ions on Peptide Structure, Activity, and Applications" Biomolecules 15, no. 11: 1567. https://doi.org/10.3390/biom15111567
APA StyleLiu, Y., Huang, Y., Yang, L., Gao, Y., Jia, Z., Liu, T., Su, B., Wang, C., Jin, L., & Zhang, D. (2025). The Effects of Counter-Ions on Peptide Structure, Activity, and Applications. Biomolecules, 15(11), 1567. https://doi.org/10.3390/biom15111567

