Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Collagen Isolation: Rat-Tail Collagen
2.3. Construct Fabrication Overview
2.4. Adipogenesis and Hypodermal Seeding
2.5. Dermal/Epidermal Seeding and Air Liquid Interface
2.6. Photoaging of AVHSEs
2.7. ELISA (Adiponectin, IL-6, and MMP-1)
2.8. Post-Culture Immunostaining and Confocal Microscopy
2.9. Tissue Clearing
2.10. Quantitative Epidermal Analysis
2.11. Quantitative Dermal/Hypodermal Analysis
2.12. Live Culture Imaging
2.13. Statistics
3. Results
3.1. AVHSE Enables Tissue-Scale Studies of Skin Biology
3.2. UVA Photoaging Alters Adiponectin Expression
3.3. Epidermis Is Stable during UVA Photoaging
3.4. Dermal Vasculature Is Stable during UVA Photoaging
3.5. Hypodermal Adiposity Is Reduced with Photoaging
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathes, S.H.; Ruffner, H.; Graf-Hausner, U. The use of skin models in drug development. Adv. Drug Deliv. Rev. 2014, 69–70, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Fenske, N.A.; Lober, C.W. Structural and functional changes of normal aging skin. J. Am. Acad. Dermatol. 1986, 15 (Pt 1), 571–585. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Eun, H.C. Angiogenesis in skin aging and photoaging. J. Dermatol. 2007, 34, 593–600. [Google Scholar] [CrossRef]
- Ali, N.; Hosseini, M.; Vainio, S.; Taïeb, A.; Cario-André, M.; Rezvani, H. Skin equivalents: Skin from reconstructions as models to study skin development and diseases. Br. J. Dermatol. 2015, 173, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Farage, M.A.; Miller, K.W.; Zouboulis, C.C.; Piérard, G.E.; Maibach, H.I. Gender differences in skin aging and the changing profile of the sex hormones with age. J. Steroids Horm. Sci. 2012, 3, 109. [Google Scholar] [CrossRef] [Green Version]
- Bucala, R.; Cerami, A. Advanced Glycosylation: Chemistry, Biology, and Implications for Diabetes and Aging. In Advances in Pharmacology; August, J.T., Anders, M.W., Murad, F., Eds.; Academic Press: San Diego, CA, USA, 1992; pp. 1–34. Available online: http://www.sciencedirect.com/science/article/pii/S1054358908609618 (accessed on 4 July 2021).
- Gkogkolou, P.; Böhm, M. Advanced glycation end products. Null 2012, 4, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pageon, H.; Zucchi, H.; Rousset, F.; Monnier, V.M.; Asselineau, D. Skin aging by glycation: Lessons from the reconstructed skin model. Clin. Chem. Lab. Med. 2014, 52, 169–174. [Google Scholar] [CrossRef]
- Lee, D.H.; Oh, J.-H.; Chung, J.H. Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 2016, 83, 174–181. [Google Scholar] [CrossRef]
- Naylor, E.C.; Watson, R.E.; Sherratt, M.J. Molecular aspects of skin ageing. Maturitas 2011, 69, 249–256. [Google Scholar] [CrossRef]
- Pageon, H. Reaction of glycation and human skin: The effects on the skin and its components, reconstructed skin as a model. Pathol. Biol. 2010, 58, 226–231. [Google Scholar] [CrossRef]
- Pageon, H.; Técher, M.-P.; Asselineau, D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp. Gerontol. 2008, 43, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.F.; Robinson, M.K.; Baron, E.D.; Cooper, K.D. Skin Immune Systems and Inflammation: Protector of the Skin or Promoter of Aging? J. Investig. Dermatol. Symp. Proc. 2008, 13, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Janson, D.; Rietveld, M.; Willemze, R.; El Ghalbzouri, A. Effects of serially passaged fibroblasts on dermal and epidermal morphogenesis in human skin equivalents. Biogerontology 2013, 14, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, P.; Chalangari, R.; Chalangari, K.M.; Saffarian, Z. Skin Aging and Immune System. In Immunology of Aging; Massoud, A., Rezaei, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 339–368. [Google Scholar] [CrossRef]
- Varani, J.; Dame, M.K.; Rittie, L.; Fligiel, S.E.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. Am. J. Pathol. 2006, 168, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, D.J. Introduction to skin aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Berneburg, M.; Plettenberg, H.; Krutmann, J. Photoaging of human skin. Photodermatol. Photoimmunol. Photomed. 2000, 16, 239–244. [Google Scholar] [CrossRef]
- Han, A.; Chien, A.L.; Kang, S. Photoaging. Dermatol. Clin. 2014, 32, 291–299. [Google Scholar] [CrossRef]
- Helfrich, Y.R.; Sachs, D.L.; Voorhees, J.J. Overview of skin aging and photoaging. Dermatol. Nurs. 2008, 20, 177. [Google Scholar]
- Bernstein, E.F.; Brown, D.B.; Schwartz, M.D.; Kaidbey, K.; Ksenzenko, S.M. The Polyhydroxy Acid Gluconolactone Protects Against Ultraviolet Radiation in an In Vitro Model of Cutaneous Photoaging. Dermatol. Surg. 2004, 30, 189–196. [Google Scholar]
- Krutmann, J. Ultraviolet A radiation-induced biological effects in human skin: Relevance for photoaging and photodermatosis. J. Dermatol. Sci. 2000, 23, S22–S26. [Google Scholar] [CrossRef]
- Bernerd, F.; Asselineau, D. Successive Alteration and Recovery of Epidermal Differentiation and Morphogenesis after Specific UVB-Damages in Skin Reconstructedin Vitro. Dev. Biol. 1997, 183, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, Y.K.; Kim, M.K.; Kim, S.; Kim, J.Y.; Lee, D.H.; Chung, J.H. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin. Sci. Rep. 2016, 6, 25616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, T.; He, T.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Solar Ultraviolet Irradiation Reduces Collagen in Photoaged Human Skin by Blocking Transforming Growth Factor-β Type II Receptor/Smad Signaling. Am. J. Pathol. 2004, 165, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-E.; Nho, Y.-H.; Yun, S.K.; Park, S.-M.; Kang, S.; Yeo, H. Caviar Extract and Its Constituent DHA Inhibits UVB-Irradiated Skin Aging by Inducing Adiponectin Production. Int. J. Mol. Sci. 2020, 21, 3383. [Google Scholar] [CrossRef]
- Kim, W.S.; Park, B.S.; Sung, J.H. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch. Dermatol. Res. 2009, 301, 329–336. [Google Scholar] [CrossRef]
- Watson, R.E.; Griffiths, C.E.; Craven, N.M.; Shuttleworth, C.A.; Kielty, C.M. Fibrillin-Rich Microfibrils are Reduced in Photoaged Skin. Distribution at the Dermal–Epidermal Junction. J. Investig. Dermatol. 1999, 112, 782–787. [Google Scholar] [CrossRef]
- Bataillon, M.; Lelièvre, D.; Chapuis, A.; Thillou, F.; Autourde, J.B.; Durand, S.; Boyera, N.; Rigaudeau, A.-S.; Besné, I.; Pellevoisin, C. Characterization of a New Reconstructed Full Thickness Skin Model, T-Skin™, and its Application for Investigations of Anti-Aging Compounds. Int. J. Mol. Sci. 2019, 20, 2240. [Google Scholar] [CrossRef] [Green Version]
- Charles-De-Sá, L.; Gontijo-De-Amorim, N.; Sbarbati, A.; Benati, D.; Bernardi, P.; Borojevic, R.; Carias, R.B.V.; Rigotti, G. Photoaging Skin Therapy with PRP and ADSC: A Comparative Study. Stem Cells Int. 2020, 2020, 2032359. [Google Scholar] [CrossRef]
- Smits, J.P.H.; Niehues, H.; Rikken, G.; Van Vlijmen-Willems, I.M.J.J.; Van De Zande, G.W.H.J.F.; Zeeuwen, P.; Schalkwijk, J.; Bogaard, E.H.V.D. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci. Rep. 2017, 7, 11838. [Google Scholar] [CrossRef] [Green Version]
- Roger, M.; Fullard, N.; Costello, L.; Bradbury, S.; Markiewicz, E.; O’Reilly, S.; Darling, N.; Ritchie, P.; Määttä, A.; Karakesisoglou, I.; et al. Bioengineering the microanatomy of human skin. J. Anat. 2019, 234, 438–455. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.12942 (accessed on 21 February 2019). [CrossRef] [Green Version]
- Lebonvallet, N.; Boulais, N.; Le Gall, C.; Pereira, U.; Gauché, D.; Gobin, E.; Pers, J.-O.; Jeanmaire, C.; Danoux, L.; Pauly, G.; et al. Effects of the re-innervation of organotypic skin explants on the epidermis. Exp. Dermatol. 2011, 21, 156–158. [Google Scholar] [CrossRef] [PubMed]
- El Ghalbzouri, A.; Commandeur, S.; Rietveld, M.H.; Mulder, A.A.; Willemze, R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials 2009, 30, 71–78. [Google Scholar] [CrossRef] [PubMed]
- van Drongelen, V.; Danso, M.O.; Mulder, A.; Mieremet, A.; van Smeden, J.; Bouwstra, J.A.; El Ghalbzouri, A. Barrier Properties of an N/TERT-Based Human Skin Equivalent. Tissue Eng. Part A 2014, 20, 3041–3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ghalbzouri, A.; Lamme, E.; Ponec, M. Crucial role of fibroblasts in regulating epidermal morphogenesis. Cell Tissue Res. 2002, 310, 189–199. [Google Scholar] [CrossRef] [PubMed]
- El Ghalbzouri, A.; Jonkman, M.F.; Dijkman, R.; Ponec, M. Basement Membrane Reconstruction in Human Skin Equivalents Is Regulated by Fibroblasts and/or Exogenously Activated Keratinocytes. J. Investig. Dermatol. 2005, 124, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieremet, A.; Rietveld, M.; Absalah, S.; van Smeden, J.; Bouwstra, J.A.; El Ghalbzouri, A. Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices. PLoS ONE 2017, 12, e0174478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taherzadeh, O.; Otto, W.R.; Anand, U.; Nanchahal, J.; Anand, P. Influence of human skin injury on regeneration of sensory neurons. Cell Tissue Res. 2003, 312, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Black, A.F.; Berthod, F.; L’heureux, N.; Germain, L.; Auger, F.A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998, 12, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Braziulis, E.; Diezi, M.; Biedermann, T.; Pontiggia, L.; Schmucki, M.; Hartmann-Fritsch, F.; Luginbühl, J.; Schiestl, C.; Meuli, M.; Reichmann, E. Modified Plastic Compression of Collagen Hydrogels Provides an Ideal Matrix for Clinically Applicable Skin Substitutes. Tissue Eng. Part C Methods 2011, 18, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Thakoersing, V.S.; Danso, M.O.; Mulder, A.; Gooris, G.; Ghalbzouri, A.E.; Bouwstra, J.A. Nature versus nurture: Does human skin maintain its stratum corneum lipid properties in vitro? Exp. Dermatol. 2012, 21, 865–870. [Google Scholar] [CrossRef]
- Thakoersing, V.S.; Gooris, G.S.; Mulder, A.; Rietveld, M.; El Ghalbzouri, A.; Bouwstra, J.A. Unraveling Barrier Properties of Three Different In-House Human Skin Equivalents. Tissue Eng. Part C Methods 2012, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Batheja, P.; Song, Y.; Wertz, P.; Michniak-Kohn, B. Effects of Growth Conditions on the Barrier Properties of a Human Skin Equivalent. Pharm. Res. 2009, 26, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, T.L.; Van Lonkhuyzen, D.R.; Dawson, R.A.; Kimlin, M.G.; Upton, Z. Characterization of a Human Skin Equivalent Model to Study the Effects of Ultraviolet B Radiation on Keratinocytes. Tissue Eng. Part C Methods 2014, 20, 588–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischmajer, R.; Utani, A.; MacDonald, E.D.; Perlish, J.S.; Pan, T.C.; Chu, M.L.; Nomizu, M.; Ninomiya, Y.; Yamada, Y. Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci. 1998, 111, 1929. [Google Scholar] [CrossRef] [PubMed]
- Marino, D.; Luginbühl, J.; Scola, S.; Meuli, M.; Reichmann, E. Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries. Sci. Transl. Med. 2014, 6, 221ra14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins-Green, M.; Li, Q.-J.; Yao, M. A new generation organ culture arising from cross-talk between multiple primary human cell types. FASEB J. 2004, 19, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Kreimendahl, F.; Marquardt, Y.; Apel, C.; Bartneck, M.; Zwadlo-Klarwasser, G.; Hepp, J.; Jockenhoevel, S.; Baron, J. Macrophages significantly enhance wound healing in a vascularized skin model. J. Biomed. Mater. Res. Part A 2019, 107, 1340–1350. [Google Scholar] [CrossRef]
- Bacqueville, D.; Mavon, A. Comparative analysis of solar radiation-induced cellular damage between ex vivo porcine skin organ culture and in vitro reconstructed human epidermis. Int. J. Cosmet. Sci. 2009, 31, 293–302. [Google Scholar] [CrossRef]
- Zomer, H.D.; Trentin, A.G. Skin wound healing in humans and mice: Challenges in translational research. J. Dermatol. Sci. 2018, 90, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Knight, A. Systematic Reviews of Animal Experiments Demonstrate Poor Human Clinical and Toxicological Utility. Altern. Lab. Anim. 2007, 35, 641–659. [Google Scholar] [CrossRef] [Green Version]
- Bédard, P.; Gauvin, S.; Ferland, K.; Caneparo, C.; Pellerin, È.; Chabaud, S.; Bolduc, S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering 2020, 7, 115. [Google Scholar] [CrossRef]
- de Boo, J.; Hendriksen, C. Reduction strategies in animal research: A review of scientific approaches at the intra-experimental, supra-experimental and extra-experimental levels. Altern Lab Anim. 2005, 33, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Gangatirkar, P.; Paquet-Fifield, S.; Li, A.; Rossi, R.; Kaur, P. Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat. Protoc. 2007, 2, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Shamir, E.; Ewald, A.J. Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 647–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amelian, A.; Wasilewska, K.; Megias, D.; Winnicka, K. Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development. Pharmacol. Rep. 2017, 69, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.M.; Morgan, J.T. Generation of Self-assembled Vascularized Human Skin Equivalents. J. Vis. Exp. 2021. [Google Scholar] [CrossRef]
- Sanchez, M.M.; Orneles, D.N.; Park, B.H.; Morgan, J.T. Automated epidermal thickness quantification of in vitro human skin equivalents using optical coherence tomography. BioTechniques 2022, 72, 194–200. [Google Scholar] [CrossRef]
- Chan, R.K.; Zamora, D.O.; Wrice, N.L.; Baer, D.G.; Renz, E.M.; Christy, R.J.; Natesan, S. Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin. Stem Cells Int. 2012, 2012, 841203. [Google Scholar] [CrossRef] [Green Version]
- Bellas, E.; Seiberg, M.; Garlick, J.; Kaplan, D.L. In vitro 3D Full-Thickness Skin-Equivalent Tissue Model Using Silk and Collagen Biomaterials. Macromol. Biosci. 2012, 12, 1627–1636. [Google Scholar] [CrossRef] [Green Version]
- Kober, J.; Gugerell, A.; Schmid, M.; Kamolz, L.-P.; Keck, M. Generation of a Fibrin Based Three-Layered Skin Substitute. BioMed Res. Int. 2015, 2015, 170427. [Google Scholar] [CrossRef] [PubMed]
- Huber, B.; Link, A.; Linke, K.; Gehrke, S.A.; Winnefeld, M.; Kluger, P.J. Integration of Mature Adipocytes to Build-Up a Functional Three-Layered Full-Skin Equivalent. Tissue Eng. Part C Methods 2016, 22, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kon, A.; Takeda, H.; Ito, N.; Hanada, K.; Takagaki, K. Tissue-specific downregulation of type VII collagen gene (COL7A1) transcription in cultured epidermal keratinocytes by ultraviolet A radiation (UVA) and UVA-inducible cytokines, with special reference to cutaneous photoaging. J. Dermatol. Sci. Suppl. 2005, 1, S29–S35. [Google Scholar] [CrossRef]
- Son, W.-C.; Yun, J.-W.; Kim, B.-H. Adipose-derived mesenchymal stem cells reduce MMP-1 expression in UV-irradiated human dermal fibroblasts: Therapeutic potential in skin wrinkling. Biosci. Biotechnol. Biochem. 2015, 79, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Zhang, G.; Zhang, L. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells. Exp. Ther. Med. 2018, 15, 3439–3448. [Google Scholar] [CrossRef]
- Dickson, M.A.; Hahn, W.C.; Ino, Y.; Ronfard, V.; Wu, J.Y.; Weinberg, R.A.; Louis, D.N.; Li, F.P.; Rheinwald, J.G. Human Keratinocytes That Express hTERT and Also Bypass a p16 INK4a -Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics. Mol. Cell. Biol. 2000, 20, 1436–1447. [Google Scholar] [CrossRef] [Green Version]
- Ades, E.W.; Candal, F.J.; Swerlick, R.A.; George, V.G.; Summers, S.; Bosse, D.C.; Lawley, T.J. HMEC-1: Establishment of an Immortalized Human Microvascular Endothelial Cell Line. J. Investig. Dermatol. 1992, 99, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Wolbank, S.; Stadler, G.; Peterbauer, A.; Gillich, A.; Karbiener, M.; Streubel, B.; Wieser, M.; Katinger, H.; van Griensven, M.; Redl, H.; et al. Telomerase Immortalized Human Amnion- and Adipose-Derived Mesenchymal Stem Cells: Maintenance of Differentiation and Immunomodulatory Characteristics. Tissue Eng. Part A 2009, 15, 1843–1854. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.; Wood, J.A.; Walker, N.J.; Raghunathan, V.K.; Borjesson, D.L.; Murphy, C.J.; Russell, P. Human Trabecular Meshwork Cells Exhibit Several Characteristics of, but Are Distinct from, Adipose-Derived Mesenchymal Stem Cells. J. Ocul. Pharmacol. Ther. 2014, 30, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Floyd, Z.E.; Wu, X.; Hebert, T.; Halvorsen, Y.D.C.; Buehrer, B.M.; Gimble, J.M. Adipogenic Differentiation of Adipose-Derived Stem Cells. In Adipose-Derived Stem Cells: Methods and Protocols; Gimble, J.M., Bunnell, B.A., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 193–200. [Google Scholar] [CrossRef]
- Zhang, Z.; Michniak-Kohn, B.B. Tissue Engineered Human Skin Equivalents. Pharmaceutics 2012, 4, 26–41. [Google Scholar] [CrossRef]
- Tajima, S.; Pinnell, S.R. Ascorbic acid preferentially enhances type I and III collagen gene transcription in human skin fibroblasts. J. Dermatol. Sci. 1996, 11, 250–253. [Google Scholar] [CrossRef]
- Murad, S.; Tajima, S.; Johnson, G.R.; Sivarajah, S.A.; Pinnell, S.R. Collagen Synthesis in Cultured Human Skin Fibroblasts: Effect of Ascorbic Acid and Its Analogs. J. Investig. Dermatol. 1983, 81, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Villacorta, L.; Azzi, A.; Zingg, J.-M. Regulatory role of vitamins E and C on extracellular matrix components of the vascular system. Mol. Asp. Med. 2007, 28, 507–537. [Google Scholar] [CrossRef]
- Ashino, H.; Shimamura, M.; Nakajima, H.; Dombou, M.; Kawanaka, S.; Oikawa, T.; Iwaguchi, T.; Kawashima, S. Novel Function of Ascorbic Acid as an Angiostatic Factor. Angiogenesis 2003, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Ponec, M.; Weerheim, A.; Kempenaar, J.; Mulder, A.; Gooris, G.S.; Bouwstra, J.; Mommaas, A.M. The Formation of Competent Barrier Lipids in Reconstructed Human Epidermis Requires the Presence of Vitamin C. J. Investig. Dermatol. 1997, 109, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.; Shirazi, J.; Comber, E.M.; Eschenburg, C.; Gleghorn, J.P. Fabrication of centimeter-scale and geometrically arbitrary vascular networks using in vitro self-assembly. Biomaterials 2018, 189, 37–47. [Google Scholar] [CrossRef]
- Bornstein, M.B. Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Investig. 1958, 7, 134–137. [Google Scholar] [PubMed]
- Cross, V.L.; Zheng, Y.; Choi, N.; Verbridge, S.S.; Sutermaster, B.A.; Bonassar, L.J.; Fischbach, C.; Stroock, A.D. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010, 31, 8596–8607. [Google Scholar] [CrossRef] [Green Version]
- Rajan, N.; Habermehl, J.; Coté, M.-F.; Doillon, C.J.; Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 2006, 1, 2753. [Google Scholar] [CrossRef]
- Clément, M.-V.; Ramalingam, J.; Long, L.H.; Halliwell, B. The In Vitro Cytotoxicity of Ascorbate Depends on the Culture Medium Used to Perform the Assay and Involves Hydrogen Peroxide. Antioxid. Redox Signal. 2001, 3, 157–163. [Google Scholar] [CrossRef]
- Duval, C.; Schmidt, R.; Regnier, M.; Facy, V.; Asselineau, D.; Bernerd, F. The use of reconstructed human skin to evaluate UV-induced modifications and sunscreen efficacy. Exp. Dermatol. 2003, 12, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Asamitsu, K.; Uranishi, H.; Iddamalgoda, A.; Ito, K.; Kojima, H.; Okamoto, T. Protecting skin photoaging by NF-kappaB inhibitor. Curr. Drug Metab. 2010, 11, 431–435. [Google Scholar] [CrossRef]
- Shirazi, J.; Morgan, J.T.; Comber, E.M.; Gleghorn, J.P. Generation and morphological quantification of large scale, three-dimensional, self-assembled vascular networks. MethodsX 2019, 6, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Kovesi, P. Phase preserving denoising of images. Signal 1999, 4, 212–217. [Google Scholar]
- Kovesi, P. Phase Preserving Tone Mapping of Non-Photographic High Dynamic Range Images. In Proceedings of the International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, Australia, 3–5 December 2012. [Google Scholar]
- Jerman, T. Jerman Enhancement Filter. GitHub. 2021. Available online: https://github.com/timjerman/JermanEnhancementFilter (accessed on 12 August 2021).
- Jerman, T.; Pernus, F.; Likar, B.; Spiclin, Z. Enhancement of Vascular Structures in3D and 2D Angiographic Images. IEEE Trans. Med. Imaging 2016, 35, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Jerman, T.; Pernuš, F.; Likar, B.; Špiclin, Z. Beyond Frangi: An improved multiscale vesselness filter. In Medical Imaging 2015: Image Processing; Ourselin, S., Styner, M.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9413, pp. 623–633. [Google Scholar]
- Van Uitert, R.; Bitter, I. Subvoxel precise skeletons of volumetric data based on fast marching methods. Med. Phys. 2007, 34, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595. [Google Scholar] [CrossRef] [Green Version]
- Sethian, J.A. Fast Marching Methods. SIAM Rev. 1999, 41, 199–235. [Google Scholar] [CrossRef]
- Wang, Y.; Oh, C.M.; Oliveira, M.C.; Islam, M.S.; Ortega, A.; Park, B.H. GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300nm. Opt. Express 2012, 20, 14797–14813. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, Y.K.; Kim, J.E.; Kim, S.; Kim, M.-K.; Park, C.-H.; Chung, J.H. UV Modulation of Subcutaneous Fat Metabolism. J. Investig. Dermatol. 2011, 131, 1720–1726. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.H.; Yano, K.; Lee, M.K.; Youn, C.S.; Seo, J.Y.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Detmar, M. Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch. Dermatol. 2002, 138, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L.; Fisher, G.J. Natural and Sun-Induced Aging of Human Skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Metral, E.; Boher, A.; Rousselle, P.; Thepot, A.; Damour, O. In vitro 3-D model based on extending time of culture for studying chronological epidermis aging. Matrix Biol. 2015, 47, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, J.; Alili, L.; Scholz, O.; Giesen, M.; Holtkötter, O.; Brenneisen, P. A three-dimensional skin equivalent reflecting some aspects of in vivo aged skin. Exp. Dermatol. 2016, 25, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Weinmüllner, R.; Zbiral, B.; Becirovic, A.; Stelzer, E.M.; Nagelreiter, F.; Schosserer, M.; Lämmermann, I.; Liendl, L.; Lang, M.; Terlecki-Zaniewicz, L.; et al. Organotypic human skin culture models constructed with senescent fibroblasts show hallmarks of skin aging. npj Aging Mech. Dis. 2020, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, S.W.; Kim, D.S.; Cho, H.J.; Jeon, S.E.; Bae, I.H.; Yoon, H.J.; Park, K.C. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J. Dermatol. Sci. 2004, 35, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Adamus, J.; Aho, S.; Meldrum, H.; Bosko, C.; Lee, J.-M. p16INK4A Influences the Aging Phenotype in the Living Skin Equivalent. J. Investig. Dermatol. 2014, 134, 1131–1133. [Google Scholar] [CrossRef] [Green Version]
- Ressler, S.; Bartkova, J.; Niederegger, H.; Bartek, J.; Scharffetter-Kochanek, K.; Jansen-Durr, P.; Wlaschek, M. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 2006, 5, 379–389. [Google Scholar] [CrossRef]
- Pageon, H.; Bakala, H.; Monnier, V.M.; Asselineau, D. Collagen glycation triggers the formation of aged skin in vitro. Eur. J. Dermatol. 2007, 17, 12–20. [Google Scholar]
- Sok, J.; Pineau, N.; Dalko-Csiba, M.; Breton, L.; Bernerd, F. Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative. Eur. J. Dermatol. 2008, 18, 297–302. [Google Scholar]
- Deloche, C.; Minondo, A.M.; Bernard, B.A.; Bernerd, F.; Salas, F.; Garnier, J.; Tancrède, E. Effect of C-xyloside on morphogenesis of the dermal epidermal junction in aged female skin. An unltrastuctural pilot study. Eur. J. Dermatol. 2011, 21, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Vassal-Stermann, E.; Duranton, A.; Black, A.F.; Azadiguian, G.; Demaude, J.; Lortat-Jacob, H.; Breton, L.; Vivès, R.R. A New C-Xyloside Induces Modifications of GAG Expression, Structure and Functional Properties. PLoS ONE 2012, 7, e47933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascher, B.; Coleman, S.; Alster, T.; Bauer, U.; Burgess, C.; Butterwick, K.; Donofrio, L.; Engelhard, P.; Goldman, M.P.; Katz, P.; et al. Full Scope of Effect of Facial Lipoatrophy: A Framework of Disease Understanding. Dermatol. Surg. 2006, 32, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Saely, C.H.; Geiger, K.; Drexel, H. Brown versus White Adipose Tissue: A Mini-Review. Gerontology 2012, 58, 15–23. [Google Scholar] [CrossRef]
- Fiorenza, C.G.; Chou, S.H.; Mantzoros, C.S. Lipodystrophy: Pathophysiology and advances in treatment. Nat. Rev. Endocrinol. 2010, 7, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Reitman, M.L.; Arioglu, E.; Gavrilova, O.; Taylor, S.I. Lipoatrophy Revisited. Trends Endocrinol. Metab. 2000, 11, 410–416. [Google Scholar]
- Hammel, J.H.; Bellas, E. Endothelial cell crosstalk improves browning but hinders white adipocyte maturation in 3D engineered adipose tissue. Integr. Biol. 2020, 12, 81–89. [Google Scholar] [CrossRef]
- Kang, J.H.; Gimble, J.M.; Kaplan, D.L. In Vitro 3D Model for Human Vascularized Adipose Tissue. Tissue Eng. Part A 2009, 15, 2227–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauney, J.R.; Nguyen, T.; Gillen, K.; Kirker-Head, C.; Gimble, J.M.; Kaplan, D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007, 28, 5280–5290. [Google Scholar] [CrossRef] [Green Version]
- Trottier, V.; Marceau-Fortier, G.; Germain, L.; Vincent, C.; Fradette, J. IFATS Collection: Using Human Adipose-Derived Stem/Stromal Cells for the Production of New Skin Substitutes. Stem Cells 2008, 26, 2713–2723. [Google Scholar] [CrossRef]
- Smith, L.E.; Bonesi, M.; Smallwood, R.; Matcher, S.J.; MacNeil, S. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J. Tissue Eng. Regen. Med. 2010, 4, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Matip, R.; Moussa, G.; Altmeyer, P.; Hoffmann, K. In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site. J. Dermatol. Sci. 2006, 44, 145–152. [Google Scholar] [CrossRef]
- Battie, C.; Jitsukawa, S.; Bernerd, F.; Del Bino, S.; Marionnet, C.; Verschoore, M. New insights in photoaging, UVA induced damage and skin types. Exp. Dermatol. 2014, 23, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Agar, N.S.; Halliday, G.M.; Barnetson, R.S.; Ananthaswamy, H.N.; Wheeler, M.; Jones, A.M. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: A role for UVA in human skin carcinogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 4954. [Google Scholar] [CrossRef] [PubMed]
- Braverman, I.M. The Cutaneous Microcirculation. J. Investig. Dermatol. Symp. Proc. 2000, 5, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Gao, G.; Kim, J.Y.; Cho, D.W. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Adv. Healthc. Mater. 2019, 8, 1801019. [Google Scholar] [CrossRef]
- Mertsching, H.; Walles, T.; Hofmann, M.; Schanz, J.; Knapp, W.H. Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials 2005, 26, 6610–6617. [Google Scholar] [CrossRef]
- Men, S.J.; Chen, C.; Wei, W.; Lai, T.; Song, S.Z.; Wang, R.K. Repeatability of vessel density measurement in human skin by OCT -based microangiography. Ski. Res. Technol. 2017, 23, 607–612. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, H.; Wang, Q.; Han, X.; Zeng, W. Three-dimensional volume fluorescence-imaging of vascular plasticity in adipose tissues. Mol. Metab. 2018, 14, 71–81. [Google Scholar] [CrossRef]
- Huber, B.; Volz, A.-C.; Kluger, P.J. Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering. Cell Tissue Res. 2015, 362, 269–279. [Google Scholar] [CrossRef]
- Kligman, A.M. Perspectives and Problems in Cutaneous Gerontology. J. Investig. Dermatol. 1979, 73, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovett, M.; Lee, K.; Edwards, A.; Kaplan, D.L. Vascularization Strategies for Tissue Engineering. Tissue Eng. Part B Rev. 2009, 15, 353–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-S.; Kim, Y.K.; Eun, H.C.; Cho, K.H.; Chung, J.H. All-Trans Retinoic Acid Antagonizes UV-Induced VEGF Production and Angiogenesis via the Inhibition of ERK Activation in Human Skin Keratinocytes. J. Investig. Dermatol. 2006, 126, 2697–2706. [Google Scholar] [CrossRef] [Green Version]
- Braverman, I.M.; Yen, A. Ultrastructure of the capillary loops in the dermal papillae of psoriasis. J. Investig. Dermatol. 1977, 68, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Takayama, M.; Abe, Y.; Hirose, N. Adipokines and Aging. J. Atheroscler. Thromb. 2011, 18, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadowaki, T.; Yamauchi, T. Adiponectin and Adiponectin Receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Schneider, L.A.; Raizner, K.; Wlaschek, M.; Brenneisen, P.; Gethöffer, K.; Scharffetter-Kochanek, K. UVA-1 exposure in vivo leads to an IL-6 surge within the skin. Exp. Dermatol. 2017, 26, 830–832. [Google Scholar] [CrossRef] [Green Version]
- Wlaschek, M.; Bolsen, K.; Herrmann, G.; Schwarz, A.; Wilmroth, F.; Heinrich, P.C.; Goerz, G.; Scharffetter-Kochanek, K. UVA-Induced Autocrine Stimulation of Fibroblast-Derived-Collagenase by IL-6: A Possible Mechanism in Dermal Photodamage? J. Investig. Dermatol. 1993, 101, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Vielhaber, G.; Grether-Beck, S.; Koch, O.; Johncock, W.; Krutmann, J. Sunscreens with an absorption maximum of ≥360 nm provide optimal protection against UVA1-induced expression of matrix metalloproteinase-1, interleukin-1, and interleukin-6 in human dermal fibroblasts. Photochem. Photobiol. Sci. 2006, 5, 275–282. [Google Scholar] [CrossRef]
- Jor, J.W.Y.; Parker, M.D.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M.F. Computational and experimental characterization of skin mechanics: Identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 539–556. [Google Scholar] [CrossRef]
- Shuster, S.; Black, M.M.; McVITIE, E. The influence of age and sex on skin thickness, skin collagen and density. Br. J. Dermatol. 1975, 93, 639–643. [Google Scholar] [CrossRef]
- Grinnell, F.; Lamke, C.R. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 1984, 66, 51–63. [Google Scholar] [CrossRef]
- Ridge, M.D.; Wright, V. The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines. J. Investig. Dermatol. 1966, 46, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Joshi, I.M.; Mansouri, M.; Ahamed, N.N.N.; Hsu, M.-C.; Gaborski, T.R.; Abhyankar, V.V. Engineering fiber anisotropy within natural collagen hydrogels. Am. J. Physiol. Physiol. 2021, 320, C1112–C1124. [Google Scholar] [CrossRef] [PubMed]
- Dewle, A.; Pathak, N.; Rakshasmare, P.; Srivastava, A. Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2020, 6, 779–797. [Google Scholar] [CrossRef] [PubMed]
- Angel, P.; Szabowski, A.; Schorpp-Kistner, M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001, 20, 2413–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zghoul, N.; Fuchs, R.; Lehr, C.M.; Schaefer, U.F. Reconstructed skin equivalents for assessing percutaneous drug absorption from pharmaceutical formulations. ALTEX-Altern. Anim. Exp. 2001, 18, 103–106. [Google Scholar]
- Xie, Y.; Rizzi, S.C.; Dawson, R.; Lynam, E.; Richards, S.; Leavesley, D.I.; Upton, Z. Development of a Three-Dimensional Human Skin Equivalent Wound Model for Investigating Novel Wound Healing Therapies. Tissue Eng. Part C Methods 2010, 16, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
Cell Line or Culture Period | Recipe | Notes | Corresponding Timepoint |
---|---|---|---|
N/TERT 1 | K-SFM base media 1% P/S Bovine Pituitary Extract (BPE) [25 µg/mL] Epidermal Growth Factor (EGF) [0.2 ng/mL] CaCl2 [0.3 mM] | Media recipe based off of these references [31,68]. BPE and EGF are from the K-SFM supplement kit. | Maintenance culture |
HMEC1 | MCDB131 base media 10% FBS 1% P/S L-Glutamine [10 mM] Epidermal Growth Factor (EGF) [10 ng/mL] Hydrocortisone [10 ug/mL] | Media recipe as recommended by manufacturer. | Maintenance culture |
Human Dermal Fibroblasts | DMEM HG base 5% FBS 1% P/S | Media used for short term expansion in 2D. For longer expansion, use the manufacturer recommendation. | Maintenance culture |
ASC52telo | Mesenchymal Stem Cell Basal Medium 2% MSC supplement L-Alanyl-L-Glutamine [2.4 mM] G418 [0.2 mg/mL] | MSC Basal Medium is from ATCC (ATCC PCS-500-030); To make the complete medium the MSC growth kit (ATCC PCS-500-040) is added. MSC supplement from the growth kit contains: 2% FBS, 5 ng/mL rhFGF basic, 5 ng/mL rhFGF acidic, 5 ng/mL rhEGF. | Maintenance culture |
Adipogenesis Differentiation media | DMEM/HAM’s F12 base media 3% FBS 3-isobutyl-1-methyl-xanthane (IBMX) [250 µM] Indomethacin [10 µg/mL; 28 µM] Insulin [5 µg/mL] Dexamethasone [1 µM] D-pantothenate [34 µM] Biotin [66 µM] | Media recipe is based on prior work [71,72]. IBMX, Insulin, and Dexamethasone stocks stored at −20 °C. Indomethacin, D-pantothenate, and Biotin stocks stored at 4 °C. | 3 weeks prior to dermal seeding. 1 week for 2D culture and 2 weeks for 3D culture. |
Adipocyte Maintenance Media (serum free) | DMEM/HAM’s F12 base media Insulin [5 µg/mL] Dexamethasone [1 µM] D-pantothenate [34 µM] Biotin [66 uM] | This media blend is not used by itself for AVHSE culture, but it is used to make dermal submersion media. Adipocyte maintenance media is adipogenesis differentiation media without IBMX or Indomethacin (a PPARγ agonist) [72] | Used indirectly for Dermal Submersion media. |
Dermal Submersion (DS) | 1:1 Serum Free Adipocyte Maintenance media and serum free HMEC1 media Aliquot supplement: 3% FBS Daily supplements: L-Ascorbic Acid [100 µg/mL], VEGF [2 ng/mL] | Dermal submersion media is half adipocyte maintenance media and half HMEC1 media with supplement changes. Media prepared serum-free and used as base for ESM and AVHSE media. | During week 4 of culture: dermal cells are seeded and dermis is maturing. |
Epidermal Seeding and maturation media (ESM) | Dermal submersion media with CaCl2 [1.44 mM] Aliquot supplement: 1% FBS Daily supplements: L-Ascorbic Acid [100 µg/mL] | Media used for addition of N/TERT1s, shares base with DS and AVHSE media. | During week 4 of culture: epidermal cells are seeded and maturing. |
AVHSE media | Dermal submersion media with CaCl2 [1.44 mM] Daily supplements: L-Ascorbic Acid [100 µg/mL], Selenium (sodium selenite) [30 nM] | AVHSE media is serum free. L-ascorbic acid is important for collagen synthesis by fibroblasts, collagen stability, vessel wall integrity and barrier function [73,74,75,76,77,78]. | ~4 weeks into whole culture and through culture endpoint. Media is used for ALI. |
Staining Sequence | |||
---|---|---|---|
Stain/Imaging Phase | Staining/Processing Used | Imaging Orientation | |
1. Epidermal | Cytokeratin 10, Involucrin, DRAQ7 | Apical (epidermal) | |
2. Dermal Vasculature | Collagen IV | Basal (hypodermis) | |
3. Adipose | BODIPY | Basal (hypodermis) | |
4. Post-clearing | (Methanol dehydration, methyl salicylate clearing) | Basal (hypodermis) | |
Epidermal Staining | |||
Antibody/Stain | Information and Source | Concentration | Notes |
DRAQ 7 | Cell Signaling; | [1:250] | Nuclear marker |
Cytokeratin 10 | Suprabasal epidermal marker | ||
Primary | Cytokeratin 10 (DE-K10) mouse IgG, supernatant. Santa Cruz; sc-52318 | ||
Secondary | Goat Anti-Mouse IgG (H&L), DyLight™ 488. Thermo Scientific; 35502 (1 mg/mL) | [1:500] | |
Involucrin | Stratum Corneum, terminal differentiation marker [32] | ||
Primary | Involucrin rabbit polyclonal IgG. Proteintech; 55328-1-AP (30 µg/150 µL) | ||
Secondary | Anti-Rabbit IgG (H&L) (GOAT) Antibody, DyLight™ 549 Conjugated. Rockland Immunochemicals; 611-142-002 | [1:500] | |
Dermal Vasculature Staining | |||
Collagen IV | Vascular basement membrane | ||
Primary | Collagen IV rabbit polyclonalProteintech; 55131-1-AP | [1:500] | |
Secondary | Anti-Rabbit IgG (H&L) (GOAT) Antibody, DyLight™ 549 Conjugated. Rockland Immunochemicals; 611-142-002 | [1:500] | |
Adipose Staining | |||
BODIPY | Difluoro{2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-pyrrolato-N}boron; dissolved in 200 proof EtOH, CAS: 121207-31-6; Aldrich; 790389 | [2 µM] | Mature adipocyte marker |
Clearing | |||
Methanol | CAS: 67-56-1 | 4 baths, 10 min each | For sample dehydration. |
Methyl Salicylate | CAS: 119-36-8 | 4 baths, 5 min each | For sample clearing |
Blocking Buffer Recipe | |||
Reagent | Amount | ||
ddH2O | 450 mL | ||
10 × PBS | 50 mL | ||
Bovine Serum Albumin (BSA) | 5 g | ||
Tween 20 | 0.5 mL | ||
Cold water Fish Gelatin | 1 g | ||
Sodium Azide (10% Sodium Azide in diH2O) | 5 mL (0.1% final concentration) | ||
All exposure for stains and antibodies: 48 h, stationary, 4 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez, M.M.; Tonmoy, T.I.; Park, B.H.; Morgan, J.T. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022, 12, 1828. https://doi.org/10.3390/biom12121828
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules. 2022; 12(12):1828. https://doi.org/10.3390/biom12121828
Chicago/Turabian StyleSanchez, Martina M., Thamidul Islam Tonmoy, B. Hyle Park, and Joshua T. Morgan. 2022. "Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies" Biomolecules 12, no. 12: 1828. https://doi.org/10.3390/biom12121828
APA StyleSanchez, M. M., Tonmoy, T. I., Park, B. H., & Morgan, J. T. (2022). Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules, 12(12), 1828. https://doi.org/10.3390/biom12121828