Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Strains
2.3. DNA Extraction and Sequencing
2.4. Vector Construction
2.5. Antigen Expression in M. microti Strains
2.6. SDS-PAGE, Immunoblot and Lectin Blot Analysis
2.7. Protein Labelling and Two-Dimensional Fluorescence Differential Gel Electrophoresis
2.8. Tandem Mass Spectrometry Analysis
2.9. Statistical Analysis
3. Results
3.1. Rv0934 (PstS-1) and Rv1886c (Ag85B) Gene Identification
3.2. Recombinant Strains M. microti-PstS-1 and M. microti-Ag85B Construction
3.3. Kinetic Growth of Recombinant Strains M. microti-PstS-1 and M. microti-Ag85B
3.4. Production of PstS-1 and Ag85B and Analysis by Western Blotting
3.5. Glycosylation of Proteins Produced by M. microti Recombinant Strains
3.6. Differential Proteome of M. microti Recombinant Strains
3.7. MS/MS Identification of Differentially Expressed Proteins in M. microti Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Harries, A.D.; Lin, Y.; Kumar, A.M.V.; Satyanarayana, S.; Takarinda, K.C.; Dlodlo, R.A.; Zachariah, R.; Olliaro, P. What can National TB Control Programmes in low- and middle-income countries do to end tuberculosis by 2030? F1000Research 2018, 7, 1011. [Google Scholar] [CrossRef]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis. Prim. 2016, 2, 16076. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. Geneva: 2021 Global Tuberculosis Report; Licence: CC BY-NC-SA 3.0 IGO; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 14 September 2022).
- Pai, M. Tuberculosis: The story after the Primer. Nat. Rev. Dis. Prim. 2020, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.S. Development of new vaccines and diagnostic reagents against tuberculosis. Mol. Immunol. 2002, 39, 113–119. [Google Scholar] [CrossRef]
- Uma Devi, K.R.; Ramalingam, B.; Brennan, P.J.; Narayanan, P.R.; Raja, A. Specific and early detection of IgG, IgA and IgM antibodies to Mycobacterium tuberculosis 38kDa antigen in pulmonary tuberculosis. Tuberculosis 2001, 81, 249–253. [Google Scholar] [CrossRef]
- Andersen, P.; Doherty, T.M. The success and failure of BCG—Implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005, 3, 656–662. [Google Scholar] [CrossRef]
- Aronson, J.D.; Schneider, P. The problem of standardization of BCG vaccine. Am. J. Public Health Nations Health 1950, 40, 533–544. [Google Scholar] [CrossRef]
- Davenne, T.; McShane, H. Why don’t we have an effective tuberculosis vaccine yet? Expert Rev. Vaccines 2016, 15, 1009–1013. [Google Scholar] [CrossRef] [Green Version]
- Bellini, C.; Horvati, K. Recent Advances in the Development of Protein- and Peptide-Based Subunit Vaccines against Tuberculosis. Cells 2020, 9, 2673. [Google Scholar] [CrossRef]
- Stylianou, E.; Harrington-Kandt, R.; Beglov, J.; Bull, N.; Pinpathomrat, N.; Swarbrick, G.M.; Lewinsohn, D.A.; Lewinsohn, D.M.; McShane, H. Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infect. Immun. 2018, 86, e00014-18. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Bibi, S.; Ul Haq, I.; Safia, U.K.; Ge, L.; Shi, X.; Bin, M.; Niu, H.; Tian, J.; Zhu, B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Front. Immunol. 2020, 11, 1806. [Google Scholar] [CrossRef]
- Broset, E.; Calvet Seral, J.; Arnal, C.; Uranga, S.; Kanno, A.I.; Leite, L.C.C.; Martín, C.; Gonzalo-Asensio, J. Engineering a new vaccine platform for heterologous antigen delivery in live-attenuated Mycobacterium tuberculosis. Comput. Struct. Biotechnol. J. 2021, 19, 4273–4283. [Google Scholar] [CrossRef]
- Counoupas, C.; Pinto, R.; Nagalingam, G.; Britton, W.J.; Triccas, J.A. Protective efficacy of recombinant BCG over-expressing protective, stage-specific antigens of Mycobacterium tuberculosis. Vaccine 2018, 36, 2619–2629. [Google Scholar] [CrossRef]
- Khan, A.; Sayedahmed, E.E.; Singh, V.K.; Mishra, A.; Dorta-Estremera, S.; Nookala, S.; Canaday, D.H.; Chen, M.; Wang, J.; Sastry, K.J.; et al. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep. Med. 2021, 2, 100372. [Google Scholar] [CrossRef]
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.M.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.; Whiting, P.F.; et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin. Infect. Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Vekemans, J.; Gebreselassie, N.; Zignol, M.; Friede, M.; Kasaeva, T.; Swaminathan, S. A new tuberculosis vaccine: Breakthrough, challenges, and a call for collaboration. Lancet Infect. Dis. 2019, 19, 123–125. [Google Scholar] [CrossRef]
- Manabe, Y.C.; Scott, C.P.; Bishai, W.R. Naturally attenuated, orally administered Mycobacterium microti as a tuberculosis vaccine is better than subcutaneous Mycobacterium bovis BCG. Infect. Immun. 2002, 70, 1566–1570. [Google Scholar] [CrossRef] [Green Version]
- Riojas, M.A.; McGough, K.J.; Rider-Riojas, C.J.; Rastogi, N.; Hazbon, M.H. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int. J. Syst. Evol. Microbiol. 2018, 68, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Brodin, P.; Majlessi, L.; Brosch, R.; Smith, D.; Bancroft, G.; Clark, S.; Williams, A.; Leclerc, C.; Cole, S.T. Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens. J. Infect. Dis. 2004, 190, 115–122. [Google Scholar] [CrossRef]
- Hart, P.D.; Sutherland, I. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br. Med. J. 1977, 2, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Dannenberg, A.M.; Bishai, W.R.; Parrish, N.; Ruiz, R.; Johnson, W.; Zook, B.C.; Boles, J.W.; Pitt, L.M. Efficacies of BCG and vole bacillus (Mycobacterium microti) vaccines in preventing clinically apparent pulmonary tuberculosis in rabbits: A preliminary report. Vaccine 2000, 19, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.; Couto, I.; Perdigã, J.O.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS ONE 2012, 7, e34538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomino, J.C.; Martin, A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics 2014, 3, 317–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Zamorano, M.; Mendoza-Hernandez, G.; Xolalpa, W.; Parada, C.; Vallecillo, A.J.; Bigi, F.; Espitia, C. Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J. Proteome Res. 2009, 8, 721–733. [Google Scholar] [CrossRef]
- Nandakumar, S.; Kannanganat, S.; Dobos, K.M.; Lucas, M.; Spencer, J.S. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog. 2013, 9, e1003705. [Google Scholar] [CrossRef]
- Ragas, A.; Roussel, L.; Puzo, G.; Riviere, M. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J. Biol. Chem. 2007, 282, 5133–5142. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.T.; Sweredoski, M.J.; Hess, S. O-linked glycosylation sites profiling in Mycobacterium tuberculosis culture filtrate proteins. J. Proteom. 2014, 97, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Flores, L.L.; Steingart, K.R.; Dendukuri, N.; Schiller, I.; Minion, J.; Pai, M.; Ramsay, A.; Henry, M.; Laal, S. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin. Vaccine Immunol. 2011, 18, 1616–1627. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.F.L.; Malaga, W.; Beau, M.; Stella, A.; Bouyssié, D.; Jackson, M.C.; Nigou, J.; Puzo, G.; Guilhot, C.; Burlet-Schiltz, O.; et al. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2013, 110, 6560–6565. [Google Scholar] [CrossRef]
- Villeneuve, C.; Etienne, G.; Rie Abadie, V.; Montrozier, H.; Bordier, C.; Oise Laval, F.; Daffe, M.; Maridonneau-Parini, I.; Astarie-Dequeker, C. Surface-exposed glycopeptidolipids of Mycobacterium smegmatis specifically inhibit the phagocytosis of mycobacteria by human macrophages. Identification of a novel family of glycopeptidolipids. J. Biol. Chem. 2003, 278, 51291–51300. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, L.; Zhang, W.J.; Zhang, X.; Zheng, J.; Li, L.; Zhu, X.; Yang, Q.; Zhang, M.; Liu, H.; et al. Analysis of the Antigenic Properties of Membrane Proteins of Mycobacterium tuberculosis. Sci. Rep. 2019, 9, 3042. [Google Scholar] [CrossRef] [PubMed]
- Korycka-Machała, M.; Pawełczyk, J.; Borówka, P.; Dziadek, B.; Brzostek, A.; Kawka, M.; Bekier, A.; Rykowski, S.; Olejniczak, A.B.; Strapagiel, D.; et al. PPE51 Is Involved in the Uptake of Disaccharides by Mycobacterium tuberculosis. Cells 2020, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Esparza, M.; Palomares, B.; Garcia, T.; Espinosa, P.; Zenteno, E.; Mancilla, R. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis. Scand. J. Immunol. 2015, 81, 46–55. [Google Scholar] [CrossRef]
- Castanon-Arreola, M.; Lopez-Vidal, Y.; Espitia-Pinzon, C.; Hernandez-Pando, R. A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis. Tuberculosis 2005, 85, 115–126. [Google Scholar] [CrossRef]
- Fonseca, D.P.; Benaissa-Trouw, B.; van Engelen, M.; Kraaijeveld, C.A.; Snippe, H.; Verheul, A.F. Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein. Infect. Immun. 2001, 69, 4839–4845. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.B.; Yang, C.S.; Lee, J.S.; Shin, A.R.; Jung, S.S.; Son, J.W.; Harding, C.V.; Kim, H.J.; Park, J.K.; Paik, T.H.; et al. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect. Immun. 2006, 74, 2686–2696. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Vidal, Y.; de Leon-Rosales, S.P.; Castanon-Arreola, M.; Rangel-Frausto, M.S.; Melendez-Herrada, E.; Sada-Diaz, E. Response of IFN-gamma and IgG to ESAT-6 and 38 kDa recombinant proteins and their peptides from Mycobacterium tuberculosis in tuberculosis patients and asymptomatic household contacts may indicate possible early-stage infection in the latter. Arch. Med. Res. 2004, 35, 308–317. [Google Scholar] [CrossRef]
- Wiker, H.G.; Harboe, M. The antigen 85 complex: A major secretion product of Mycobacterium tuberculosis. Microbiol. Rev. 1992, 56, 648–661. [Google Scholar] [CrossRef]
- Daffe, M. The mycobacterial antigens 85 complex—From structure to function and beyond. Trends Microbiol. 2000, 8, 438–440. [Google Scholar] [CrossRef]
- Davila, J.; McNamara, L.A.; Yang, Z. Comparison of the predicted population coverage of tuberculosis vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f via a bioinformatics approach. PLoS ONE 2012, 7, e40882. [Google Scholar] [CrossRef] [PubMed]
- Meerak, J.; Wanichwecharungruang, S.P.; Palaga, T. Enhancement of immune response to a DNA vaccine against Mycobacterium tuberculosis Ag85B by incorporation of an autophagy inducing system. Vaccine 2013, 31, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, E.; Wang, J.; Li, R.; Li, G.; Liu, G.; Song, N.; Huang, Q.; Kong, C.; Wang, H. Prime-boost bacillus Calmette-Guerin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice. Immunology 2014, 143, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Teng, X.; Jing, Y.; Ma, J.; Tian, M.; Yu, Q.; Zhou, L.; Wang, R.; Wang, W.; Li, L.; et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl. Microbiol. Biotechnol. 2015, 99, 10587–10595. [Google Scholar] [CrossRef]
- Jones, M.B.; Rosenberg, J.N.; Betenbaugh, M.J.; Krag, S.S. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life. Biochim. Biophys. Acta 2009, 1790, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Nothaft, H.; Szymanski, C.M. Protein glycosylation in bacteria: Sweeter than ever. Nat. Rev. Microbiol. 2010, 8, 765–778. [Google Scholar] [CrossRef]
- Sonawane, A.; Mohanty, S.; Jagannathan, L.; Bekolay, A.; Banerjee, S. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis. Crit. Rev. Microbiol. 2012, 38, 250–266. [Google Scholar] [CrossRef]
- Mehaffy, C.; Belisle, J.T.; Dobos, K.M. Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis 2019, 115, 1–13. [Google Scholar] [CrossRef]
- van Els, C.A.C.M.; Corbière, V.; Smits, K.; van Gaans-van den Brink, J.A.M.; Poelen, M.C.M.; Mascart, F.; Meiring, H.D.; Locht, C. Toward Understanding the Essence of Post-Translational Modifications for the Mycobacterium tuberculosis Immunoproteome. Front. Immunol. 2014, 5, 361. [Google Scholar] [CrossRef]
- Facciuolo, A.; Mutharia, L.M. Mycobacterial glycoproteins: A novel subset of vaccine candidates. Front. Cell. Infect. Microbiol. 2014, 4, 133. [Google Scholar] [CrossRef]
- Horn, C.; Namane, A.; Pescher, P.; Rivière, M.; Romain, F.; Puzo, G.; Bârzu, O.; Marchal, G. Decreased capacity of recombinant 45/47-kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern. J. Biol. Chem. 1999, 274, 32023–32030. [Google Scholar] [CrossRef] [Green Version]
- Romain, F.C.; Pescher, P.; Namane, A.; Riviere, M.; Puzo, G.; Barzu, O.; Marchal, G. Deglycosylation of the 45/47-kilodalton antigen complex of Mycobacterium tuberculosis decreases its capacity to elicit in vivo or in vitro cellular immune responses. Infect. Immun. 1999, 67, 5567–5572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birhanu, A.G.; Yimer, S.A.; Kalayou, S.; Riaz, T.; Zegeye, E.D.; Holm-Hansen, C.; Norheim, G.; Aseffa, A.; Abebe, M.; Tønjum, T. Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci. Rep. 2019, 9, 2927. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, S.; Rosseels, V.; Romano, M.; Tanghe, A.; Denis, O.; Jurion, F.; Castiglione, N.; Vanonckelen, A.; Palfliet, K.; Huygen, K. Mapping of murine Th1 helper T-Cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis. Infect. Immun. 2003, 71, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Gilleron, M.; Nigou, J.; Nicolle, D.; Quesniaux, V.; Puzo, G. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2. Chem. Biol. 2006, 13, 39–47. [Google Scholar] [CrossRef]
- Kariyone, A.; Tamura, T.; Kano, H.; Iwakura, Y.; Takeda, K.; Akira, S.; Takatsu, K. Immunogenicity of Peptide-25 of Ag85B in Th1 development: Role of IFN-gamma. Int. Immunol. 2003, 15, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Flores-Trevino, S.; Morfín-Otero, R.; Rodríguez-Noriega, E.; González-Díaz, E.; Pérez-Gómez, H.R.; Bocanegra-García, V.; Vera-Cabrera, L.; Garza-González, E. Genetic diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and identification of a rare multidrug resistant Beijing genotype. PLoS ONE 2015, 10, e0118095. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Froger, A.; Hall, J.E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 2007, 6, 253. [Google Scholar] [CrossRef] [Green Version]
- Steentoft, C.; Vakhrushev, S.Y.; Joshi, H.J.; Kong, Y.; Vester-Christensen, M.B.; Schjoldager, K.T.B.G.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N.B.; Marcos-Silva, L.; et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013, 32, 1478–1488. [Google Scholar] [CrossRef]
- Fletcher, C.M.; Coyne, M.J.; Comstock, L.E. Theoretical and experimental characterization of the scope of protein O-glycosylation in Bacteroides fragilis. J. Biol. Chem. 2011, 286, 3219–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamby, S.E.; Hirst, J.D. Prediction of glycosylation sites using random forests. BMC Bioinform. 2008, 9, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orduna, P.; Cevallos, M.A.; de Leon, S.P.; Arvizu, A.; Hernandez-Gonzalez, I.L.; Mendoza-Hernandez, G.; Lopez-Vidal, Y. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genom. 2011, 12, 493. [Google Scholar] [CrossRef] [Green Version]
- Dobos, K.M.; Khoo, K.H.; Swiderek, K.M.; Brennan, P.J.; Belisle, J.T. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J. Bacteriol. 1996, 178, 2498–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Singh, Y.; Beamer, G.; Sun, X.; Shukla, P. Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Crit. Rev. Biotechnol. 2022, 42, 532–547. [Google Scholar] [CrossRef]
- Fan, X.; Li, X.; Wan, K.; Zhao, X.; Deng, Y.; Chen, Z.; Luan, X.; Lu, S.; Liu, H. Construction and immunogenicity of a T cell epitope-based subunit vaccine candidate against Mycobacterium tuberculosis. Vaccine 2021, 39, 6860–6865. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lu, S.H.; Lowrie, D.B.; Fan, X.Y. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front. Immunol. 2022, 13, 895020. [Google Scholar] [CrossRef]
- Sarmiento, M.E.; Alvarez, N.; Chin, K.L.; Bigi, F.; Tirado, Y.; García, M.A.; Anis, F.Z.; Norazmi, M.N.; Acosta, A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis 2019, 115, 26–41. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Du, W.; Wang, G.; Li, X.; Shen, X.; Su, C.; Yang, L.; Chen, B.; Wang, J.; et al. Ag85b/ESAT6-CFP10 adjuvanted with aluminum/poly-IC effectively protects guinea pigs from latent Mycobacterium tuberculosis infection. Vaccine 2019, 37, 4477–4484. [Google Scholar] [CrossRef]
- Watson, A.; Li, H.; Ma, B.; Weiss, R.; Bendayan, D.; Abramovitz, L.; Ben-Shalom, N.; Mor, M.; Pinko, E.; Bar Oz, M.; et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 2021, 12, 602. [Google Scholar] [CrossRef]
- Brodin, P.; Eiglmeier, K.; Marmiesse, M.; Billault, A.; Garnier, T.; Niemann, S.; Cole, S.T.; Brosch, R. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect. Immun. 2002, 70, 5568–5578. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.L.; O’Gaora, P.; Gallagher, A.; Thole, J.E.; Young, D.B. Bacterial glycoproteins: A link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J. 1996, 15, 3547–3554. [Google Scholar] [CrossRef]
- Kaufmann, S.H. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 2001, 1, 20–30. [Google Scholar] [CrossRef]
- Kaufmann, S.H. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol. 2007, 5, 491–504. [Google Scholar] [CrossRef]
- Skeiky, Y.A.; Sadoff, J.C. Advances in tuberculosis vaccine strategies. Nat. Rev. Microbiol. 2006, 4, 469–476. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lee, W.C. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb. Cell Fact. 2010, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Peng, B.; Zhang, Z.; Liu, Z.; Zhang, Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1/Th17 responses during mycobacteria infection. Mol. Immunol. 2019, 109, 58–70. [Google Scholar] [CrossRef]
- Yuan, C.; Qu, Z.L.; Tang, X.L.; Liu, Q.; Luo, W.; Huang, C.; Pan, Q.; Zhang, X.L. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4(+)Th1 Immunity. iScience 2019, 11, 13–30. [Google Scholar] [CrossRef]
- Espitia, C.; Mancilla, R. Identification, isolation and partial characterization of Mycobacterium tuberculosis glycoprotein antigens. Clin. Exp. Immunol. 1989, 77, 378–383. [Google Scholar] [PubMed]
- Willcocks, S.; Wren, B.W. Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence. Future Microbiol. 2014, 9, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Wang, Q.; Sun, X.; Xia, X.; Wu, S.; Luo, F.; Zhang, X.L. Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys. Mol. Ther. 2014, 22, 940–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almagro-Moreno, S.; Boyd, E.F. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 2009, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Giri, J.; Tang, J.M.; Wirth, C.; Peneff, C.M.; Eisenberg, B. Single-channel measurements of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli. Eur. Biophys. J. 2012, 41, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, X. Sialic acid metabolism and sialyltransferases: Natural functions and applications. Appl. Microbiol. Biotechnol. 2012, 94, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Vimr, E.R.; Kalivoda, K.A.; Deszo, E.L.; Steenbergen, S.M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 2004, 68, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Sweet, L.; Zhang, W.; Torres-Fewell, H.; Serianni, A.; Boggess, W.; Schorey, J. Mycobacterium avium glycopeptidolipids require specific acetylation and methylation patterns for signaling through toll-like receptor 2. J. Biol. Chem. 2008, 283, 33221–33231. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Henao-Tamayo, M.; Harton, M.; Ordway, D.; Shanley, C.; Basaraba, R.J.; Orme, I.M. A Toll-like receptor-2-directed fusion protein vaccine against tuberculosis. Clin. Vaccine Immunol. 2007, 14, 902–906. [Google Scholar] [CrossRef]
Antigen | UniProt Acc. No. | NetOGlyc-4.0 1 | Glycosylation Predictor GPP 2 | GLYCOPP V 1.0 3 | Experimental Determination |
---|---|---|---|---|---|
PstS-1 (Rv0934) | B2MVV3 | S30, S32, T35, T41, T44, T45, S48, S49, S290 | T7, T13, S26, S30, S32, T44, T45, S48, S49, T52, T56, T59, T80, T99, S110, S128, S140, T160, S186, T196, T216, T236, S290, S299, T331, S365, T371, S373, S374 | T86, S88, T160, T331 | ND |
Mod. AA | 9 | 29 | 4 | ||
Ag85B (Rv1886c) | P9WQP1 | None predicted | T2, S5, S42, S57, N71, S116, S117, S120, S150, T158, S160, S166, S171, S202, T234, S320, S321 | None predicted | ND |
Mod. AA | 0 | 17 | 0 | ||
APA (Rv1860) | P9WIR7 | T10, T11, S14, S17, T18, T27, T39, T108, S243, T274, T276, T277, T279, T283 | T10, T11, S14, S17, T18, T27, S101, S105, T107, T108, T142, S144, S152, T164, S181, S183, S190, S193, T201, S243, T274, T276, T283 | S17, T18, T27, T274, T276, T277 | T10, T18, T27, T277 (Dobos et al., 1996 [65]) T274, T276, T277, T279 (Smith et al., 2014 [29]) |
Mod. AA | 14 | 23 | 6 | 4 |
Spot | Protein | UniProt | Function | MW (kDa) | Global Score * | M. microti strains | PTM | ||
---|---|---|---|---|---|---|---|---|---|
wt | PstS-1 | Ag85B | |||||||
2 | ATP-dependent Clp protease proteolytic subunit 2 (ClpP2) 1 | Q73XM8 | Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. | 21.665 | 297 | + | - | - | ND |
3 | Alkyl hydroperoxide reductase (AhpD) 1 | Q73ZL4 | Antioxidant protein with alkyl hydroperoxidase activity. Required for the reduction of the AhpC active site cysteine residues and for the regeneration of the AhpC enzyme activity. | 18.842 | 151 | + | - | + | ND |
4 | Superoxide dismutase (SodA) 2 | B1A036 | Destroys superoxide anion radicals which are normally produced within the cells, and which are toxic to biological systems. | 22.476 | 125 | - | + | + | ND |
5 | AB hydrolase-1 domain-containing protein (MAP_1452) 1 | Q73ZZ9 | Hydrolase activity. | 32.404 | 303 | + | + | - | ND |
6 | Peroxisomal multifunctional enzyme type 2 (MAV_5146) 3 | A0A0H2ZVK0 | 3-hydroxyacyl-CoA dehydrogenase activity. 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholest-24-enoyl-CoA hydratase activity. | 29.906 | 945 | + | + | - | ND |
7 | Nitroreductase domain-containing protein (MAP_3475c) 1 | Q73U93 | Oxidoreductase activity: nitroreductase | 24.012 | 186 | - | + | + | ND |
10 | Fructose-bisphosphate aldolase class 1 (MAP_4308c) 3 | Q73RX0 | Fructose-bisphosphate aldolase activity. | 33.645 | 891 | + | + | + | Yes |
11 | 4-hydroxy-tetradihydrodipicolinate synthase (DapA) 1 | Q73VZ7 | Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). | 30.973 | 350 | - | + | + | ND |
12 | p40 protein 4 | Q9AIQ0 | ND | 36.232 | 1109 | + | - | + | Yes |
13 | ATPase (MoxR) 1 | Q740Y7 | ATP binding and hydrolysis activity | 40.730 | 308 | - | + | + | ND |
15 | AB hydrolase-1 domain-containing protein (MAP_3192) 1 | Q73V24 | Hydrolase activity | 43.256 | 674 | + | + | + | Yes |
16 | 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) 5 | I2AKG1 | 3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) activity. | 47.139 | 1008 | + | + | + | Yes |
17 | Serine hydroxymethyltransferase (GlyA) 1 | Q73WG1 | Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. | 44.955 | 46 | + | + | + | Yes |
18 | DNA-directed RNA polymerase subunit alpha (RpoA) 1 | Q73S43 | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. | 37.704 | 1261 | - | + | + | ND |
19 | Enolase (Eno) 1 | Q741U7 | Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. | 44.873 | 1242 | - | + | + | ND |
20 | Enolase (Eno) 3 | A0QBX4 | Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. | 44.873 | 1096 | + | + | + | Yes |
21 | Xyppx repeat family protein (MAV_0024) 3 | A0A0H3A0B1 | ND | 58.801 | 214 | + | + | + | Yes |
22 | Chaperonin (GroEL) 2 3 | A0QLP6 | Together with its co-chaperonin GroES, plays an essential role in assisting protein folding. | 56.615 | 17263 | + | + | + | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ruiz, V.; Orduña, P.; Castillo-Rodal, A.I.; Flores-Rodríguez, T.J.; López-Vidal, Y. Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti. Biomolecules 2022, 12, 1836. https://doi.org/10.3390/biom12121836
García-Ruiz V, Orduña P, Castillo-Rodal AI, Flores-Rodríguez TJ, López-Vidal Y. Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti. Biomolecules. 2022; 12(12):1836. https://doi.org/10.3390/biom12121836
Chicago/Turabian StyleGarcía-Ruiz, Viridiana, Patricia Orduña, Antonia I. Castillo-Rodal, Teresa J. Flores-Rodríguez, and Yolanda López-Vidal. 2022. "Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti" Biomolecules 12, no. 12: 1836. https://doi.org/10.3390/biom12121836
APA StyleGarcía-Ruiz, V., Orduña, P., Castillo-Rodal, A. I., Flores-Rodríguez, T. J., & López-Vidal, Y. (2022). Proteome Profile Changes Induced by Heterologous Overexpression of Mycobacterium tuberculosis-Derived Antigens PstS-1 (Rv0934) and Ag85B (Rv1886c) in Mycobacterium microti. Biomolecules, 12(12), 1836. https://doi.org/10.3390/biom12121836