Next Article in Journal
Bioenergetics of the Dictyostelium Kinesin-8 Motor Isoform
Next Article in Special Issue
Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research
Previous Article in Journal / Special Issue
Intervention in Neuropsychiatric Disorders by Suppressing Inflammatory and Oxidative Stress Signal and Exploration of In Silico Studies for Potential Lead Compounds from Holigarna caustica (Dennst.) Oken leaves
Open AccessArticle

Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons

1
Laboratory of Neurochemistry and Cellular Biology, Department of Biophysics and Biochemistry, Institute of Health Sciences, Federal University of Bahia, Salvador-Bahia 40.110-100, Brazil
2
INCT—Sheffield Institute of Translational Neuroscience (SITraN), The University of Sheffield, Sheffield S10 2HQ, UK
3
Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador-Bahia 40.170-115, Brazil
4
Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Salvador-Bahia 40.170-115, Brazil
5
School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK
*
Authors to whom correspondence should be addressed.
These authors contributed equally to the paper.
Biomolecules 2020, 10(4), 562; https://doi.org/10.3390/biom10040562
Received: 12 February 2020 / Revised: 27 February 2020 / Accepted: 27 February 2020 / Published: 7 April 2020
(This article belongs to the Special Issue Pharmacology of Medicinal Plants)
Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1β (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker β-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1β, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and β estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1β, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases. View Full-Text
Keywords: flavonoids; agathisflavone; neuroprotection; anti-neuroinflammation flavonoids; agathisflavone; neuroprotection; anti-neuroinflammation
Show Figures

Graphical abstract

MDPI and ACS Style

de Almeida, M.M.A.; Souza, C.S.; Dourado, N.S.; da Silva, A.B.; Ferreira, R.S.; David, J.M.; David, J.P.; Costa, M.F.D.; da Silva, V.D.A.; Butt, A.M.; Costa, S.L. Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons. Biomolecules 2020, 10, 562.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop