Biomimetic Artificial Proton Channels
Abstract
:1. Introduction
2. Natural Protein Proton Channels
3. Artificial Proton Channels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 4th ed.; Macmillan: London, UK, 2005. [Google Scholar]
- Thomas, R.C.; Meech, R.W. Hydrogen ion currents and intracellular p H in depolarized voltage-clamped snail neurones. Nature 1982, 299, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.C.; Meech, R.W. Voltage-dependent intracellular pH in Helix aspersa neurones. J. Physiol. 1987, 390, 433–452. [Google Scholar]
- Springer, A.; Hagen, V.; Cherepanov, D.A.; Antonenko, Y.N.; Pohl, P. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc. Natl. Acad. Sci. USA 2011, 108, 14461–14466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Knyazev, D.G.; Vereshaga, Y.A.; Ippoliti, E.; Nguyen, T.H.; Carloni, P.; Pohl, P. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl. Acad. Sci. USA 2012, 109, 9744–9749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, B.L.; Grubmüller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001, 294, 2353–2357. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci. Rep. 2014, 4, 4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, W.; Chen, L.; Hu, X.B.; Tang, G.; Chen, Z.; Hou, J.L.; Li, Z.T. Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem. Int. Ed. 2011, 50, 12564–12568. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Hu, X.B.; Liu, X.H.; Fan, R.; Chen, Z.; Weng, L.; Hou, J.L. Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Lett. 2011, 52, 2484–2487. [Google Scholar] [CrossRef]
- Licsandru, E.; Kocsis, I.; Shen, Y.X.; Murail, S.; Legrand, Y.M.; Van Der Lee, A.; Tsai, D.; Baaden, M.; Kumar, M.; Barboiu, M. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 2016, 138, 5403–5409. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.P.; Huang, L.B.; Sun, Z.; Barboiu, M. Self-assembled artificial ion-channels toward natural selection of functions. Angew. Chem. Int. Ed. 2021, 60, 566–597. [Google Scholar] [CrossRef]
- Michau, M.; Barboiu, M.; Caraballo, R.; Arnal-Hérault, C.; Perriat, P.; Van Der Lee, A.; Pasc, A. Ion-Conduction Pathways in Self-Organised Ureidoarene–Heteropolysiloxane Hybrid Membranes. Chem. Eur. J. 2008, 14, 1776–1783. [Google Scholar] [CrossRef]
- Legrand, Y.M.; Michau, M.; van der Lee, A.; Barboiu, M. Homomeric and heteromeric self-assembly of hybrid ureido–imidazole compounds. CrystEngComm 2008, 10, 490–492. [Google Scholar] [CrossRef]
- Huang, L.B.; Hardiagon, A.; Kocsis, I.; Jegu, C.A.; Deleanu, M.; Gilles, A.; van der Lee, A.; Sterpone, F.; Baaden, M.; Barboiu, M. Hydroxy Channels–Adaptive Pathways for Selective Water Cluster Permeation. J. Am. Chem. Soc. 2021, 143, 4224–4233. [Google Scholar] [CrossRef]
- O’Connor, P.M.; Guha, A.; Stilphen, C.A.; Sun, J.; Jin, C. Proton channels and renal hypertensive injury: A key piece of the Dahl salt-sensitive rat puzzle? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R679–R690. [Google Scholar] [CrossRef] [Green Version]
- Saraste, M. Oxidative phosphorylation at the fin de siècle. Science 1999, 283, 1488–1493. [Google Scholar] [CrossRef]
- DeCoursey, T.E. Voltage and pH sensing by the voltage-gated proton channel, HV1. J. R. Soc. Interface 2018, 15, 20180108. [Google Scholar] [CrossRef] [Green Version]
- Rennhack, A.; Grahn, E.; Kaupp, U.B.; Berger, T.K. Photocontrol of the Hv1 proton channel. ACS Chem. Biol. 2017, 12, 2952–2957. [Google Scholar] [CrossRef]
- Sasaki, M.; Takagi, M.; Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 2006, 312, 589–592. [Google Scholar] [CrossRef]
- Li, S.J.; Zhao, Q.; Zhou, Q.; Unno, H.; Zhai, Y.; Sun, F. The role and structure of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1. J. Biol. Chem. 2010, 285, 12047–12054. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, I.S.; Mokrab, Y.; Carvacho, I.; Sands, Z.A.; Sansom, M.S.; Clapham, D.E. An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat. Struct. Mol. Biol. 2010, 17, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.H.; Holsinger, L.J.; Lamb, R.A. Influenza virus M2 protein has ion channel activity. Cell 1992, 69, 517–528. [Google Scholar] [CrossRef]
- Mould, J.A.; Paterson, R.G.; Takeda, M.; Ohigashi, Y.; Venkataraman, P.; Lamb, R.A.; Pinto, L.H. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev. Cell 2003, 5, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Cady, S.D.; Luo, W.; Hu, F.; Hong, M. Structure and function of the influenza A M2 proton channel. Biochemistry 2009, 48, 7356–7364. [Google Scholar] [CrossRef] [Green Version]
- Leiding, T.; Wang, J.; Martinsson, J.; DeGrado, W.F.; Årsköld, S.P. Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc. Natl. Acad. Sci. USA 2010, 107, 15409–15414. [Google Scholar] [CrossRef] [Green Version]
- Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008, 451, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.B.; Du, Q.S.; Wang, C.H.; Chou, K.C. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of ingluenza A virus. Biochem. Biophys. Res. Commun. 2008, 377, 1243–1247. [Google Scholar] [CrossRef]
- Liang, R.; Swanson, J.M.; Madsen, J.J.; Hong, M.; DeGrado, W.F.; Voth, G.A. Acid activation mechanism of the influenza A M2 proton channel. Proc. Natl. Acad. Sci. USA 2016, 113, E6955–E6964. [Google Scholar] [CrossRef] [Green Version]
- Weeks, D.L.; Eskandari, S.; Scott, D.R.; Sachs, G. A H+-gated urea channel: The link between Helicobacter pylori urease and gastric colonization. Science 2000, 287, 482–485. [Google Scholar] [CrossRef] [Green Version]
- Strugatsky, D.; McNulty, R.; Munson, K.; Chen, C.K.; Soltis, S.M.; Sachs, G.; Luecke, H. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 2013, 493, 255–258. [Google Scholar] [CrossRef] [Green Version]
- McNulty, R.; Ulmschneider, J.P.; Luecke, H.; Ulmschneider, M.B. Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat. Commun. 2013, 4, 2900. [Google Scholar] [CrossRef] [Green Version]
- Gray, L.R.; Gu, S.X.; Quick, M.; Khademi, S. Transport kinetics and selectivity of Hp UreI, the urea channel from Helicobacter pylori. Biochemistry 2011, 50, 8656–8663. [Google Scholar] [CrossRef] [PubMed]
- Von Grotthuß, T. Memoir on the Decomposition of Water and of the Bodies that it Holds Insolution by Means of Galvanic Electricity. Biochim. Biophys Acta 2006, 1757, 871–875. [Google Scholar]
- Tunuguntla, R.H.; Allen, F.I.; Kim, K.; Belliveau, A.; Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 2016, 11, 639–644. [Google Scholar] [CrossRef]
- Choi, P.; Jalani, N.H.; Datta, R. Thermodynamics and proton transport in nafion: II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 2005, 152, E123. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.; Ran, J.; Zhou, D.; Li, C.; Xu, T. Advances in proton-exchange membranes for fuel cells: An overview on proton conductive channels (PCCs). Phys. Chem. Chem. Phys. 2013, 15, 4870–4887. [Google Scholar] [CrossRef]
- Feng, S.; Voth, G.A. Proton solvation and transport in hydrated nafion. J. Phys. Chem. B 2011, 115, 5903–5912. [Google Scholar] [CrossRef]
- Shen, L.; Sun, Z.; Chu, Y.; Zou, J.; Deshusses, M.A. Novel sulfonated Nafion®-based composite membranes with pillararene as selective artificial proton channels for application in direct methanol fuel cells. Int. J. Hydrog. Energy 2015, 40, 13071–13079. [Google Scholar] [CrossRef]
- Simari, C.; Potsi, G.; Policicchio, A.; Perrotta, I.; Nicotera, I. Clay-carbon nanotubes hybrid materials for nanocomposite membranes: Advantages of branched structure for proton transport under low humidity conditions in PEMFCs. J. Phys. Chem. C 2016, 120, 2574–2584. [Google Scholar] [CrossRef]
- Sun, X.; Su, X.; Wu, J.; Hinds, B.J. Electrophoretic transport of biomolecules through carbon nanotube membranes. Langmuir 2011, 27, 3150–3156. [Google Scholar] [CrossRef] [Green Version]
- Majumder, M.; Zhan, X.; Andrews, R.; Hinds, B.J. Voltage gated carbon nanotube membranes. Langmuir 2007, 23, 8624–8631. [Google Scholar] [CrossRef]
- Kocsis, I.; Sun, Z.; Legrand, Y.M.; Barboiu, M. Artificial water channels—Deconvolution of natural aquaporins through synthetic design. NPJ Clean Water 2018, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.J.; Halls, M.D. Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett. 2003, 90, 195503. [Google Scholar] [CrossRef] [PubMed]
- Dellago, C.; Naor, M.M.; Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 2003, 90, 105902. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Peng, Y.; Yan, T.; Li, S.; Li, A.; Voth, G.A. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 11395–11397. [Google Scholar] [CrossRef]
- Weiss, L.A.; Sakai, N.; Ghebremariam, B.; Ni, C.; Matile, S. Rigid rod-shaped polyols: Functional nonpeptide models for transmembrane proton channels. J. Am. Chem. Soc. 1997, 119, 12142–12149. [Google Scholar] [CrossRef]
- Ni, C.; Matile, S. Side-chain hydrophobicity controls the activity of proton channel forming rigid rod-shaped polyols. Chem. Comm. 1998, 7, 755–756. [Google Scholar] [CrossRef]
- Sakai, N.; Ni, C.; Bezrukov, S.M.; Matile, S. Voltage-dependent ion channel formation by rigid rod-shaped polyols in planar lipid bilayers. Bioorg. Med. Chem. Lett. 1998, 8, 2743–2746. [Google Scholar] [CrossRef]
- Sakai, N.; Mareda, J.; Matile, S. Rigid-rod molecules in biomembrane models: From hydrogen-bonded chains to synthetic multifunctional pores. Acc. Chem. Res. 2005, 38, 79–87. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Hou, J.; Ou, R.; Zhu, Y.; Zhao, C.; Qian, T.; Easton, C.D.; Selomulya, C.; Hill, M.R.; et al. Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. J. Am. Chem. Soc. 2020, 142, 9827–9833. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Yu, H.; Xia, J.; Zhu, Y.B.; Wu, H.A.; Hou, J.; Lu, J.; Ou, R.; Easton, C.D.; et al. Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. Adv. Mater. 2020, 32, 2001777. [Google Scholar] [CrossRef]
- Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.A.; Nakamoto, Y. Para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023. [Google Scholar] [CrossRef]
- Hu, X.B.; Chen, Z.; Tang, G.; Hou, J.L.; Li, Z.T. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 2012, 134, 8384–8387. [Google Scholar] [CrossRef]
- Yan, Z.J.; Wang, D.; Ye, Z.; Fan, T.; Wu, G.; Deng, L.; Yang, L.; Li, B.; Liu, J.; Ma, T.; et al. Artificial aquaporin that restores wound healing of impaired cells. J. Am. Chem. Soc. 2020, 142, 15638–15643. [Google Scholar] [CrossRef]
- Fa, S.; Sakata, Y.; Akine, S.; Ogoshi, T. Non-Covalent Interactions Enable the Length-Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew. Chem. Int. Ed. 2020, 59, 9309–9313. [Google Scholar] [CrossRef]
- Strilets, D.; Fa, S.; Hardiagon, A.; Baaden, M.; Ogoshi, T.; Barboiu, M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew. Chem. Int. Ed. 2020, 59, 23213–23219. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, H.; Jon, S.; Selvapalam, N.; Oh, D.H.; Seo, I.; Park, C.S.; Jung, S.R.; Koh, D.S.; Kim, K. Artificial ion channel formed by cucurbit [n] uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J. Am. Chem. Soc. 2004, 126, 15944–15945. [Google Scholar] [CrossRef]
- Yan, T.; Liu, S.; Xu, J.; Sun, H.; Yu, S.; Liu, J. Unimolecular Helix-Based Transmembrane Nanochannel with a Smallest Luminal Cavity of 1 Å Expressing High Proton Selectivity and Transport Activity. Nano. Lett. 2021, 21, 10462–10468. [Google Scholar] [CrossRef]
- Wraight, C.A. Chance and design—Proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys Acta-Bioenerg. 2006, 1757, 886–912. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Barboiu, M. Artificial Gramicidins. Front. Chem. 2019, 7, 611. [Google Scholar] [CrossRef] [Green Version]
- Barboiu, M.; Le Duc, Y.; Gilles, A.; Cazade, P.A.; Michau, M.; Legrand, Y.M.; van der Lee, A.; Coasne, B.; Parvizi, P.; Post, J.; et al. An artificial primitive mimic of the Gramicidin-A channel. Nat. Commun. 2014, 5, 4142. [Google Scholar] [CrossRef] [Green Version]
- Barboiu, M.; Cazade, P.A.; Le Duc, Y.; Legrand, Y.M.; van der Lee, A.; Coasne, B. Polarized water wires under confinement in chiral channels. J. Phys. Chem. B 2015, 119, 8707–8717. [Google Scholar] [CrossRef]
- Zheng, S.P.; Li, Y.H.; Jiang, J.J.; van der Lee, A.; Dumitrescu, D.; Barboiu, M. Self-Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen-Bonding/Anion–π Interactions. Angew. Chem. 2019, 131, 12165–12170. [Google Scholar] [CrossRef]
- Barboiu, M. Artificial water channels. Angew. Chem. Int. Ed. 2012, 51, 11674–11676. [Google Scholar] [CrossRef]
- Le Duc, Y.; Michau, M.; Gilles, A.; Gence, V.; Legrand, Y.-M.; van der Lee, A.; Tingry, S.; Barboiu, M. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 2011, 123, 11568–11574. [Google Scholar] [CrossRef]
- Huang, L.B.; Di Vincenzo, M.; Li, Y.; Barboiu, M. Artificial Water Channels-towards Biomimetic Membranes for Desalination. Chem. Eur. J. 2021, 27, 2224–2239. [Google Scholar] [CrossRef] [PubMed]
- Barboiu, M. Artificial water channels–incipient innovative developments. Chem. Commun. 2016, 52, 5657–5665. [Google Scholar] [CrossRef]
- Barboiu, M.; Gilles, A. From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 2013, 46, 2814–2823. [Google Scholar] [CrossRef]
- Mondal, D.; Dandekar, B.R.; Ahmad, M.; Mondal, A.; Mondal, J.; Talukdar, P. Selective and rapid water transportation across a self-assembled peptide-diol channel via the formation of a dual water array. Chem. Sci. 2022, 13, 9614–9623. [Google Scholar] [CrossRef]
- Licsandru, E.; Andrei, I.M.; Van Der Lee, A.; Barboiu, M. Self-assembled H-bonding superstructures for alkali cation and proton transport. Front. Chem. 2021, 9, 304. [Google Scholar] [CrossRef]
- Zheng, S.P.; Jiang, J.J.; van der Lee, A.; Barboiu, M. A Voltage-Responsive Synthetic Cl−-Channel Regulated by pH. Angew. Chem. 2020, 132, 19082–19088. [Google Scholar] [CrossRef]
- Shinde, S.V.; Talukdar, P. Transmembrane H+/Cl− cotransport activity of bis (amido) imidazole receptors. Org. Biomol. Chem. 2019, 17, 4483–4490. [Google Scholar] [CrossRef] [PubMed]
- Howe, E.N.; Chang, V.V.T.; Wu, X.; Fares, M.; Lewis, W.; Macreadie, L.K.; Gale, P.A. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones. Biochim. Biophys. Acta Biomembr. BBA-Biomembr. 2022, 1864, 183828. [Google Scholar] [CrossRef] [PubMed]
- Hilburg, S.L.; Ruan, Z.; Xu, T.; Alexander-Katz, A. Bahaviour of Protein-Inspired Synthetic Random Heteropolymers. Macromolecules 2020, 53, 9187–9199. [Google Scholar] [CrossRef]
- Jiang, T.; Hall, A.; Eres, M.; Hemmatian, Z.; Qiao, B.; Zhou, Y.; Ruan, Z.; Couse, A.D.; Heller, W.T.; Huang, H.; et al. Single-chain heteropolymers transport protons selectively and rapidly. Nature 2020, 577, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Panganiban, B.; Qiao, B.; Jiang, T.; Delre, C.; Obadia, M.M.; Nguyen, T.D.; Smith, A.A.A.; Hall, A.; Sit, I.; Crosby, M.G.; et al. Random heteropolymers preserve protein function in foreign environments. Science 2018, 359, 1239–1243. [Google Scholar] [PubMed] [Green Version]
- Lee, M.; Bai, C.; Feliks, M.; Alhadeff, R.; Warshel, A. On the control of the proton current in the voltage-gated proton channel Hv1. Proc. Natl. Acad. Sci. USA 2018, 115, 10321–10326. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.J.; Wu, G.; Sharif, M.R.A.; Baker, A.; Jia, Y.; Fahey, F.H.; Luo, H.R.; Feener, E.P.; Clapham, D.E. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat. Neurosci. 2012, 15, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Pupo, A.; Mena-Ulecia, K.; Gonzalez, C. Pharmacological modulation of proton channel Hv1 in cancer therapy: Future perspectives. Mol. Pharmacol. 2016, 90, 385–402. [Google Scholar] [PubMed] [Green Version]
- Sachs, G.; Weeks, D.L.; Melchers, K.; Scott, D.R. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol. 2003, 65, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J.; Atherton, J.C. Helicobacter pylori persistence: Biology and disease. J. Clin. Investig. 2004, 113, 321–333. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, I.-M.; Barboiu, M. Biomimetic Artificial Proton Channels. Biomolecules 2022, 12, 1473. https://doi.org/10.3390/biom12101473
Andrei I-M, Barboiu M. Biomimetic Artificial Proton Channels. Biomolecules. 2022; 12(10):1473. https://doi.org/10.3390/biom12101473
Chicago/Turabian StyleAndrei, Iuliana-Marilena, and Mihail Barboiu. 2022. "Biomimetic Artificial Proton Channels" Biomolecules 12, no. 10: 1473. https://doi.org/10.3390/biom12101473
APA StyleAndrei, I.-M., & Barboiu, M. (2022). Biomimetic Artificial Proton Channels. Biomolecules, 12(10), 1473. https://doi.org/10.3390/biom12101473