The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria
Abstract
:1. Introduction
2. Overview of Cyanophage
3. The Photosynthetic Machinery Used by Cyanobacteria
3.1. AMGs with the Potential to Impact the Biogenesis of the PBS
3.2. AMGs with the Potential to Repair Photosystem II following Oxidative Damage
3.3. AMGs with the Potential to Impact Electron Transport
4. AMGs with the Potential to Impact Central Carbon Metabolism
5. AMGs with the Potential to Impact Regulatory Factors
6. AMGs with the Potential to Impact Phosphate Metabolism
7. AMGs with the Potential to Impact Methylation
8. Biosynthetic Gene Clusters (BGCs): What Is the Function of BGCs in Phage?
9. Response of Hosts to Cyanophage Infection
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pomeroy, L.R.; LeB Williams, P.J.; Azam, F.; Hobbie, J.E. The microbial loop. Oceanography 2007, 20, 28–33. [Google Scholar] [CrossRef]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [PubMed] [Green Version]
- Breitbart, M.; Bonnain, C.; Malki, K.; Sawaya, N.A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 2018, 3, 754–766. [Google Scholar] [PubMed]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.; Meyer-Reil, L.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar]
- Moran, M.A.; Kujawinski, E.B.; Schroer, W.F.; Amin, S.A.; Bates, N.R.; Bertrand, E.M.; Braakman, R.; Brown, C.T.; Covert, M.W.; Doney, S.C.; et al. Microbial metabolites in the marine carbon cycle. Nat. Microbiol. 2022, 7, 508–523. [Google Scholar]
- Moran, M.A.; Ferrer-González, F.X.; Fu, H.; Nowinski, B.; Olofsson, M.; Powers, M.A.; Schreier, J.E.; Schroer, W.F.; Smith, C.B.; Uchimiya, M. The Ocean’s labile DOC supply chain. Limnol. Oceanogr. 2022, 67, 1007–1021. [Google Scholar]
- Wilhelm, S.W.; Suttle, C.A. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs. Bioscience 1999, 49, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Mann, N.H.; Clokie, M.R.; Millard, A.; Cook, A.; Wilson, W.H.; Wheatley, P.J.; Letarov, A.; Krisch, H. The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J. Bacteriol. 2005, 187, 3188–3200. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, K.; Jiao, N.; Chen, F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage–host genetic exchanges. Environ. Microbiol. 2012, 14, 540–558. [Google Scholar] [CrossRef]
- Sabehi, G.; Shaulov, L.; Silver, D.H.; Yanai, I.; Harel, A.; Lindell, D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc. Natl. Acad. Sci. USA 2012, 109, 2037–2042. [Google Scholar] [CrossRef]
- Labrie, S.; Frois-Moniz, K.; Osburne, M.; Kelly, L.; Roggensack, S.; Sullivan, M.; Gearin, G.; Zeng, Q.; Fitzgerald, M.; Henn, M. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ. Microbiol. 2013, 15, 1356–1376. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.; Liao, X.-Y.; Gao, X.-C.; Xu, X.-D.; Zhang, Q.-Y. Unraveling the genome structure of cyanobacterial podovirus A-4L with long direct terminal repeats. Virus Res. 2015, 203, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.R.; Hughes, J.E.; Welker, D.L.; Tompkins, T.A.; Steele, J.L. Complete genome sequence for Lactobacillus helveticus CNRZ 32, an industrial cheese starter and cheese flavor adjunct. Genome Announc. 2013, 1, e00590-13. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Lin, J.; Li, N.; Hu, Z.; Deng, F. Characterization and genomic analysis of a plaque purified strain of cyanophage PP. Virol. Sin. 2013, 28, 272–279. [Google Scholar] [PubMed]
- Sullivan, M.B.; Krastins, B.; Hughes, J.L.; Kelly, L.; Chase, M.; Sarracino, D.; Chisholm, S.W. The genome and structural proteome of an ocean siphovirus: A new window into the cyanobacterial ‘mobilome’. Environ. Microbiol. 2009, 11, 2935–2951. [Google Scholar] [CrossRef] [Green Version]
- Marston, M.F.; Taylor, S.; Sme, N.; Parsons, R.J.; Noyes, T.J.; Martiny, J.B. Marine cyanophages exhibit local and regional biogeography. Environ. Microbiol. 2013, 15, 1452–1463. [Google Scholar] [CrossRef]
- Marston, M.F.; Martiny, J.B. Genomic diversification of marine cyanophages into stable ecotypes. Environ. Microbiol. 2016, 18, 4240–4253. [Google Scholar]
- Crummett, L.T.; Puxty, R.J.; Weihe, C.; Marston, M.F.; Martiny, J.B. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 2016, 499, 219–229. [Google Scholar] [CrossRef]
- Yoshida, T.; Nagasaki, K.; Takashima, Y.; Shirai, Y.; Tomaru, Y.; Takao, Y.; Sakamoto, S.; Hiroishi, S.; Ogata, H. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J. Bacteriol. 2008, 190, 1762–1772. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shi, M.; Kong, S.; Gao, Y.; An, C. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology 2007, 366, 28–39. [Google Scholar]
- Sullivan, M.B.; Huang, K.H.; Ignacio-Espinoza, J.C.; Berlin, A.M.; Kelly, L.; Weigele, P.R.; Defrancesco, A.S.; Kern, S.E.; Thompson, L.R.; Young, S. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 2010, 12, 3035–3056. [Google Scholar] [PubMed] [Green Version]
- Huang, S.; Zhang, S.; Jiao, N.; Chen, F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS ONE 2015, 10, e0142962. [Google Scholar]
- Chénard, C.; Chan, A.; Vincent, W.; Suttle, C. Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME J. 2015, 9, 2046–2058. [Google Scholar] [PubMed] [Green Version]
- Millard, A.D.; Zwirglmaier, K.; Downey, M.J.; Mann, N.H.; Scanlan, D.J. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ. Microbiol. 2009, 11, 2370–2387. [Google Scholar]
- Weigele, P.R.; Pope, W.H.; Pedulla, M.L.; Houtz, J.M.; Smith, A.L.; Conway, J.F.; King, J.; Hatfull, G.F.; Lawrence, J.G.; Hendrix, R.W. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ. Microbiol. 2010, 9, 1675–1695. [Google Scholar] [CrossRef]
- Liu, X.; Kong, S.; Shi, M.; Fu, L.; Gao, Y.; An, C. Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyanobacterium Phormidium foveolarum: The conserved elements for a phage. Microb. Ecol. 2008, 56, 671–680. [Google Scholar]
- Chen, F.; Lu, J. Genomic sequence and evolution of marine cyanophage P60: A new insight on lytic and lysogenic phages. Appl. Environ. Microbiol. 2002, 68, 2589–2594. [Google Scholar]
- Zhang, D.; He, Y.; Gin, K.Y.-H. Genomic characterization of a novel freshwater cyanophage reveals a new lineage of cyanopodovirus. Front. Microbiol. 2022, 12, 4052. [Google Scholar]
- Dreher, T.W.; Brown, N.; Bozarth, C.S.; Schwartz, A.D.; Riscoe, E.; Thrash, C.; Bennett, S.E.; Tzeng, S.C.; Maier, C.S. A freshwater cyanophage whose genome indicates close relationships to photosynthetic marine cyanomyophages. Environ. Microbiol. 2011, 13, 1858–1874. [Google Scholar] [CrossRef] [Green Version]
- Lévesque, A.V.; Thaler, M.; Labrie, S.J.; Marois, C.; Vincent, A.T.; Lapointe, A.-M.; Culley, A. Complete genome sequences for two Myoviridae strains infecting cyanobacteria in a subarctic lake. Microbiol. Resour. Announc. 2020, 9, e01339-19. [Google Scholar]
- Deng, L.; Ignacio-Espinoza, J.C.; Gregory, A.C.; Poulos, B.T.; Weitz, J.S.; Hugenholtz, P.; Sullivan, M.B. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 2014, 513, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Marston, M.F.; Pierciey, F.J., Jr.; Shepard, A.; Gearin, G.; Qi, J.; Yandava, C.; Schuster, S.C.; Henn, M.R.; Martiny, J.B. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl. Acad. Sci. USA 2012, 109, 4544–4549. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, R.; Wang, N.; Cai, L.; Tong, Y.; Sun, Q.; Chen, F.; Jiao, N. Novel phage–host interactions and evolution as revealed by a cyanomyovirus isolated from an estuarine environment. Environ. Microbiol. 2018, 20, 2974–2989. [Google Scholar] [CrossRef] [PubMed]
- Pope, W.H.; Weigele, P.R.; Chang, J.; Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Jiang, W.; Chiu, W.; Hatfull, G.F.; Hendrix, R.W. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: A “horned” bacteriophage of marine Synechococcus. J. Mol. Biol. 2007, 368, 966–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly-Bechet, M.; Vergassola, M.; Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 2007, 17, 1486–1495. [Google Scholar] [CrossRef] [Green Version]
- Enav, H.; Béja, O.; Mandel-Gutfreund, Y. Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts. ISME J. 2012, 6, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Dekel-Bird, N.P.; Sabehi, G.; Mosevitzky, B.; Lindell, D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ. Microbiol. 2015, 17, 1286–1299. [Google Scholar] [CrossRef]
- Puxty, R.J.; Millard, A.D.; Evans, D.J.; Scanlan, D.J. Shedding new light on viral photosynthesis. Photosynth. Res. 2015, 126, 71–97. [Google Scholar] [CrossRef]
- Bryant, D.A.; Frigaard, N.-U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006, 14, 488–496. [Google Scholar] [CrossRef]
- Chang, L.; Liu, X.; Li, Y.; Liu, C.-C.; Yang, F.; Zhao, J.; Sui, S.-F. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 2015, 25, 726–737. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.-W.; Huang, H.; Kuang, T.-Y.; Sui, S.-F. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett. 2005, 579, 3569–3573. [Google Scholar] [CrossRef] [Green Version]
- MacColl, R. Cyanobacterial phycobilisomes. J. Struct. Biol. 1998, 124, 311–334. [Google Scholar] [CrossRef]
- Gao, X.; Sun, T.; Pei, G.; Chen, L.; Zhang, W. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl. Microbiol. Biotechnol. 2016, 100, 3401–3413. [Google Scholar] [CrossRef] [PubMed]
- Alvey, R.M.; Biswas, A.; Schluchter, W.M.; Bryant, D.A. Effects of modified phycobilin biosynthesis in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 2011, 193, 1663–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane, P.; Ivanov, A.; Öquist, G.; Hüner, N. Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. In Advances in Photosynthesis and Respiration Series; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Thompson, L.R.; Zeng, Q.; Chisholm, S.W. Gene Expression Patterns during Light and Dark Infection of Prochlorococcus by Cyanophage. PLoS ONE 2016, 11, e0165375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenberg-Dinkel, N. Bacterial heme oxygenases. Antioxid. Redox Signal. 2004, 6, 825–834. [Google Scholar] [PubMed]
- Ledermann, B.; Beja, O.; Frankenberg-Dinkel, N. New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ. Microbiol. 2016, 18, 4337–4347. [Google Scholar] [CrossRef] [Green Version]
- Dammeyer, T.; Michaelsen, K.; Frankenberg-Dinkel, N. Biosynthesis of open-chain tetrapyrroles in Prochlorococcus marinus. FEMS Microbiol. Lett. 2007, 271, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, N.; Lagarias, J.C. Phycocyanobilin: Ferredoxin Oxidoreductase of Anabaena sp. PCC 7120 biochemical and spectroscopic characterization. J. Biol. Chem. 2003, 278, 9219–9226. [Google Scholar] [CrossRef] [Green Version]
- Tu, S.-L.; Rockwell, N.C.; Lagarias, J.C.; Fisher, A.J. Insight into the Radical Mechanism of Phycocyanobilin-Ferredoxin Oxidoreductase (PcyA) Revealed by X-ray Crystallography and Biochemical Measurements. Biochemistry 2007, 46, 1484–1494. [Google Scholar] [CrossRef]
- Dammeyer, T.; Hofmann, E.; Frankenberg-Dinkel, N. Phycoerythrobilin synthase (PebS) of a marine virus. Crystal structures of the biliverdin complex and the substrate-free form. J. Biol. Chem. 2008, 283, 27547–27554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.-H.; Zhang, J.; Tu, J.-M.; Böhm, S.; Plöscher, M.; Eichacker, L.; Bubenzer, C.; Scheer, H.; Wang, X.; Zhou, M. Lyase activities of CpcS-and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin β-subunits. J. Biol. Chem. 2007, 282, 34093–34103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, J.; Jia, Y.; Clokie, M.R.; Mann, N.H. Infection by the ‘photosynthetic’ phage S-PM2 induces increased synthesis of phycoerythrin in Synechococcus sp. WH7803. FEMS Microbiol. Lett. 2008, 283, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, N.; Shen, J.-R. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl. Acad. Sci. USA 2003, 100, 98–103. [Google Scholar] [CrossRef]
- Melis, A. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci. 1999, 4, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.; Clokie, M.R.; Millard, A.; Mann, N.H. Cyanophage infection and photoinhibition in marine cyanobacteria. Res. Microbiol. 2004, 155, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.; Thompson, E.; Nixon, P.J.; Horton, P.; Mullineaux, C.W.; Robinson, C.; Mann, N.H. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem. 2002, 277, 2006–2011. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.; Thompson, E.; Bailey, S.; Kruse, O.; Mullineaux, C.W.; Robinson, C.; Mann, N.H.; Nixon, P.J. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp. PCC 6803. Plant Cell 2003, 15, 2152–2164. [Google Scholar] [CrossRef] [Green Version]
- Lindell, D.; Sullivan, M.B.; Johnson, Z.I.; Tolonen, A.C.; Rohwer, F.; Chisholm, S.W. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 11013–11018. [Google Scholar] [CrossRef]
- Lindell, D.; Jaffe, J.D.; Johnson, Z.I.; Church, G.M.; Chisholm, S.W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 2005, 438, 86–89. [Google Scholar] [CrossRef]
- Lockau, W. Evidence for a dual role of cytochrome c-553 and plastocyanin in photosynthesis and respiration of the cyanobacterium, Anabaena variabilis. Arch. Microbiol. 1981, 128, 336–340. [Google Scholar] [CrossRef]
- Thompson, L.R.; Zeng, Q.; Kelly, L.; Huang, K.H.; Singer, A.U.; Stubbe, J.; Chisholm, S.W. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl. Acad. Sci. USA 2011, 108, E757–E764. [Google Scholar] [CrossRef]
- Battchikova, N.; Eisenhut, M.; Aro, E.-M. Cyanobacterial NDH-1 complexes: Novel insights and remaining puzzles. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alperovitch-Lavy, A.; Sharon, I.; Rohwer, F.; Aro, E.M.; Glaser, F.; Milo, R.; Nelson, N.; Béjà, O. Reconstructing a puzzle: Existence of cyanophages containing both photosystem-I and photosystem-II gene suites inferred from oceanic metagenomic datasets. Environ. Microbiol. 2011, 13, 24–32. [Google Scholar] [CrossRef]
- Sharon, I.; Battchikova, N.; Aro, E.-M.; Giglione, C.; Meinnel, T.; Glaser, F.; Pinter, R.Y.; Breitbart, M.; Rohwer, F.; Béja, O. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011, 5, 1178–1190. [Google Scholar] [CrossRef] [Green Version]
- Nowaczyk, M.M.; Wulfhorst, H.; Ryan, C.M.; Souda, P.; Zhang, H.; Cramer, W.A.; Whitelegge, J.P. NdhP and NdhQ: Two novel small subunits of the cyanobacterial NDH-1 complex. Biochemistry 2011, 50, 1121–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, J.; Schulz, R. Sequence analysis of an operon of a NAD (P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD (P) H-dehydrogenase (complex 1). Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1996, 1298, 141–147. [Google Scholar] [CrossRef]
- Guedeney, G.; Corneille, S.; Cuiné, S.; Peltier, G. Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD (P) H dehydrogenase complex. FEBS Lett. 1996, 378, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, N.; Mukougawa, K.; Kohchi, T.; Lagarias, J.C. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 2001, 13, 965–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dammeyer, T.; Frankenberg-Dinkel, N. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem. Photobiol. Sci. 2008, 7, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.; Melis, A.; Mackey, K.R.; Cardol, P.; Finazzi, G.; van Dijken, G.; Berg, G.M.; Arrigo, K.; Shrager, J.; Grossman, A. Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2008, 1777, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, K.R.; Paytan, A.; Grossman, A.R.; Bailey, S. A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol. Oceanogr. 2008, 53, 900–913. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Dolganov, N.; Björkman, O.; Grossman, A.R. The High Light-inducible Polypeptides in Synechocystis PCC6803 expression and function in high light. J. Biol. Chem. 2001, 276, 306–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havaux, M.; Guedeney, G.; He, Q.; Grossman, A.R. Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim. Biophys. Acta (BBA)-Bioenerg. 2003, 1557, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Promnares, K.; Komenda, J.; Bumba, L.; Nebesarova, J.; Vacha, F.; Tichy, M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J. Biol. Chem. 2006, 281, 32705–32713. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jantaro, S.; Lu, B.; Majeed, W.; Bailey, M.; He, Q. The High Light-Inducible Polypeptides Stabilize Trimeric Photosystem I Complex under High Light Conditions in Synechocystis PCC 6803. Plant Physiol. 2008, 147, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Vavilin, D.; Funk, C.; Vermaas, W. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 2002, 49, 149–160. [Google Scholar] [CrossRef]
- Vavilin, D.; Yao, D.; Vermaas, W. Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: Kinetic analysis of pigment labeling with 15N and 13C. J. Biol. Chem. 2007, 282, 37660–37668. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Tamoi, M.; Miyazaki, T.; Fukamizo, T.; Shigeoka, S. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J. 2010, 42, 504–513. [Google Scholar] [CrossRef]
- Zinser, E.R.; Lindell, D.; Johnson, Z.I.; Futschik, M.E.; Steglich, C.; Coleman, M.L.; Wright, M.A.; Rector, T.; Steen, R.; McNulty, N.; et al. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus. PLoS ONE 2009, 4, e5135. [Google Scholar] [CrossRef] [Green Version]
- Thorell, S.; Schürmann, M.; Sprenger, G.A.; Schneider, G. Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family. J. Mol. Biol. 2002, 319, 161–171. [Google Scholar] [PubMed]
- Schneider, S.; Sandalova, T.; Schneider, G.; Sprenger, G.A.; Samland, A.K. Replacement of a Phenylalanine by a Tyrosine in the Active Site Confers Fructose-6-phosphate Aldolase Activity to the Transaldolase of Escherichia coli and Human Origin. J. Biol. Chem. 2008, 283, 30064–30072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puxty, R.J.; Millard, A.D.; Evans, D.J.; Scanlan, D.J. Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth. Curr. Biol. 2016, 26, 1585–1589. [Google Scholar] [CrossRef] [Green Version]
- Hurwitz, B.L.; Hallam, S.J.; Sullivan, M.B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013, 14, R123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, M.C.; Fink, G.R. Life and Death in a Macrophage: Role of the Glyoxylate Cycle in Virulence. Eukaryot. Cell 2002, 1, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Markovitz, A.; Sydiskis, R.J.; Lieberman, M.M. Genetic and Biochemical Studies on Mannose-Negative Mutants That Are Deficient in Phosphomannose Isomerase in Escherichia coli K-12. J. Bacteriol. 1967, 94, 1492–1496. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. Mar. Environ. Res. 2023, 184, 105877. [Google Scholar]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar]
- Howard-Varona, C.; Lindback, M.M.; Bastien, G.E.; Solonenko, N.; Zayed, A.A.; Jang, H.; Andreopoulos, B.; Brewer, H.M.; del Rio, T.G.; Adkins, J.N. Phage-specific metabolic reprogramming of virocells. ISME J. 2020, 14, 881–895. [Google Scholar] [CrossRef] [Green Version]
- Gyaneshwar, P.; Paliy, O.; Mcauliffe, J.; Popham, D.L.; Jordan, M.I.; Kustu, S. Sulfur and Nitrogen Limitation in Escherichia coli K-12: Specific Homeostatic Responses. J. Bacteriol. 2005, 187, 1074–1090. [Google Scholar]
- Guédon, E.; Martin-Verstraete, I. Cysteine Metabolism and Its Regulation in Bacteria; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ensign, S.A. Revisiting the glyoxylate cycle: Alternate pathways for microbial acetate assimilation. Mol. Microbiol. 2010, 61, 274–276. [Google Scholar]
- Dolan, S.K.; Welch, M. The Glyoxylate Shunt, 60 Years on. Annu. Rev. Microbiol. 2018, 72, 309–330. [Google Scholar] [PubMed]
- Ingalls, A.; Shah, S.; Hansman, R.; Aluwihare, L.; Santos, G.; Druffel, E.; Pearson, A. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA 2006, 103, 6442–6447. [Google Scholar]
- Sawa, N.; Tatsuke, T.; Ogawa, A.; Hirokawa, Y.; Osanai, T.; Hanai, T. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement. J. Biosci. Bioeng. 2019, 127, 256–264. [Google Scholar]
- Sharma, U.K.; Dipankar, C. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. Fems Microbiol. Rev. 2010, 34, 646–657. [Google Scholar]
- Helmann, J.D. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 2010, 5, 2875–2882. [Google Scholar]
- Gruber, T.M.; Bryant, D.A. Molecular systematic studies of eubacteria, using sigma 70-type sigma factors of group 1 and group 2. J. Bacteriol. 1997, 179, 1734–1747. [Google Scholar] [PubMed] [Green Version]
- Nordlund, P.R.; Reichard, P. Ribonucleotide reductases. Adv. Enzymol. Relat. Areas Mol. Biol. 2006, 75, 681–706. [Google Scholar]
- Warren, M.J.; Raux, E.; Schubert, H.L.; Escalantesemerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Cheminform 2002, 19, 390–412. [Google Scholar]
- Traxler, M.F.; Summers, S.M.; Nguyen, H.T.; Zacharia, V.M.; Conway, T. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol. Microbiol. 2010, 68, 1128–1148. [Google Scholar]
- Gross, M.; Marianovsky, I.; Glaser, G. MazG—A regulator of programmed cell death in Escherichia coli. Mol. Microbiol. 2010, 59, 590–601. [Google Scholar]
- Lee, S.; Kim, M.H.; Kang, B.S.; Kim, J.S.; Kim, K.J. Crystal Structure of Escherichia coli MazG, the Regulator of Nutritional Stress Response. J. Biol. Chem. 2008, 283, 15232–15240. [Google Scholar] [PubMed] [Green Version]
- Clokie, M.R.J.; Shan, J.; Bailey, S.; Jia, Y.; Krisch, H.M.; West, S.; Mann, N.H. Transcription of a ‘photosynthetic’ T4-type phage during infection of a marine cyanobacterium. Environ. Microbiol. 2010, 8, 827–835. [Google Scholar]
- Galperin, M.Y.; Moroz, O.V.; Wilson, K.S.; Murzin, A.G. House cleaning, a part of good housekeeping. Mol. Microbiol. 2006, 59, 5–19. [Google Scholar]
- Eric, S.M.; Karam, J.; Dawson, M.; Trojanowska, M.; Gauss, P.; Gold, L. Translational repression: Biological activity of plasmid-encoded bacteriophage T4 RegA protein. J. Mol. Biol. 1987, 194, 397–410. [Google Scholar]
- Adari, H.Y.; Rose, K.; Williams, K.R.; Konigsberg, W.H.; Spicer, E.K. Cloning, Nucleotide Sequence, and Overexpression of the Bacteriophage T4 regA Gene. Proc. Natl. Acad. Sci. USA 1985, 82, 1901–1905. [Google Scholar]
- Karam, J.; Gold, L.; Singer, B.S.; Dawson, M. Translational regulation: Identification of the site on bacteriophage T4 rIIB mRNA recognized by the regA gene function. Proc. Natl. Acad. Sci. USA 1981, 78, 4669–4673. [Google Scholar] [PubMed]
- Herrick, J.; Sclavi, B. Ribonucleotide reductase and the regulation of DNA replication: An old story and an ancient heritage. Mol. Microbiol. 2010, 63, 22–34. [Google Scholar]
- Dwivedi, B. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol. Biol. 2013, 13, 1–17. [Google Scholar]
- Harrison, A.O.; Moore, R.M.; Polson, S.W.; Wommack, K.E. Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton. Front Microbiol. 2019, 10, 134. [Google Scholar]
- Gkotsi, D.S.; Ludewig, H.; Sharma, S.V.; Connolly, J.A.; Dhaliwal, J.; Wang, Y.; Unsworth, W.P.; Taylor, R.J.K.; Mclachlan, M.M.W.; Shanahan, S. A marine viral halogenase that iodinates diverse substrates. Nat. Chem. 2019, 11, 1091–1097. [Google Scholar] [PubMed]
- Gkotsi, D.S.; Dhaliwal, J.; Mclachlan, M.M.; Mulholand, K.R.; Goss, R.J. Halogenases: Powerful tools for biocatalysis (mechanisms applications and scope). Curr. Opin. Chem. Biol. 2018, 43, 119–126. [Google Scholar] [PubMed]
- Smith, D.R.M.; Uria, A.R.; Helfrich, E.J.N.; Milbredt, D.; Van Pée, K.H.; Piel, J.R.; Goss, R.J.M. An unusual flavin-dependent halogenase from the metagenome of the marine sponge Theonella swinhoei WA. ACS Chem. Biol. 2017, 12, 1281–1287. [Google Scholar]
- Wu, J. Phosphate Depletion in the Western North Atlantic Ocean. Science 2000, 289, 759–762. [Google Scholar] [PubMed] [Green Version]
- Kazakov, A.E.; Vassieva, O.; Gelfand, M.S.; Osterman, A.; Overbeek, R. Bioinformatics classification and functional analysis of PhoH homologs. Silico Biol. 2003, 3, 3–15. [Google Scholar]
- Kim, S.K.; Makino, K.; Amemura, M.; Shinagawa, H.; Nakata, A. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J. Bacteriol. 1993, 175, 1316–1324. [Google Scholar]
- Wanner, B.L. Phosphorus assimilation and control of the phosphate regulon. Escherichia coli Salmonella Cell. Mol. Biol. 1996, 1, 1357–1381. [Google Scholar]
- Ignacio-Espinoza, J.C.; Sullivan, M.B. Phylogenomics of T4 cyanophages: Lateral gene transfer in the ‘core’ and origins of host genes. Environ. Microbiol. 2012, 14, 2113–2126. [Google Scholar]
- Weigele, P.; Raleigh, E.A. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem. Rev. 2016, 116, 12655–12687. [Google Scholar]
- Dragoš, A.; Andersen, A.J.; Lozano-Andrade, C.N.; Kempen, P.J.; Kovács, Á.T.; Strube, M.L. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr. Biol. 2021, 31, 3479–3489. [Google Scholar]
- Waldbauer, J.R.; Coleman, M.L.; Rizzo, A.I.; Campbell, K.L.; Lotus, J.; Zhang, L. Nitrogen sourcing during viral infection of marine cyanobacteria. Proc. Natl. Acad. Sci. USA 2019, 116, 15590–15595. [Google Scholar] [PubMed] [Green Version]
- Giglione, C.; Vallon, O.; Meinnel, T. Control of protein life-span by N-terminal methionine excision. EMBO J. 2003, 22, 13–23. [Google Scholar] [PubMed] [Green Version]
- Van Duin, J.; Wijnands, R. The function of ribosomal protein S21 in protein synthesis. Eur. J. Biochem. 1981, 118, 615–619. [Google Scholar] [PubMed]
- Mitra, A.; Nagaraja, V. Under-representation of intrinsic terminators across bacterial genomic islands: Rho as a principal regulator of xenogenic DNA expression. Gene 2012, 508, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Shestakov, S.; Karbysheva, E. The role of viruses in the evolution of cyanobacteria. Biol. Bull. Rev. 2015, 5, 527–537. [Google Scholar]
- Gasper, R.; Schwach, J.; Hartmann, J.; Holtkamp, A.; Wiethaus, J.; Riedel, N.; Hofmann, E.; Frankenberg-Dinkel, N. Distinct features of cyanophage-encoded T-type phycobiliprotein lyase ΦCpeT: The role of auxiliary metabolic genes. J. Biol. Chem. 2017, 292, 3089–3098. [Google Scholar] [CrossRef] [Green Version]
Phage | Taxonomy | Host | Geographic Distribution | Genome Length (Kb) | GC% | Protein | Gene | tRNA | Accession |
---|---|---|---|---|---|---|---|---|---|
Anabaena phage A-4L [12] | Podoviridae | Anabaena | Russia | 41.75 | 43.4 | 38 | 38 | NC_024358 | |
Cyanophage 9515-10a | Podoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 47.06 | 39.2 | 55 | 56 | NC_016657 | |
Cyanophage BHS3 | Podoviridae | South Africa | 10.03 | 54.9 | 9 | MF098555 | |||
Cyanophage KBS-P-1A | Podoviridae | Synechococcus | USA | 45.73 | 47.4 | 57 | 58 | NC_020865 | |
Cyanophage KBS-S-1A | Podoviridae | Synechococcus | USA | 32.4 | 44.7 | 37 | 42 | JF974297 | |
Cyanophage KBS-S-2A [13] | Siphoviridae | Synechococcus | Atlantic: Chesapeake Bay | 40.66 | 49 | 64 | 64 | NC_020854 | |
Cyanophage MED4-117 | Siphoviridae | 38.83 | 37.2 | 63 | 63 | NC_020857 | |||
Cyanophage NATL1A-7 | Podoviridae | Prochlorococcus | Gulf of Aqaba, Red Sea | 47.74 | 38.7 | 65 | 69 | 1 | NC_016658 |
Cyanophage NATL2A-133 | Podoviridae | North Pacific Ocean | 47.54 | 39.9 | 62 | 66 | NC_016659 | ||
Cyanophage PP [14] | Podoviridae | Leptolyngbya foveolarum | China | 42.48 | 46.4 | 41 | 41 | NC_022751 | |
Cyanophage P-RSM1 | Myoviridae | Gulf of Aqaba, Red Sea | 177.21 | 40.2 | 212 | 215 | 2 | NC_021071 | |
Cyanophage P-RSM6 | Myoviridae | Red Sea | 192.5 | 39.3 | 221 | 224 | 3 | NC_020855 | |
Cyanophage P-SS1 | Myoviridae | Prochlorococcus | North Atlantic Ocean | 178.28 | 36.7 | 216 | 217 | JF974306 | |
Cyanophage PSS2 [15] | Siphoviridae | Prochlorococcus | 10.7 | 52.3 | 132 | 132 | NC_013021 | ||
Cyanophage P-SSP2 | Podoviridae | 45.89 | 37.9 | 56 | 59 | NC_016656 | |||
Cyanophage P-TIM40 | Myoviridae | Prochlorococcus | 188.63 | 40.7 | 235 | 236 | 1 | NC_028663 | |
Cyanophage S-RIM4 | Myoviridae | Synechococcus | USA: Narragansett Bay; Rhode Island | 175.46 | 41.2 | 228 | 237 | 9 | MK493321 |
Cyanophage S-RIM12 [16] | Myoviridae | USA: Narragansett Bay; Rhode Island | 174.3 | 39.6 | 215 | KX349318 | |||
Cyanophage S-RIM14 [17] | Myoviridae | USA | 179.5 | 41 | 216 | KX349306 | |||
Cyanophage S-RIM32 [18] | Myoviridae | USA | 194.44 | 39.9 | 230 | 240 | 10 | NC_031235 | |
Cyanophage S-RIM50 | Myoviridae | Synechococcus | USA | 174.31 | 40.3 | 227 | 235 | 8 | NC_031242 |
Cyanophage SS120-1 | Podoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 46.99 | 40.5 | 52 | NC_020872 | ||
Cyanophage S-SSM2 | Myoviridae | Synechococcus | Sargasso Sea | 179.98 | 41 | 207 | 208 | 1 | JF974292 |
Cyanophage S-SSM6a | Myoviridae | Synechococcus | Atlantic Ocean | 232.88 | 39 | 304 | 310 | 5 | HQ317391 |
Cyanophage S-SSM6b | Myoviridae | Synechococcus | Sargasso Sea, North Atlantic Ocean | 182.37 | 39.4 | 218 | 221 | 3 | HQ316603 |
Cyanophage S-TIM4 | Myoviridae | Israel | 176.5 | 37.7 | 235 | 235 | 3 | NC_048015 | |
Cyanophage S-TIM5 [10] | Myoviridae | Synechococcus | Gulf of Aqaba, Red Sea | 161.44 | 40.5 | 180 | 190 | 10 | NC_019516 |
Cyanophage Syn2 | Myoviridae | Synechococcus | Sargasso Sea | 175.6 | 41.3 | 201 | 209 | 6 | HQ634190 |
Cyanophage Syn10 | Myoviridae | Synechococcus | Gulf Stream | 177 | 40.6 | 205 | 216 | 6 | HQ634191 |
Cyanophage Syn30 | Myoviridae | Synechococcus | NE Providence Channel | 178.81 | 39.9 | 209 | 216 | 6 | NC_021072 |
Microcystis phage MACPNOA1 | Siphoviridae | Microcystis | 42.47 | 68.3 | 53 | KY697807 | |||
Microcystis virus Ma-LMM01 [19] | Myoviridae | Microcystis | Japan | 1621 | 46 | 184 | 186 | 2 | NC_008562 |
Phormidium virus WMP3 | Podoviridae | Phormidium | 43.25 | 46.5 | 41 | 41 | NC_009551 | ||
Phormidium virus WMP4 [20] | Podoviridae | Phormidium | 40.94 | 51.8 | 45 | 45 | NC_008367 | ||
Prochlorococcus phage MED4-184 | Siphoviridae | Prochlorococcus | 38.33 | 37.2 | 59 | 60 | NC_020847 | ||
Prochlorococcus phage MED4-213 | Myoviridae | Prochlorococcus | North Pacific Ocean | 180.98 | 37.8 | 216 | 218 | NC_020845 | |
Prochlorococcus phage P-GSP1 | Podoviridae | Prochlorococcus | Gulf Stream, North Atlantic Ocean | 44.95 | 39.6 | 49 | 53 | NC_020878 | |
Prochlorococcus phage P-HM1 [21] | Myoviridae | Prochlorococcus | 181.04 | 37.8 | 241 | 241 | NC_015280 | ||
Prochlorococcus phage P-HM2 [21] | Myoviridae | Prochlorococcus | 183.81 | 38 | 242 | 242 | NC_015284 | ||
Prochlorococcus phage P-RSM4 [21] | Myoviridae | Prochlorococcus | Red Sea | 176.43 | 37.6 | 239 | 242 | 3 | NC_015283 |
Prochlorococcus phage P-RSP2 | Podoviridae | Prochlorococcus | Gulf of Aqaba, Red Sea | 42.26 | 34 | 46 | 48 | HQ332139 | |
Prochlorococcus phage P-SSM2 | Myoviridae | Prochlorococcus | 252.4 | 35.5 | 332 | GU071092 | |||
Prochlorococcus phage P-SSM3 | Myoviridae | Prochlorococcus | Atlantic Ocean | 179.06 | 36.7 | 214 | 223 | NC_021559 | |
Prochlorococcus phage P-SSM4 [21] | Myoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 178.25 | 36.7 | 221 | 221 | NC_006884.2 | |
Prochlorococcus phage P-SSM5 | Myoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 252.01 | 35.5 | 319 | 331 | 1 | HQ632825 |
Prochlorococcus phage P-SSM7 [21] | Myoviridae | Prochlorococcus | 1828 | 37 | 237 | 241 | 4 | NC_015290 | |
Prochlorococcus phage P-SSP3 | Podoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 46.2 | 37.9 | 53 | 56 | NC_020874 | |
Prochlorococcus phage P-SSP6 | Podoviridae | Prochlorococcus | Sargasso Sea, North Atlantic Ocean | 47.04 | 39.2 | 48 | 54 | HQ634152 | |
Prochlorococcus phage Syn1 [21] | Myoviridae | Prochlorococcus | 191.2 | 40.6 | 234 | 240 | 6 | NC_015288 | |
Prochlorococcus phage Syn33 [21] | Myoviridae | Prochlorococcus | Gulf Stream, North Atlantic Ocean | 174.29 | 39.6 | 227 | 232 | 5 | NC_015285 |
Prochlorococcus virus PSSP7 | Podoviridae | Prochlorococcus | 45 | 38.8 | 58 | NC_006882 | |||
Synechococcus phage KBS-M-1A | Myoviridae | Synechococcus | USA | 171.74 | 40.6 | 213 | 221 | 8 | JF974293 |
Synechococcus phage S-B68 | Myoviridae | Synechococcus | China | 163.98 | 51.7 | 229 | MK016664 | ||
Synechococcus phage S-CAM1 | Myoviridae | Synechococcus | USA | 197.5 | 43 | 250 | NC_020837 | ||
Synechococcus phage S-CAM8 | Myoviridae | Synechococcus | USA | 171.8 | 39.2 | 207 | NC_021530 | ||
Synechococcus phage S-CBM2 | Myoviridae | Synechococcus | USA | 180.89 | 39.7 | 197 | 212 | 8 | HQ633061 |
Synechococcus phage S-CBP4 | Podoviridae | Synechococcus | 429.8 | 44.35 | 47 | NC_048183 | |||
Synechococcus phage S-CBP42 [22] | Podoviridae | Synechococcus | 45.2 | 54.6 | 51 | NC_029031 | |||
Synechococcus phage S-EIVl [23] | unclassified bacterial viruses | Synechococcus | Canada | 798 | 45.9 | 129 | KJ410740 | ||
Synechococcus phage S-IOM18 | Myoviridae | Synechococcus | Arabian Sea | 171.8 | 40.6 | 209 | 219 | 7 | NC_021536 |
Synechococcus phage S-PM2 [8] | Myoviridae | Synechococcus | English Channel | 191.5 | 37.8 | 227 | NC_006820 | ||
Synechococcus phage S-RIM2 [17] | Myoviridae | Synechococcus | USA | 175.3 | 42.2 | 214 | KX349284 | ||
Synechococcus phage S-RIM8 [17] | Myoviridae | Synechococcus | USA | 170.3 | 40.6 | 221 | NC_047733 | ||
Synechococcus phage S-RIP1 | Podoviridae | Synechococcus | USA | 44.89 | 42.9 | 55 | 61 | NC_020867 | |
Synechococcus phage S-RIP2 | Podoviridae | Synechococcus | USA | 45.73 | 47.3 | 54 | 57 | NC_020838 | |
Synechococcus phage S-RSM4 [24] | Myoviridae | Synechococcus | Gulf of Aqaba, Red Sea | 194.45 | 41 | 237 | 249 | 12 | NC_013085 |
Synechococcus phage S-ShM2 [21] | Myoviridae | Synechococcus | 179.56 | 41 | 230 | 231 | 1 | NC_015281 | |
Synechococcus phage S-SKS1 | Myoviridae | Synechococcus | North Atlantic Ocean | 208.01 | 36 | 281 | 302 | 11 | NC_020851 |
Synechococcus phage S-SM1 [21] | Myoviridae | Synechococcus | 174.08 | 41 | 234 | 240 | 6 | NC_015282 | |
Synechococcus phage S-SM2 [21] | Myoviridae | Synechococcus | 190.79 | 40.4 | 267 | 278 | 11 | NC_015279 | |
Synechococcus phage S-SSM4 | Myoviridae | Synechococcus | W Sargasso Sea | 182.8 | 39.4 | 220 | 223 | 3 | NC_020875 |
Synechococcus phage S-SSM5 [21] | Myoviridae | Synechococcus | Sargasso Sea | 1768 | 40 | 225 | 229 | 4 | NC_015289 |
Synechococcus phage S-SSM7 [21] | Myoviridae | Synechococcus | Sargasso Sea | 232.88 | 39 | 319 | 324 | 5 | NC_015287 |
Synechococcus phage S-WAM1 [18] | Myoviridae | Synechococcus | USA | 185 | 44.7 | 221 | 225 | 4 | NC_031944 |
Synechococcus phage S-WAM2 [18] | Myoviridae | Synechococcus | USA | 186.39 | 41.3 | 229 | 241 | 12 | NC_031935 |
Synechococcus phage syn9 [25] | Myoviridae | Synechococcus | North Atlantic Ocean | 177.3 | 40.6 | 226 | 232 | 6 | NC_008296.2 |
Synechococcus phage Syn19 [21] | Myoviridae | Synechococcus | Sargasso Sea, North Atlantic Ocean | 175.23 | 41.3 | 215 | 221 | 6 | NC_015286 |
Plectonema phage JingP1 | unclassified bacterial viruses | Plectonema | China | 40.8 | 52.3 | 49 | ON677538 | ||
Cyanophage Pf-WMP3 [26] | Podoviridae | Phormidium | 43.25 | 46.5 | 41 | 41 | NC_009551 | ||
Cyanophage Pf-WMP4 [20] | Podoviridae | Phormidium | 40.94 | 51.8 | 45 | 45 | NC_008367 | ||
Synechococcus phage P60 [27] | Podoviridae | Synechococcus | 46.68 | 53.3 | 55 | 55 | NC_003390 | ||
Microcystis cyanophage Mwe-Yong1112-1 | Siphoviridae | Microcystis | 39.68 | 66.6 | 53 | MZ436628 | |||
Microcystis cyanophage vB_MaeS-yong1 | Siphoviridae | Microcystis | China | 43.67 | 66.7 | 56 | MT855965 | ||
Cyanophage P-RSM3 | Myoviridae | Prochlorococcus | Gulf of Aqaba, Red Sea | 178.75 | 36.7 | 208 | 211 | 3 | HQ634176 |
Cyanophage S-2L | Siphoviridae | 45.087 | 69.25 | 56 | MW334946 | ||||
Synechococcus phage MRHenn-2013a | Podoviridae | Synechococcus | Chesapeake Bay | 92.47 | 51.2 | 130 | 131 | 1 | JF974303 |
Synechococcus phage S-SRP02 [28] | Podoviridae | Synechococcus | Singapore | 424 | 63.4 | 47 | 47 | MW822601 | |
Synechococcus phage S-SRP01 | Podoviridae | Synechococcus | Singapore | 45.02 | 48.9 | 56 | MW015080 | ||
Synechococcus phage S-SBP1 | Podoviridae | Synechococcus | China | 45.52 | 46.8 | 55 | 55 | MT424636 | |
Synechococcus phage S-B28 | Podoviridae | Synechococcus | China | 45.42 | 42 | 55 | 55 | NC_048171 | |
Synechococcus phage S-CBP1 [22] | Podoviridae | Synechococcus | 46.55 | 47.6 | 50 | 51 | NC_025456 | ||
Synechococcus phage S-CBP2 [22] | Podoviridae | Synechococcus | 46.24 | 55 | 53 | 53 | NC_025455 | ||
Synechococcus phage S-CBP3 | Podoviridae | Synechococcus | 46.62 | 46.85 | 54 | NC_025461 | |||
Synechococcus phage S-CRM01 [29] | Myoviridae | Synechococcus | USA | 178.56 | 39.7 | 297 | 297 | 33 | NC_015569 |
Synechococcus phage BUCT-ZZ01 | Myoviridae | Synechococcus | China | 156.06 | 38.5 | 236 | ON615601 | ||
Synechococcus phage S-H38 | Myoviridae | Synechococcus | China | 180.22 | 42.4 | 211 | 8 | NC_070964 | |
Synechococcus phage S-SRM01 | Myoviridae | Synechococcus | Singapore | 240.84 | 35.6 | 353 | NC_070963 | ||
Synechococcus phage S-N03 | Myoviridae | Synechococcus | China | 167.07 | 50 | 247 | 1 | NC_070959 | |
Synechococcus phage S-H34 | Myoviridae | Synechococcus | China | 167.04 | 50 | 246 | 5 | NC_070965 | |
Synechococcus phage B3 [30] | Myoviridae | Synechococcus | Canada | 244.93 | 35.4 | 370 | 391 | 21 | MN695334 |
Synechococcus phage B23 [30] | Myoviridae | Synechococcus | Canada | 243.63 | 35.4 | 365 | 384 | 19 | MN695335 |
Synechococcus phage S-SCSM1 | Myoviridae | Synechococcus | China | 228.83 | 36.8 | 282 | 293 | 9 | NC_070962 |
Synechococcus phage S-H68 | Myoviridae | Synechococcus | China | 79.64 | 40.4 | 117 | MK016663 | ||
Synechoccus phage S-B43 | Myoviridae | Synechococcus | China | 214 | 39.4 | 262 | MN018232 | ||
Synechococcus phage S-B05 | Myoviridae | Synechococcus | China | 209 | 39.9 | 268 | MK799832 | ||
Synechococcus phage S-SZBM1 | Myoviridae; | Synechococcus | China | 177.83 | 43.3 | 218 | 218 | 6 | NC_070839 |
Synechococcus phage ACG-2014f | Myoviridae; | Synechococcus | 222.3 | 41.6 | 286 | NC_026927 | |||
Synechococcus phage S-H9-1 | Myoviridae; | Synechococcus | China | 192.45 | 41 | 229 | 12 | NC_070961 | |
Synechococcus phage S-H9-2 | Myoviridae; | Synechococcus | China | 187.32 | 40.3 | 202 | 14 | NC_070960 | |
Synechococcus phage SynMITS9220M01 | Myoviridae; | Synechococcus | Pacific Ocean | 190.24 | 38.8 | 245 | 255 | 10 | MT408532 |
Synechococcus phage S-H25 | Myoviridae; | Synechococcus | China | 190.24 | 38.8 | 245 | 255 | 10 | MT162468 |
Synechococcus phage S-P4 | Myoviridae; | Synechococcus | China | 158.48 | 39.9 | 195 | 195 | NC_048102 | |
Synechoccus phage S-E7 | Myoviridae; | Synechococcus | China | 177.62 | 39.9 | 216 | MH920640 | ||
Synechococcus phage S-B64 | Myoviridae; | Synechococcus | China | 151.87 | 41.3 | 156 | 156 | NC_055744 | |
Synechococcus phage Bellamy | Myoviridae; | Synechococcus | USA | 204.93 | 41 | 269 | 279 | 10 | NC_047838 |
Synechococcus phage S-H35 | Myoviridae; | Synechococcus | China | 174.23 | 41.2 | 204 | 204 | NC_055719 | |
Synechococcus phage S-CAM9 [18] | Myoviridae; | Synechococcus | USA | 174.8 | 39 | 228 | NC_031922 | ||
Synechococcus phage S-CAM7 [18] | Myoviridae; | Synechococcus | USA | 215.2 | 41.2 | 266 | NC_031927 | ||
Synechococcus phage S-CAM4 [18] | Myoviridae; | Synechococcus | USA | 192 | 38.6 | 238 | NC_031900 | ||
Synechococcus phage S-CAM3 [18] | Myoviridae; | Synechococcus | USA | 197.8 | 41.6 | 239 | NC_031906 | ||
Synechococcus phage S-CAM22 [18] | Myoviridae; | Synechococcus | USA; Mexico | 172.3 | 39.9 | 214 | NC_055710 | ||
Synechococcus cyanophage S-WAM2 | Myoviridae; | Synechococcus | USA | 186.39 | 41.3 | 229 | 241 | 12 | NC_031935 |
Synechococcus cyanophage S-WAM1 | Myoviridae; | Synechococcus | USA | 185 | 44.7 | 221 | 225 | 4 | NC_031944 |
Synechococcus phage ACG-2014j | Myoviridae; | Synechococcus | 192 | 38.65 | 226 | NC_062735 | |||
Synechococcus phage ACG-2014i | Myoviridae | Synechococcus | 190.77 | 39 | 212 | 212 | NC_027132 | ||
Synechococcus phage metaG-MbCM1 | Myoviridae | Synechococcus | 172.88 | 39.8 | 234 | 234 | NC_019443 | ||
Synechococcus phage ACG-2014g | Myoviridae | Synechococcus | 174.89 | 39.3 | 216 | 216 | NC_026924 | ||
Synechococcus phage ACG-2014e | Myoviridae | Synechococcus | 189.4 | 38.9 | 214 | NC_062736 | |||
Synechococcus phage ACG-2014d | Myoviridae | Synechococcus | 179.2 | 40.3 | 218 | NC_062734 | |||
Synechococcus phage ACG-2014b | Myoviridae | Synechococcus | 172.7 | 39 | 216 | NC_047719 | |||
Synechococcus phage ACG-2014a | Myoviridae | Synechococcus | 171.3 | 39.4 | 208 | KJ019163 | |||
Synechococcus phage S-MbCM100 [31] | Myoviridae | Synechococcus | USA | 170.44 | 39.4 | 210 | 210 | NC_023584 | |
Synechococcus phage S-MbCM25 [31] | Myoviridae | Synechococcus | USA | 176.04 | 39 | 215 | 215 | KF156339 | |
Synechococcus phage S-MbCM7 [31] | Myoviridae | Synechococcus | USA | 189.31 | 40.5 | 221 | 221 | NC_023587 | |
Synechococcus phage S-RIM8 A.HR5 [32] | Myoviridae | Synechococcus | North Atlantic Ocean | 168.33 | 40.6 | 203 | 211 | 8 | HQ317385 |
Synechococcus phage S-RIM8 A.HR3 [32] | Myoviridae | Synechococcus | North Atlantic Ocean | 171.21 | 40.6 | 212 | 220 | 8 | JF974289 |
Synechococcus phage S-RIM8 A.HR1 [32] | Myoviridae | Synechococcus | North Atlantic Ocean | 171.21 | 40.6 | 211 | 219 | 8 | NC_020486 |
Synechococcus phage S-RIM2 R9_2006 | Myoviridae | Synechococcus | North Atlantic Ocean | 175.42 | 42.2 | 210 | 217 | 6 | HQ317291 |
Synechococcus phage S-RIM2 R1_1999 | Myoviridae | Synechococcus | North Atlantic Ocean | 175.43 | 42.2 | 210 | 216 | 6 | NC_020859 |
Synechococcus phage S-RIM2 R21_2007 | Myoviridae | Synechococcus | North Atlantic Ocean | 175.43 | 42.2 | 208 | 214 | 6 | HQ317290 |
Synechococcus phage Syn30 | Myoviridae | Synechococcus | NE Providence Channel | 178.81 | 39.9 | 209 | 216 | 6 | NC_021072 |
Synechococcus phage ACG-2014c | Myoviridae | Synechococcus | 176 | 39 | 215 | NC_019444 | |||
Synechococcus phage ACG-2014h | Myoviridae | Synechococcus | USA | 189.31 | 40.5 | 221 | 221 | NC_023587 | |
Synechococcus phage S-H1 | Siphoviridae | Synechococcus | China | 396 | 53.7 | 64 | MK105819 | ||
Synechococcus phage S-LBS1 | Siphoviridae | Synechococcus | France | 34.64 | 60.2 | 52 | 52 | MG271909 | |
Synechococcus phage S-CBS1 [9] | Siphoviridae | Synechococcus | USA | 30.33 | 58.7 | 43 | 43 | NC_016164 | |
Synechococcus phage S-CBS4 [9] | Siphoviridae | Synechococcus | 69.4 | 50.8 | 105 | NC_016766 | |||
Synechococcus phage S-CBS3 [9] | Siphoviridae | Synechococcus | 33 | 60.7 | 46 | 46 | NC_015465 | ||
Synechococcus phage S-CBS2 [9] | Siphoviridae | Synechococcus | 72.33 | 54.5 | 102 | 102 | NC_015463 | ||
Synechococcus phage S-T4 | Myoviridae | Synechococcus | China | 181.08 | 38.9 | 226 | 226 | NC_048049 | |
Synechococcus phage S-CBWM1 [33] | Myoviridae | Synechococcus | USA | 139.07 | 51.6 | 178 | 216 | 36 | NC_048106 |
Synechococcus virus S-ESS1 | Siphoviridae | Synechococcus | China | 60.36 | 60.9 | 52 | 52 | NC_052968 | |
Synechococcus virus Syn5 [34] | Podoviridae | Synechococcus | 46.21 | 55 | 61 | 61 | NC_009531 |
Protein Function | Protein | Ratios | Protein Function | Protein | Ratios |
---|---|---|---|---|---|
Photosynthesis | photosystem II reaction center protein PsbA/D1 | 111/153 | Methylation | DNA methylase | 23/153 |
photosystem II D2 protein | 77/153 | DNA adenine methylase Dam | 55/153 | ||
phycocyanobilin:ferredoxin oxidoreductase (PcyA) | 16/153 | cytosine methyltransferase | 11/153 | ||
ferredoxin (PetF) | 44/153 | type II N-methyl DNA methyltransferase (group alpha) | 13/153 | ||
phycobilin lyase (CpeT) | 31/153 | phage host specificity protein | 3/153 | ||
phycoerythrobilin synthase (PebS) | 9/153 | ||||
phycoerythrobilin | 4/153 | Phosphate metabolism | phosphate-starvation-inducible protein (PhoH) | 101/153 | |
plastoquinol terminal oxidase PtoX | 35/153 | phosphate-induced stress protein | 2/153 | ||
plastocyanin (PetE) | 70/153 | phosphate ABC transporter phosphate-binding protein PstS | 31/153 | ||
heme oxygenase (Ho) | 8/153 | ||||
hli gene family/high-light inducible protein | 90/153 | ||||
thioredoxin | 5/153 | Regulatory factor | CobS/cobO/cobA | 39/153 | |
rfaE bifunctional protein | 1/153 | RNA polymerase sigma factor RpoD/RpoS | 65/153 | ||
2OG-Fe(II) oxygenase family oxidoreductase | 76/153 | ERF family protein | 1/153 | ||
NADH dehydrogenase subunit I | 1/153 | MazG | 64/153 | ||
NAD synthetase | 24/153 | RegA photosynthetic apparatus regulatory protein | 48/153 | ||
Carbon metabolism | carboxylesterase | 24/153 | transcriptional regulator | 7/153 | |
FAD-dependent thymidylate synthase/thymidylate synthase | 95/153 | late promoter transcriptional accessory protein | 41/153 | ||
transaldolase family protein TalC in this family | 96/153 | CP12 carbon metabolic regulator | 31/153 | ||
glucose 6-phosphate dehydrogenase Zwf | 25/153 | MarR family protein | 3/153 | ||
6-phosphogluconate dehydrogenase Gnd | 22/153 | translational regulator | 3/153 | ||
UDP-glucose 6-dehydrogenase | 1/153 | XRE family transcriptional regulator | 1/153 | ||
acyl carrier protein ACP | 2/153 | Nrd | 48/153 | ||
fructose-6-phosphate aldolase | 1/153 | tryptophan halogenase | 20/153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ferrinho, S.; Connaris, H.; Goss, R.J.M. The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules 2023, 13, 1218. https://doi.org/10.3390/biom13081218
Wang Y, Ferrinho S, Connaris H, Goss RJM. The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules. 2023; 13(8):1218. https://doi.org/10.3390/biom13081218
Chicago/Turabian StyleWang, Yunpeng, Scarlet Ferrinho, Helen Connaris, and Rebecca J. M. Goss. 2023. "The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria" Biomolecules 13, no. 8: 1218. https://doi.org/10.3390/biom13081218
APA StyleWang, Y., Ferrinho, S., Connaris, H., & Goss, R. J. M. (2023). The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules, 13(8), 1218. https://doi.org/10.3390/biom13081218